40m QIL Cryo_Lab CTN SUS_Lab CAML OMC_Lab CRIME_Lab FEA ENG_Labs OptContFac Mariner WBEEShop
  ATF eLog, Page 34 of 58  Not logged in ELOG logo
ID Date Author Type Category Subjectup
  2514   Fri Nov 6 12:45:21 2020 AidanUpdate2um PhotodiodesPhotodiode testing recovery status

Embellished Chris's PD MEDM screen a bit to illustrate controls in a diagram. The representation of the RELAY SWITCH between the Keithley and the SR560 is a bit off - I think the transimpedance amplifier is switched out as well.

Also - Keithley bright PD sweep output is attached.


Quick update, more detailed update to follow.

  • Laser is working
  • Photodiode sweep with the Keithley shows a sensible dark Current v Voltage plot (when laser is off) - indicating that PD wiring is still intact
  • Laser was aligned onto photodiode (although it took a while aligning to find the signal)
  • Ran a sweep with the Keithley and the laser on - saw another sensible bright Current v Voltage plot (more current than in the dark case)
  • DAQ control still works
  • DAC output is directly providing (unfiltered) 200mV bias

Still to do:

  • Get the SR785 plugged back in
  • Get an SR560 inserted between DAC output and PD bias to low pass filter
  • Investigate why the laser current set point is so noisy
  • Sort out RTD situation inside the chamber
  • Miscellaneous stuff


Attachment 1: MEDM.png
Attachment 2: PD_sweep.png
  221   Mon Aug 3 22:53:11 2009 DmassLaserPMCPhotodiodes and Power meters - confusion

I am measuring the power of my PMC transmission with a Thorlabs PDA10CS. I have one after a 50:50 Beamsplitter on the output.


I measured 603 mV through a 2.0 ND filter on a 0dB gain setting with an oscilloscope (1MOhm load). This should be half my transmitted power.


I calculate: 0.603 V *(1A/1.5*10^3V)*(1W/.7A)*100 (for ND filter) = 58 mW...


I measure again with a 10 dB setting for sanity:

1.94 V * (1/4.75*10^3)/\*(1/.7)*100 = 58 mW....


BUT when I put a power meter in the same part of the beampath, I get a reading of 30 mW. My input power is 90 mW...I think I am getting at least 2/3 transmission, but am confused by my photodiode reading. It seems to imply I am getting more power out than I put in. (hmm.)

  2044   Fri Mar 4 16:18:45 2016 KojiMiscGeneralPhotos of the experiment


  928   Thu Aug 12 22:55:22 2010 JennaLaserGYROPictures

 I've taken some pictures and tried to label the beam paths. They're not great, but hopefully they're understandable.

Green is the unsplit laser beam, Red is the CCW beam, Blue is CW (on the AOM side) beam, and Purple is both beams together.

The first three show the incoming and reflected beams. Arrows indicate a reflected beam. The last picture shows the beams in transmission onto the PD.


*Edited to correct first picture

Attachment 1: Beam_Path.png
Attachment 2: beam_path_3.png
Attachment 3: beam_path_1.png
Attachment 4: beam_path_2.png
  929   Thu Aug 12 23:26:06 2010 ZachLaserGYROPictures

Nice shots. I noticed that on one picture you indicate a "curved input mirror". Was the input mirror really changed to a curved one? If so, why? My (perhaps-flawed) intuition tells me that it will be more difficult to get an exact modematch to the weird phasefront on that mirror.


  930   Fri Aug 13 00:11:46 2010 JennaLaserGYROPictures

 Sorry, the input/output mirrors are flat, and it's the other two mirrors that are curved with a ROC of 9m. I'll try to fix it on the picture tomorrow.

  931   Fri Aug 13 10:18:20 2010 JennaLaserGYROPictures


 It's fixed now, in the original entry.

  27   Sun Feb 10 13:27:57 2008 Stefan BallmerComputingGeneralPictures of Bork-Space setup
Attachment 1: CIMG3586.JPG
Attachment 2: CIMG3587.JPG
Attachment 3: CIMG3588.JPG
Attachment 4: CIMG3589.JPG
  485   Sat Dec 12 23:38:47 2009 DmassLaserDoublingPictures! Box and Setup

Pictures galore of my Mach Zehnder doubling noise setup, with and without the box.

Images, in order:

  1. Mach Zehnder itself
  2. PD Readout setup
  3. Boxes Galore!
Attachment 1: CleanerMZ.png
Attachment 2: OutputPrebox.png
Attachment 3: BoxPics.png
  2880   Thu Sep 7 12:33:33 2023 AaronMiscEquipment transferPiezo controller to cryo

I moved a Thorlabs piezo controller from QIL south optics table to Cryo lab. The controller output was already unplugged, so I only had to disconnect the input and power. 

  1896   Fri Jan 23 15:33:46 2015 Kate, AlastairMiscSeismometerPin vise holder, version 1

Here is the first version of a design for a mounting block for the pin vise. The concept is that the pin vise will be screwed into this aluminum block and the block will be screwed into the optical breadboard (i.e. inertial mass). We want to have the flexure point of the wire be located (ideally) at the center of mass of the system, so I computed where the center of mass would be using the estimation that both the breadboard and mounting block are solid Aluminum (density = 2.7 g/cm^3).

For the dimensions as follows:

optical breadboard = 12" x 10" x 0.5" (2655 grams)

mounting block = 2" x 2" x 1.75" (310 grams)

the center of mass would be:

R = \frac{m_1 r_1 + m_2 r_2}{m_1 + m_2} = \frac{0 + (310)*(1.125)}{2655 + 310} \approx 0.12\,\mbox{inches} \approx 3\,\mbox{mm}

below the center of mass (also geometric center) of the breadboard. I haven't yet calculated the flexure length for the wire, but the consensus between Alastair and Koji is that it won't be more than a couple mm. This means the tip of the pin vise which grasps the wire should be yet another few mm lower, or approximately co-located with the bottom surface of the breadboard. However, since the flexure point will need to be slightly above the center of mass for stability and because we will load the breadboard with some weights (i.e. mirrors for optical readout of the mass's motion and balancing weights) which will raise the center of mass, I decided to make the tip of the pin vise somewhere in the middle of the lower half of the breadboard. 

I  brought this design to the machine shop in the sub-basement of Lauritsen, but the guy I talked with there said the 1 mm thick wall of the pin vise handle is too thin to die (add threads to) with any of the machines they have. We discussed an alternate solution of tapping two holes into the side of the block and just grasping the pin vise with the force of screws. He also suggested filling the pin vise handle with aluminum to make it stronger. 

