40m QIL Cryo_Lab CTN SUS_Lab TCS_Lab OMC_Lab CRIME_Lab FEA ENG_Labs OptContFac Mariner WBEEShop
  SUS Lab eLog  Not logged in ELOG logo
Message ID: 185     Entry time: Thu Mar 10 14:59:54 2011
Author: Jan 
Type: DailyProgress 
Category: Seismometry 
Subject: Thoughts about how to optimize feed-forward for NN 

If the plan is to use feed-forward cancellation instead of noise templates, then the way to optimize the array design is to understand where gravity perturbations are generated. The following plot shows a typical gravity-perturbation field as seen by the test mass. It is a snapshot at a specific moment in time. The gravity-perturbation force is projected onto the line along the arm (Y=0). Green means no gravity perturbation along the arm generated at this point.


The plot shows that the gravity perturbations along the direction of the arm seen by the test mass are generated very close to the test mass (most of it within a radius of 10m), and that it is generated "behind" and "in front of" the mirror. This follows directly from projecting onto the arm direction. As we already know, for feed-forward, we can completely neglect the existence of seismic waves and focus on actual gravity perturbations. In short, for feed-forward, you would place the seismometers inside the blue-red region and don't worry about any locations in the green. The distance between seismometers should be equal to or less than the distance between red and blue extrema. So even though I haven't simulated feed-forward cancellation yet, I already know how to make it work. Obviously, if subtraction goals are more ambitious than what we need for aLIGO, then feed-forward cancellation of NN would completely fail generating more problems than solving problems. Unless someone wants to deploy hundreds to a few thousand seismometers around each test mass.

ELOG V3.1.3-