Pin vise holder


Attachment 1: SCAN7247_000.pdf
  2193   Thu Feb 15 16:58:31 2018 EricMiscGeneralPlan for LabJack U3-HV

Working with Kevin on LabJack U3-HV to get statistics about ADC and DAC noise/inaccuracies for Rana. For preliminary testing, created an analog input into the ADC that broadcasts a sine wave (generated by a computer or anything else that can generate a sine wave). The U3 can receive commands and send responses at around 150 Hz. However, there is a separate module in Python that allows you to open a stream from the device with will stream packages from the ADC anywhere up to 20KHz. Above 20KHz packets begin to drop. These packages are then interpreted and used to calculate an Amplitude Spectrum using Welch’s method. This information can be used to calculate peak-to-peak noise and RMS noise. The following information was taken with an audio output from a laptop. It serves as preliminary data as a proof of concept that the scripts are working the way they should. Attachments 1 and 2 correspond to the Amplitude Spectrum and Time Series of sine waves of 440 Hz and 20 Hz. Of course, we see a peak in Attachment 1 at 440 Hz and at 20 Hz and subsequent harmonics in Attachment 2.

With this method written, I will now use a Phase-locked loop (PLL) to measure the Rayleigh statistic over a long time period (days to weeks) of two DAC conversions to observe any variation in two different phases. This will test the accuracy of the LabJack over long time spans and ensure that there is no variation in long-term usage between different DACs on the device. This begins with digitally inputting two sine waves of the same frequency through the devices digital inputs. The method for this is described in the next paragraph. They are then converted using the DAC into an analog signal, which we can analyze with some of the previously built methods. I will use a phase detector, which generates a voltage signal which represents the difference between our two analog (or two digital) signals in a PLL application. Using this data, we can then use the Rayleigh statistic, which measures the continuous probability distribution for random variables. In the application of our data, it can be used as a test for non-uniformities in a set of periodic points.  This method is available through the stats module of SciPy. Using Rayleigh statistic data, I will make plots of a spectrogram and a whitened spectrogram, which normalizes with the median in each frequency bin. I can use methods available on GWpy (from LIGO algorithm library) with some minimal changes to build the spectrograms. 

I will use two Raspberry Pi’s - one to generate the signal and another to run scripts for the PLL, Rayleigh statistic, and spectrograms. The signal generator will have a USB-output to a DB15 cable, which will connect to the bottom of the LabJack. From there, I can generate signals on pins 1 and 2 of the DB15 connector which will connect to the dedicated Digital I/O ports CIO1 and CIO2 on the LabJack, respectively. Next, I will use the onboard DAC to convert the signals to analog and feed them through I/O ports FIO4 and FIO5 which will then be connected back into AIO0 and AIO1, respectively, using wires. This means that we can receive the analog feed from AIO0 and AIO1 and pass them through the same scripts that were previously used to measure analog signals onto the interpreter Raspberry Pi to run the methods specified above. Attachment 3 is a diagram of these connections. 


Attachment 1: 20KHz.png
Attachment 2: 20Hz-10KHz.png
Attachment 3: LabJack_diagram.JPG
  2795   Mon Jul 18 11:02:50 2022 RadhikaDailyProgressEmissivity estimationPlan for this week

[Stephen, Clare, Hiya, Radhika]

We started a cooldown on Thursday with an undoped Si wafer in Megastat [2794]. The chamber does not have the Maglite flashlight installed, due to struggles with soldering the ground wire to the aluminum surface of the flashlight. We decided to pivot to drilling a hole in the aluminum, wrapping the ground wire through and around, and then applying solder to the joint. This will be completed by next week.


  • Order new RTDs [done]
  • Order new heater to aid in chamber warmup (not for actuating on wafer) [Stephen]
  • Calibrate new RTDs in an ice bath and LN2 bath [Hiya, Clare]
  • Finalize aluminum sheet design [Stephen]
  • Finalize baseplate design [Stephen]
  • Drill hole in Maglite to solder ground wire [Stephen, if time]
  • Continue optimal excitation analysis [Hiya]
  • Finalize final report abstract [Hiya]
  • Continue MCMC model development [Clare]

These tasks will ideally lead up to a Si wafer cooldown next week with optimal heat excitation and with an RTD re-installed on the cold head, and potentially with the finalized baseplate and aquadag-coated Al sheet on the cold plate. It is with this cooldown that we can start to estimate the sample’s emissivity, first with least-squares fitting and eventually with MCMC analysis.

  2858   Thu Mar 9 11:43:28 2023 shrutiUpdateWOPAPlan to couple directly into the waveguide from free space

[Yehonathan, Shruti]

TL;DR: After meeting with Alireza Marandi's group, we found out that removing the fiber connectors from the Advr waveguide is not too hard since they are just glued to the waveguide. The tricky part is in the setup of the waveguide chip once we remove the packaging and fibers, and the changes to be made in the BHD and in-coupling setup.

Process to remove the fiber connectors

  • Removing the packing will cause the glued fiber connectors to come off
  • Wash in acetone to remove any additional glue and clean the surface. We expect the waveguide edges to be polished

Mounting the bare chip

The present butterfly connectors and diode holders do not offer enough space to place the objectives near enough to the waveguide, so we have to think of a better way to mount the bare chip while also being able to use the TEC, somewhat based on what we saw in Alireza's labs (attachment 2). We intend on meeting his students tomorrow to learn more about how to get the parts that they use for their mount. Until we get these parts we suggest we continue with the plan to cleave the fiber.

Changes to the in- and out- coupling optics

Attachment 1 shows the schematic and plan of how we plan to do this.

  • BHD now requires a free-space BS
  • Another 1064 nm beam splitter to be able to align the BHD and measure visibility
  • Two additional 1064 nm flip-mount mirrors to be able to switch between being the LO for SPDC and pump for SHG
  • Dichroic mirror/ filter for 532nm

The steps for undertaking the experiment:

  1. We couple 1064 nm into the "green" side of the waveguide in order to see the mode shape that the waveguide outputs from the "red" side.
  2. Measure the mode profile of 1064 nm on the "red" side. This is the mode shape that the LO beam must match to
  3. Build a mode-matching telescope for the 1064 nm LO
  4. Align the BHD setup. This includes polarization, spatial mode, etc
  5. Flip the mirrors to pump the "red" side of the waveguide with 1064 nm
  6. Generate 532 nm by SHG with strong 1064 nm pumping. The 1064 nm mode entering the WG must be efficient for SHG with the previous mode-matching solution.
  7. Optimize the waveguide temperature for SHG
  8. Profile the mode of the 532 nm beam coming from the "green" side of the waveguide.
  9. Build a mode-matching telescope for 532 nm to match the above profile
Attachment 1: IMG_2892.jpeg
Attachment 2: PXL_20230307_230930507.jpg
  2757   Mon Apr 18 12:02:36 2022 RadhikaDailyProgressEmissivity estimationPlan towards MCMC emissivity estimation

Below are the outlined steps towards building an MCMC model for estimating the emissivity of a surface inside Megastat, and determining achievable uncertainty bounds:

  1. Recreate analysis of Silicon emissivity as a function of temperature, using test mass and inner shield data from past Megastat cooldowns
    1. Use limit of small A1/A2: heat transfer independent of emissivity of inner shield
    2. Propagate uncertainties of Si material parameters
  2. Transfer above analysis to MCMC using python emcee package
  3. Shift over to more complex heat transfer models using MCMC (i.e. remove assumption of low A1/A1 limit), and propagate uncertainty of A2 emissivity
  4. Determine achievable uncertainty bounds on sample emissivity and identify largest sources of uncertainty
    1. Summarize results in table
  2761   Fri Apr 22 13:58:09 2022 RadhikaDailyProgressEmissivity estimationPlan towards MCMC emissivity estimation

I've used the following model of heat transfer between a suspended Si sample (1) and the inner shield (2) in Megastat:

m_1 C_p(T_1)\frac{dT_1}{dt} = \frac{\sigma A_1 (T_2^4 - T_1^4)}{\frac{1}{\epsilon_1(T_1)} + \frac{A_1}{A_2}(\frac{1}{\epsilon_2(T_2)}-1)}, where I have not assumed that A1/A2 << 1. 

For this analysis, I simulated temperature data of a sample using models of e1 and e2. I simulated e1 and e2 as linear in T:

 \epsilon_1(T) = 0.0025*T

\epsilon_2(T) = 0.00075*T + 0.13, and generated test mass temperature data using these emissivity models and inner shield temperature data from a previous cooldown. My goal was to determine how uncertainty in the emissivity of the inner shield and heat capacity of silicon would propagate to the calculated emissivity of the sample. 

I back-calculated the emissivity of the sample using a procedure similar to this paper: https://www.sciencedirect.com/science/article/pii/S0017931019361289?via=ihub. To summarize, I used a Savitzky-Golay (SG) filter in scipy to calculate dTdt from the temperature of the sample, and rearranged the model above to solve for e1. 

The uncertainty of e1 can be found by:

 \Delta\epsilon_1^2 = \sum_i (\frac{\partial \epsilon_1}{\partial x_i} \Delta x_i)^2.

I considered Cp_Si and e2 as uncertain parameters of interest, and assumed we do not have significant uncertainty on the geometric parameters such as the areas of the inner shield or the sample, or mass of sample. 

The results from this analysis are:

10% uncertainty on emissivity of inner shield ---> 3% uncertainty on emissivity of sample
10% uncertainty on heat capacity of silicon ---> 12% uncertainty on emissivity of sample

Plots of these uncertainties can be found in Attachments 1 and 2. 

Next steps are to add an additional radiative heating term to the model (more realistic given what we see in MS) and repeat this analysis, adding uncertain parameters such as size of heat leak. Transfering this analysis to MCMC is also in progress.

Attachment 1: e_uncertainty_eIS.pdf
Attachment 2: e_uncertainty_CpSi.pdf
  2768   Fri May 13 09:12:14 2022 RadhikaDailyProgressEmissivity estimationPlan towards MCMC emissivity estimation

I've now used the following model of heat transfer between a suspended Si sample (1), inner shield (2), and aperture heat leak (3) in Megastat:

m_1Cp_{Si}(T_1)\frac{dT_1}{dt} = \sigma A_1[\frac{(T_2^4-T_1^4)}{\frac{1}{\epsilon_1} + \frac{A_1}{A_2}(\frac{1}{\epsilon_2} - 1)} + \frac{(T_3^4-T_1^4)}{\frac{1}{\epsilon_1} + \frac{A_1}{A_{leak}}(\frac{1}{\epsilon_3} - 1) + \frac{1}{F_{leak}} -1}],

where the first term is the heat transfer from the inner shield to the sample, and the second term is the heat transfer from an aperture opening to the sample. Note that the second term contains the geometric view factor Fleak, which is dependent on the radii of and separation between the 2 surfaces. (This parameter is also implicit in the first term, but because we approximate the inner shield as nearly completely surrounding the sample, we set this to 1.)

Once again I simulated typical/expected values for the emissivities of silicon and rough aluminum:

\epsilon_{Si}(T) = (2.3*10^{-3})T + 0.12, for the sample,

\epsilon_{Al}(T) = (1.5*10^{-4})T + 0.03, for the inner shield and outer shield (source of heat leaks).

I further parametrized both Aleak and Fleak in terms of rleak, in the assumption of circular aperture openings. This reduced the number of parameters to consider to 4 (e1, e2, e3, rleak). 

As before, I simulated T1 using these emissivities, previous inner shield T data, and the above model. I numerically evaluated dT1/dt from the simulated T1 data. 

The resulting evaluations for e1 using the dimensions of a large, cylindrical test mass (like the one we've been cooling in Megastat) can be found in Attachment 1. The uncertainty bounds from e2 and rleak were found by evaluating partial derivatives of e1 with respect to those parameters. (The uncertainty bound from e3 was not even resolvable on the plot, so I excluded it as it is a negligible source of e1 error.) This process is mathematically equivalent to evaluating the 2x2 Fisher matrices formed by e1 and e2, e1 and e3, and e1 and rleak.

The resulting uncertainties can be summarized by:

10% e2 uncertainty --> 15.7% euncertainty
10% e3 uncertainty --> 0.3% e1 uncertainty
20% rleak error --> 3.2% e1 uncertainty
All 3 uncertainties --> 16.5% e1 uncertainty

where I have used reasonable guesses for our uncertainties in these parameters. This tells us that in the high mass/area sample case, the uncertainty in the emissivity of the inner shield is our largest source of potential error in e1 determination, even with heat leaks into the system. This makes sense qualitatively, since the first term in the model dominates and view factor from heat leak apertures is small. 

Attachment 2 shows the same analysis but using dimensions of a thin, 2" wafer. The resulting uncertainties can be summarized by:

10% e2 uncertainty --> 1.3% euncertainty
10% e3 uncertainty --> 2.0% e1 uncertainty
20% rleak error --> 42% e1 uncertainty
All 3 uncertainties --> 42% e1 uncertainty

This tells us that in the low mass/area case, the uncertainty of the size of the heat leak is the largest contributor to error in e1 evaluation. Now, the first term in the model no longer dominates, and heat leaks play a non-negligible roll in the cooldown of a wafer. 

I next verified these results by simulating my own form of MC, aka defining a prior distribution on e2 and rleak and observing the posterior on e1. I specified the prior on eas a 2-dimensional gaussian (m vs. b) with standard deviations of 1e-4 and 1e-2, respectively. I specified the prior on rleak also as a gaussian with standard deviation 1e-2. The results for both the high mass/area case and low mass/area case can be found in Attachments 3 and 4. These serve to verify the previous error analysis and create groundwork for MCMC analysis.

To design our experimental setup with this analysis in mind, I propose contacting the company/manufacturer of the shields and requesting an inner shield with only 1 or 2 apertures. (1 for the copper linkage to pass through, and maybe 1 for the RTD feed through if they can't be passed in through the first aperture). This can be the inner shield used when we have no use for the optical viewports, AKA for emissivity testing. Since minimizing uncertainty in the emissivity of the inner shield is in our best interest especially in the high mass case, this might also be a good opportunity to specify the roughness/polishing level of the inner shield that we have the best model for. (We could still paint the inner surface of the inner shield with Aquadag, but my only concern with this is not fully being able to quantify Aquadag emissivity vs. temperature.)

Attachment 1: e1_eval_uncertainty_TM.pdf
Attachment 2: e1_eval_uncertainty_wafer.pdf
Attachment 3: e1_posterior_TM.pdf
Attachment 4: e1_posterior_wafer.pdf
  421   Wed Nov 4 17:49:17 2009 MottElectronicsFiberPlant Phase Noise Measurements for Fiber Stabilization

I took my earlier measurements of the phase noise of the marconi and computed what it would produce as the phase noise of the plant output of the fiber stabilization setup at a site.  I used a transfer function of G = 3kHz/f to simulate the gain of the loop.  I also integrated to find the total phase noise from DC to 3kHz to be 280.9 mHz.  As in my earlier plots, the red line is the measurement noise.


EDIT (11/5/09): I was off by a factor of 1/2pi in my conversion from phase noise to frequency noise; I originally used freq = 1/2pi* phase/f.  The frequency noise plot is updated, and the total noise is now 280.9 mHz over the 0-3kHz range


Attachment 1: PlantPhaseNoise.jpg
Attachment 2: PlantPhaseNoiseFreq.jpg
  2861   Tue Mar 14 17:24:46 2023 shrutiDailyProgressWOPAPlaying with polarization

[Yehonathan, Shruti]

1. Simple rotation to match 532 nm polarization to SHG

After yesterday's alignment, since we had just arbitrarily placed the bare fiber on the mount, we had to make sure we had the right polarization between the LO and squeezed field.

For this, we first looked at the polarization of the light generated with SHG and aligned the PBS right before the green coupling into the fiber such that we had maximum transmission (we actually checked for minimum transmission and then rotated it by 90 deg). Then with the green from the Diabolo, we rotated the HWP before the PBS to get maximum transmission after the PBS. Then, we had to realign again and more or less got the same results as yesterday.

When we pumped with 100-150 mW of green, we once again saw squeezing at the level of 1 dB.


2. Using the 3-paddle polarization controller and polarization detection setup on the LO path

To further improve the polarization control, we thought of adding the FP030 3-paddle polarization controller. From the ThorLabs website for this model, 2 loops corresponded to \lambda/2 and 3 loops to \lambda/4. We used the yellow fiber that we found with the part  and therefore assume that this was the non-polarization maintaining fiber for 1064nm required for controller (no label). We made the appropriate number of loops (3->2->3) to get it into the roughly QWP->HWP->QWP configuration.

We added another PDA100A to the reflection port of the PBS in the QWP->cube PBS->PDA100A setup (see Attachment 2) that was on the table to make some sort of a polarization homodyne detector. Without the polarization controller, with the LO fiber, we rotated the QWP and saw that we got very close to 0 on one of the channels suggesting that we had pretty much linearly polarized light. With the polarization controller in its supposedly nominal position (all paddles vertical), we did not get the same polarization. Also, moving this non-PM fiber around or even touching it caused glitches and weirdness in the polarization. We mounted everything as fixedly as possible to cause minimal disturbance to this fiber.

We moved around the paddles till we saw roughly the same polarization as directly from the 1064 nm LO fiber, and then connected this in between the LO fiber and the LO port of the BHD BS (see Attachment 1).

We once again looked for squeezing and tried to further optimize the paddles to get maximum squeezing/anti-squeezing. We were somewhat successful with the HWP, but with the phase drifts and shot noise level changing, we could not do much better today.

Attachment 3 shows some uncalibrated polarization drift even without the 3-paddle controller. The max signal seen on each PD was almost 4 V, so a 100 mV drift is approximately 10 mrad. We still have to measure noise and drift more carefully with this in the setup, but it is unlikely to give us a large enough improvement as improving the coupling/pumping or reducing the out-coupling loss would.

Attachment 1: 511984A8-1171-45F3-95CC-3A191D920549.jpeg
Attachment 2: 828E16CB-36FB-4B5D-8796-9BB33695C09E.jpeg
Attachment 3: 175607F7-6161-45CE-9724-5A76B7E7F270.png
  356   Mon Sep 28 20:40:53 2009 AidanMiscstuff happensPlease do not leave the permanent marker by the whiteboard ...
  2300   Thu Feb 28 16:00:59 2019 awadeDailyProgressWOPOPol launch into PM fiber

I've set up a rotating PBS and half-wave plate to provide polarization adjustment into the 532 nm fiber without misalignment the spatial alignment.  Here I've used a PRM1 rotation mount with a SM1PM10 lens tube mount for beam cube prisms.  The lens tube mount is supposed to be for pre-mounted cubes but I've inserted some shims to hold it in place and it seems to work well like that.  It means I can get a nice clean linear polarization at all rotations.

After spatially aligning the input beam I stepped the rotation of the PBS (and accordingly the L/2 wave plate) and pulsed the temperature of the fiber using a heat gun.  After some walking I found that for the current fiber rotation (0 deg) the linear polarization was aligned with the fiber axis at 88 deg PBS rotation (here 0 deg PBS rotation is aligned for p-pol transmission, well almost). I made some adjustments to the alignment of the fiber collimator in the fiber launch, I aligned the slow axis key with the vertical so that the fast axis of the fiber is p-pol.

Keying on PM fibers

As a side note the keying of PM fiber patches is typically with the slow axis aligned with the key notch. The WOPO's PM fibers are keyed so that the alignment key is along the slow axis of the fiber (i.e. aligned with the stress rods). Figure below illustrates the configuration.

Replacing the 532 nm patch with fresh PM fiber

I was getting a large jitter in the power levels as measured at the output of the old SM and PM fibers (on the order of 10%).  These power fluctuations were not present on the input side.  I thought this was an alignment jitter or a polarization effect.  However, I was unable to minimize it by improving the input polarization at the launch.  When I tapped various mounts there didn't seem to be a corresponding correlation with output power jitter of the fiber.  When I checked the end of the PM fiber (P3-1064PM-FC-2), I saw that there was damage about the core (see pictured below).  It seems like maybe I had some kind of etalon effect from this burn mark and the launch.  After replacing the 532 nm PM fiber with a fresh one that arrived last week the power is much more stable and I was able to easily​ find the pol alignment going in. 

Damage to PM fiber end.  No amount of aggressive cleaning will remove the mark in the middle.
The fiber will need to be cut and a new connector spliced on.


Next job is to replace SM fiber for the 1064 nm delivery with PM fiber so there is a well defined polarization for launching into the homodyne detector.




Alignment of the pumping 532 nm polarization into the WOPO is important to getting the correct phase matching condition.  For the periodically polled Lithium Niobate (LN) waveguide the phase matching is type-0: and pumping and fundamental wavelengths are in the same polarization.  The AdvR non-linear device is coupled with polarization maintaining fibers (Panda style), which are keyed at their FC/APC ends.  This means that with the correct launch polarization we should be correctly aligned with the proper crystal axis for degenerate down conversion (at the right chip temperature). 

Replacing Broadband PBS

Till now I was using non-pol maintaining patches to coupling into the WOPO fiber ends.  This should have been ok, but it is hard to figure out exactly which polarization is optimal so I switched to a pol-maintaining patch because it can be aligned separately and then the keyed connectors give you automatic alignment.  I had some issues trying to find the optimal polarization going into the fiber and I've now traced this back to the polarizing beam cubes.  I've been using Thorlabs PBS101 which is a 10x10x10 mm^3 beam cube that is supposed to be broad-band (420-680 nm).  When I checked the extinction ratio I saw Pmax=150 mW, Pmin=0.413 mW on transmission between extremes.  This is an extinction ratio of Tp:Ts = 393:1 which is much less than the spec of >1000:1.  Not sure what's going on here, the light going into the BS is coming directly from a Faraday isolator and a half-wave plate.  With some adjustment to the angle of the wave plate I can do a little better but it should be nicely linearly polarized to start with.

I've switched out the PSB101 for the laser line PBS12-1064 I remeasured extinction ratio (Pmax=150 mW, Pmin=27.6 µW) Tp:Ts = 5471:1 (better than the quoted 3000:1 spec).  This is good, at least now I know what is going on. I am also putting in an order for a 532 nm zero order quarter-wave plate, so that we can be absolutely sure we are launching in linear light always.  

Aligning light into pol-maintaining fiber

I previously thought I might be able to use the frequency modulation technique to align the light through the polarization maintaining fiber.  There is a birefringence in PM460-HP fiber of  3.5 x 10-4.  The phase between ordinary and extraordinary axes over the whole fiber length is

\Delta\phi = \frac{2 \pi \Delta n L}{c}f

Where L is fiber length, \Delta n is the birefringence and f is the laser frequency.  The idea is to launch linearly polarized light into the fiber and then at the readout place a polarizer rotated to be 90°: ramping frequency will produce an amplitude modulation on the dark fringe.  However, even with 1 GHz of frequency ramp this is only a 15 mrad effect for a 2 m fiber, its likely to be too small to see over other effects.  This is not enough to be able to fine align polarization.  

Instead I'll use the heat gun method.  I'll fire linearly polarized light into the fiber and measure the output with a crossed polarizer.  If the input polarization is correct there should be no power changes on the output as the fiber is thermally cycled. Its only two meters long so hopefully this effect is easy to see.


Attachment 2: PMFiber.pdf
  2303   Tue Mar 12 16:35:43 2019 awadeDailyProgressWOPOPol launch into PM fiber 1064 nm

I've replaced the SM fiber in the 1064 nm launch with a PM fiber (P3-1064PM-FC-5). I also moved the fiber collimator (F240APC-1064) back 2.54 cm back to give more space for a PBS cube (to check linearly of the light).  

For the 1064 nm launch it seemed to be a lot harder to find the initial alignment of the collimator using the alignment of the back propagated 650 nm fiber laser source. Here I aligned a pair of irises in the forward propagating direction and then back propagated through the PM fiber using 650 nm to get the initial​ pointing of collimator. I don't know why this is so much harder than the 532 nm case.  I suspect one of the steering mirrors is not really reflecting off the front dielectric surface.  In the end I did a bunch of systematic walking of the fiber launch mount and eventually fount the alignment.  

From 4.44 mW of input light I get 2.74 mW of light out the other end of the fiber.  This is an efficiency of 62 % which is more than enough for my needs.  I expect the HD will only need 1 mW (2 mW max), so this is fine. Getting this in coupling higher will require a bit of lens walking, not really worth it at this stage.

I had already carefully aligned the collimator orientation to put the fast axis on aligned to p-pol (wrt the table), by eye.  It seems like the launch pretty much hit the correct launch polarization on the first go.  I see little variation in the polarization when I pulse the heat on the fiber.  This is now good to go for optimizing the homodyne visible and polarization overlap output from the SQZ.

  2305   Wed Mar 13 12:44:41 2019 awade, anchalDailyProgressWOPOPol launch into PM fiber 1064 nm

[awade, anchal ]

After a bit of reading I've realized that the standard use of these PM fibers is to launch along the slow axis (see for example Thorlabs and OzOptics info on fiber beam splitters).  It should be much of the sameness for patch cables, but polarization sensitive elements like beam splitters are mostly tested and specified for slow axis launch unless they are custom made to order. 

We are switching the polarization alignment to slow axis in the 1064 nm and 532 nm fiber coupling.  Anchal is re-optimizing​ the 1064 nm launch to get the PM fiber extinction ratio back to a good place.  We've also changed input launch to use a laser line PBS mounted in a rotation mount for clean linear polarization.  With the optimized setup the for the 1064 nm fiber path the output polarization signal goes from 3700 mV to 39.3 mV which is an extinction​ ratio of -19.7 dB.

Here the max theoretical extinction​ ratio is 

ER = -10 \log_{10}[\tan^2(\theta)]

which would place our goodness of alignment to with 0.61 deg.

Updated 1064 nm launch. Uses rotation mounted PBS for guaranteed linear
polarization, half wave plate is to maximize power.




I've replaced the SM fiber in the 1064 nm launch with a PM fiber (P3-1064PM-FC-5). I also moved the fiber collimator (F240APC-1064) back 2.54 cm back to give more space for a PBS cube (to check linearly of the light).  

For the 1064 nm launch it seemed to be a lot harder to find the initial alignment of the collimator using the alignment of the back propagated 650 nm fiber laser source. Here I aligned a pair of irises in the forward propagating direction and then back propagated through the PM fiber using 650 nm to get the initial​ pointing of collimator. I don't know why this is so much harder than the 532 nm case.  I suspect one of the steering mirrors is not really reflecting off the front dielectric surface.  In the end I did a bunch of systematic walking of the fiber launch mount and eventually fount the alignment.  

From 4.44 mW of input light I get 2.74 mW of light out the other end of the fiber.  This is an efficiency of 62 % which is more than enough for my needs.  I expect the HD will only need 1 mW (2 mW max), so this is fine. Getting this in coupling higher will require a bit of lens walking, not really worth it at this stage.

I had already carefully aligned the collimator orientation to put the fast axis on aligned to p-pol (wrt the table), by eye.  It seems like the launch pretty much hit the correct launch polarization on the first go.  I see little variation in the polarization when I pulse the heat on the fiber.  This is now good to go for optimizing the homodyne visible and polarization overlap output from the SQZ.


  2017   Thu Feb 11 23:54:48 2016 KojiNMiscPD QEPolarization measurement

For measuring the polarization, the setup as shown in Fig. 1 was prepared.

The angle of the HWP #2 was 30 degree.

Rotating the angle of the HWP #3, I measured the laser power with a power meter and a PD.

And I fitted the measured data to the function, f(\theta) = a \sin^2(2(\theta-\phi)\pi/180)+b.

Here \theta is the angle of the HWP #3.

The result was shown in Fig. 2 and the paremeters were determined as

(with the power meter) a = 7.965 +/- 0.0005 mW, b = -0.002 +/- 0.003 mW, phi = -40.65 +/- 0.01,

(with the PD) a = 1373 +/- 3, b = -1 +/ 2, phi = 40.52 +/- 0.03. 

Accoding to this result, the S-pol. and the P-pol are obtained at 40.6 degree and 85.6 degree of the angle of the HWP #2, respectively.

And the calbration constant of the PD from voltage to power is determined roughly as 5.8*10^(-3) W/V. (Systematic errors have not yet been concerned.)

Fig. 1 Current setup.
Fig. 2 Measure data and fitted curves.


  5   Fri Oct 26 15:38:43 2007 Tobin FrickeLaserPSLPolarizer
On Tuesday we installed a &lambda;/2 plate and a polarized beamsplitter after the laser aperture; attached to this entry is a measurement of transmitted power versus polarizer angle.
Attachment 1: polarizer.pdf
Attachment 2: polarizer.m
% Polarizer calibration / Rana's lab
% Tobin Fricke 2007-10-26

% Experimental setup:
%                                [Dump]   
%                                  |
%  +-------+                       |
%  | Laser |-------|lambda/2|----|PBS|----[Power Meter]
%  +-------+ 
... 53 more lines ...
  982   Wed Aug 25 01:28:35 2010 ranaThings to BuyGYROPossible Vacuum system for the GYRO

One possible vacuum chamber solution for the Gyro is to use long tubes for the Gyro arms and then to have a small chamber with ports at each corner.

I looked a little at using stock MDC vacuum parts for this; its not out of the question.

For the tubes, we could use something like their NW50 Kwik-Flange nipple. It has an OD of 2" and a length of 6.5". Its $63.

For the corners, we can use one of their '5-way crosses' like the 406002. Its basically 5 flanges welded onto a shell. Depending on the size its ~$250 ea.

I would prefer to get one long tube for each arm, rather than stick a bunch of short ones together, so I'll get a quote from MDC on a custom job.

Uncoated quartz viewports are ~$250 ea. I expect that we will want AR coated and angled viewports. Maybe $400 ea then.

So the total cost, without pumps would be ~5k$.

  987   Thu Aug 26 01:10:11 2010 AlastairThings to BuyGYROPossible Vacuum system for the GYRO

We're not looking for super high-vacuum though are we?  Maybe we can get away with borrowing the small turbo pumping station from the suspensions lab to pump it down and then we can just valve it off.

Also, we have the cylinder head for a tank of helium now so we should order in a tank to try that (the tanks get delivered really fast so that shouldn't be a problem).  Of course we'll at least need windows before doing that.

I've asked Gina to check on the CVI W2 window order.  The order went in on 22nd July and CVI said that they had them in stock.

  992   Thu Aug 26 17:09:08 2010 AlastairThings to BuyGYROPossible Vacuum system for the GYRO


We're not looking for super high-vacuum though are we?  Maybe we can get away with borrowing the small turbo pumping station from the suspensions lab to pump it down and then we can just valve it off.

Also, we have the cylinder head for a tank of helium now so we should order in a tank to try that (the tanks get delivered really fast so that shouldn't be a problem).  Of course we'll at least need windows before doing that.

I've asked Gina to check on the CVI W2 window order.  The order went in on 22nd July and CVI said that they had them in stock.

 I think that's right - we won't need any better than 1 mTorr. As long as there is no huge leak, we should be fine. It would be handy to have a (EPICS trendable) gauge on the system so that we can know if its leaking.

The system's total volume will be ~20 liters. So we need the leak rate to be below ~1e-6 Torr-liters / hour. A suggestion from Mike Z is to use the usual flexi-hosing from Norcal instead of the rigid nipple type of tube

I was talking about before. flexi hose link ..... I think we can use the 2" ID, 24" long tubes and make up for the difference in the length in the corner chambers. The length of each side of the gyro should be 29.5" with a 100 MHz FSR.

  1557   Thu Oct 20 17:02:34 2011 KojiLaserGYROPower Budget of the PMC

Power budget of the PMC has been considerd.

AR Reflectivity (rAR2): 7.50% (<- HUGE)
Round trip mirror (3 loss) : 0.499%  (<- HUGE)
Transmission of the flat mirrors (t12): 1.65% (<-OK)
Transmission of the curved mirrors (t22): 302ppm (<-OK)
Modematching (1-Rjunk):: 86.5% (<-hmm, OK for now)
Raw cavity transmission (t1 gcav): 86.2%

I wonder how the loss of 5000ppm comes from.
Frank suggested that there may be the spot not at the center of the curved mirror.
I checked the spot position at the end and it is actually very close to the edge of the hole. (See photo)
Of course the beam has the angle because of the short triangular cavity. So it is difficult to say this is still ok or not.

The AR seems to have huge reflection, but this is real.


- Two flat mirrors are identical

- Losses are distributed on the three mirrors equally.

- AR surface has no loss.

- AR of the end transmission is ignored as the beam will not be separated on the PD

Those conditions give us the five undetermined variables: rAR, t1, t2, loss, Rjunk
where they are amplitude reflectivity of AR, that of the flat mirrors, that of the curved mirrors, loss in power, power ratio of the unmatched light in the incident beam, respectively.

We have 5 independent measurement after the normalization of the power measurements by the incident power. So there is a unique solution.
After a bit painful solutions serach, the numbers below have been obtained.

rAR -> 0.2739, t1 -> 0.1283, t2 -> 0.01737, Rjunk -> 0.1347, loss -> 0.00166271

Converting this result into useful numbers, we obtain the following quantities:

AR Reflectivity (rAR2): 7.50%
Round trip mirror (3 loss) : 0.499%
Transmission of the flat mirrors (t12): 1.65%
Transmission of the curved mirrors (t22): 302ppm
Modematching (1-Rjunk): 86.5%
Raw cavity transmission (t1 gcav): 86.2%



==> Finesse: 163 +/- 6

Cavity incident: 168 +/- 1mW
Forward Transmission: 92.5 +/- 0.2 mW
End Transmission: 1.80 +/- 0.02 mW
Reflection: 21.7 +/- 0.2 mW
AR reflection: 12.6 +/- 0.1 mW
==> Transmission: 60%, Loss: 25%


Attachment 1: PMC.pdf
Attachment 2: PA201622.jpg
  2207   Fri Jun 29 09:18:32 2018 Vinny W.DailyProgress2micronLasersPower Loss in Fiber Optic Cable

One of the factors we're taking into account when figuring out the optimal fiber cable length to use in the 2um laser characterization project is the power loss present as a function of such length. Andrew and I worked through some figures and came up with the following plots, sampling a few values of the attenuation coefficient alpha. The process was relatively straightfoward, we introduced some loss, e^{-\alpha L}, into a signal. Thus, at one of the outputs of the MZ, the signal we receive would be:

e^{-2\alpha L_1}+e^{-2\alpha L_2}+2e^{-\alpha (L_1+L_2)}\cos (2\pi \Delta Lf/c)


Next, since we ideally want our signal to be locked at mid-fringe, we take the derivative of the function with respect to frequency and observe the maxima. 

In order to best visualize the points at which the slope is of highest sensitivity, we take the derivative once more and observe the zero points.

Through ThorLabs data on the SM2000 fiber optic cable ( https://www.thorlabs.com/drawings/d7a7404567d69154-FBD8C6B1-0D0E-7F1A-14D2F3A96ED2FF2E/SM2000-SpecSheet.pdf ), we came to a good approximation that our attenuation coefficient is approximately 8.63*10^-3 dB/m. The orange line in the above graph is a close approximation to this value, but the sensitivity slope for the approximation we obtained is shown in the following graph:

When considering power loss in the fiber optic cable, the optimal fiber cable length is roughly 116.8 meters. If we are willing to sacrifice roughly 10% of the calculated sensitivity*, then we can drop the cable length to approximately 72 meters. 


*This was done by subtracting 10% of the maximum value of the derivative of the output power w.r.t frequency (using the actual attenuation coefficient from ThorLabs). Maximum was 8.776*10^-8 W/Hz , 90% of max = 7.893*10^-8, which falls around 72 meters.


**First elog, critiques are very much welcome!

Attachment 2: dp_df.png
Attachment 3: dpdf_dl.png
Attachment 6: dpdf_dl_actual.png
  2208   Fri Jun 29 17:33:44 2018 ranaDailyProgress2micronLasersPower Loss in Fiber Optic Cable

In order to pick a length, we'll have to go beyond this optimization and consider cost and acoustic sensitivity.

Also, we have to start by making a guess at the frequency noise PSD of this laser, and also what sensitivity we want the MZ to have, as well as the PD electronics noise.

Please upload a noise budget plot in units of Hz/rHz showing a bunch of these noises as well as the frequency noise sensing requirement. Every 2 meters of fibers means 1 less pizza, so we'd like to take the length down from 100 meters to roughly 10 meters.

  2221   Thu Jul 26 17:49:28 2018 Vinny W.DailyProgress2micronLasersPower Loss through different optic components

In our mission to characterize our 2micron laser, I calculated the changes of power at different points within the experiment- the points are shown in the schematic below. I kept the input current constant at 50.02 mA, and the temperature of the laser diode at 8.657k\Omega.

Power from different points
Location (from laser to...)  Power (mW) (error, +/- 0.002 mW) Frequency (Hz) (error, +/- 3Hz)
Directly from laser 1.339 796.68
Faraday Isolator 0.894 61.09
Beam Coupler #1, A 0.528 60.09
Beam Coupler #1, B 0.707 61.20
Beam Coupler #2, A 0.762 60.55
Beam Coupler #2, B 0.480 61.40
Longer arm of interferometer 1.291 62.30


The excess power loss, L, at either beam splitter can be expressed in dB as:

L = 10\log{\frac{P_{laser}}{P_{A}+P_{B}}}

Running this through gives us an excess loss of 0.351dB at Beam Splitter #1 and 0.327dB at Beam Splitter #2. 


We're finishing up the thermal sensor to be placed in the ATF! Schematics and pictures will be provided later on today.

Attachment 1: poweranalysis.JPG
  154   Mon Jul 6 16:59:47 2009 Michelle Stephens, Connor MooneyLaser Power Output of 495 mW NPRO

We characterized the power output vs. drive current of the 495 mW NPRO laser for the gyro experiment. The current supply  goes up to 1.00 A. Here is our data:

C = [0.46 0.52 0.60 0.66 0.74 0.80 0.88 0.94 1.00];
Pd = [2 18 38 55 71 93 110 125 146];
Pu = [2 20 39 56 72 94 110 126 147];

C is drive current, Pd is lower limit on power output in mW, and Pu is upper limit.

We graphed the results and fit a line to it. The slope is 261.5 mW/A, and the intercept is -118.2 mW. The graph is attached.

directory is: \users\cmooney\Power495mW.m

Attachment 1: PowervCurrent495mW.pdf
  689   Sat Mar 20 20:36:53 2010 DmassLaserPSLPower Steps

Rana suggested that the DC power steps were due to a bistability of the NPRO inside the MOPA.

To try and diagnose this, I turned off the diodes...I could do nothing with the mode coming out of the laser, the thermal lensing of the MOPA is needed. There is a diagnostic PD sitting inside the PSL, undpowered. It has a 3 pin power connector on the outside of the box saying "+/- 24V DC", but I am not plugging anything into it until I know what to put where...

For now, there are still glitches coming out of the PMC, presumably from the PSL. I will toss a diode upstream of the PMC to confirm this. There are DC steps, and 2-5% spikes in the data, which make it unusable. Running the MZ overnight, I was able to use a stretch of data with 1 arm blocked, and the HEPA on.

To do:

  • Check the 1 arm blocked IL and OL PDs for the ISS with the HEPA off - subtraction and dark noise
  • Check the SNR of phase/subtracted intensity noise at each PD
  • Add in the AC coupled channels ( in post processing or online?)

Below is what the current AC coupling looks like, SUM is the recombined signals. AC and DC are self explanatory. alpha and beta are 532, gamma and delta are 1064.

I have added the following two channels:

C2:ATF-PSL_OUT    Pickoff of the PSL output power (upstream of the PMC)

C2:ATF-PMC_TRANS   PMC Transmission - this is my in loop ISS PD


State as of p[ost - HEPA off lights off one arm blocked

Attachment 1: ACCoupRecom.pdf
  691   Mon Mar 22 19:46:06 2010 DmassLaserPSLPower Steps

The DC power step was seen upstream of the PMC in the new PSL output monitor

  245   Mon Aug 10 20:33:17 2009 Aidan, ConnorElectronicsGeneralPower reflected from AOMs when driven off resonance

Used DMass's bidirectional coupler setup and measured the reflected power from the lab AOMs for a sweep between 30 and 110MHz. Also tested a 50Ohm terminator and an unterminated setup to calibrate the equipment.

Results shown in the attached plot.

Attachment 1: power_reflected_from_AOMs.pdf
Attachment 2: power_reflected_from_AOMs.png
  1953   Mon Jun 29 16:59:47 2015 ArjunMiscPD noisePre-stabilisation of laser

We have managed to pre stabilise the laser using a few SR560's. It is not as stable as the one that would be implemented once the digital system is in place. But it should be good enough for some preliminary data. As described in a previous log we had locked the cavity to track the laser. The PZT actuator in the cavity is driven by a SR560 which has a limited output voltage range from (-4V to +4V) and if due to slow frequency drifts the frequency of the laser drifts beyond the limit to which the PZT can compensate the cavity would unlock itself. Also, currently the intensity noise of laser has not been stabilised, this passes directly through the cavity and will appear at the transmission if its not accounted for. This feedback has been achieved using a AOM. The AOM is driven by a RF function generator and the output power of thr RF function generator can be modulated by this in turn changes the power in the carrier frequency by pushing some power into the first order diffracted beam, thereby stabilising the laser intensity fluctuation by almost 2 orders of magnitude. A brief description of the feed-back loops is given below.

Frequency Stabilisation

The laser was frequency stabilised for its slow drifts, this could lead to SR650 controlling the cavity not being able to compesnsate for it due to its limited output range. The output of cavity stabilisation was low passed and then fed to the frequency control of the laser. But the gain had to be adjusted appropriately, as otherwise the loop could become unstable. This was done by using a simple resistive divider circuit (potentiometer) to first attenuate the control signal for the cavity stabilisation and then low passed and fed back to counter for the slow frequency drifts of the laser.The cutoff freqeucncy of the secondary feedback loop is also important, so as to ensure that at cross-over frequency nyquist stability condition is satisfied. The cutoff for this was kept at 30mHz.

Intensity stabilisation 

Intensity fluctuations from the laser will appear at the output port of the PMC because of the fact that the cavity is locking itself to laser's frequency. These have to be corrected for in the final setup and this has been achieved using an AOM. A AOM splits power in the beam into a diffracted beam and this splitting of power depends on the power that is injected into the AOM and also the direction in whihc the AOM is oriented. When no power is injected in the AOM the carrier beam passes through unaffected and when some non-zero power is injected a part of power goes into another diffracted beam. The AOM we use has a maximum power input of 2W at 80MHz. For  achieving the required functionality, a RF signal from a RF signal generator is amplified using a high power RF amplifier and this drives the AOM. Now to stabilise the intensity fluctuations going into the PMC we can setup a positive feedback by sensing the power at thePMC's output and using that to modulate the signal generated by RF signal generator thereby modulating the power with which the AOM is driven and finally controlling the way power is split between the two output rays. Hence this way the power entering the PMC has been stabilised. In the actual setup this feedback will be provided by the common mode output of the two photodiodes being tested.The entire pre-stabilisation of laser implemented is shown in the schematic below.

The total stabilisation schematic is shown below-this includes the locking of the cavity, feedback to supress the laser frequency drift and supression of intensity fluctuations.

We were also able to get some more optics fixed, since the table will also be used for another experiment, we divided the beam using a halfwave plate and a polarising beam splitter to control the power going into each of the experiments. A image of the setup assembled is attached below, the read trace is the path of the laser.

Attachment 1: Screenshot_2015-06-29-16-20-55.png
Attachment 6: 20150626_202413.jpg
  1566   Thu Nov 10 23:55:28 2011 ZachElectronicsIodinePrecision temperature controller

I have begun designing a precision temperature controller for use in (at least) the following three applications:

  • EOM RFAM stabilization
  • Doubling oven stabilization
  • Iodine cell finger stabilization

The idea is to have one controller suitably adaptable to each of the three situations. In effect, the only major difference will be the type or specifications of the resistive heaters used in each case, so it is logical to make one design. Here is a basic functional diagram (the actual schematic can be found at the bottom of the post):


A quick walkthrough:

  1. The chopping signal is generated by a 555 timer (100 Hz, 10-Vpp square wave).
    1. I have referred the GND input to -5V, in order to make the output bipolar. I'm not aware of a problem with doing this, but if there is, let me know!
  2. The actual temperature sensing is accomplished by using a platinum RTD (500-ohm Vishay PTS series) in one leg of a Wheatstone bridge.
    1. The drive signal is attenuated with a buffer to achieve a sensing current within the RTD spec
    2. The reference resistors are very-low-tolerance (+/-0.05%) and very-low-tempco (+/-5 ppm/K) Vishay thin-film.
  3. The differential signal is amplified by an AD620 instrumentation amplifier. The response at this point is roughly 1 V/K.
  4. The output of the AD620 is multiplied with the LO signal from the 555 via an AD633 audio frequency multiplier
    1. Output = (X1 * X2)/10V.
  5. The multiplier output is filtered via a 3rd-order RC lowpass at 10 Hz, rejecting 2f = 200 Hz at about -75 dB.
  6. The output is then buffered for passing over to the control circuitry (and another buffer provides a monitor out).
    1. An offset-adjust potentiometer allows for fine tuning of the temperature zero point, but large offsets (such as the initial temperature setting) should be effected by changing the bridge reference resistors to avoid oscillator amplitude noise from bilinear mixing.
  7. A switch allows for an external error signal input (e.g., when we want to stabilize an EOM using the RFAM level, instead of temperature).
  8. The input to the control signal is buffered with an adjustable gain of 1-20.
  9. A filter stage provides a pole at 0.1 Hz, with a switchable full-integrator boost.
    1. Obviously, this filter should be optimized for the system in question.
    2. The output of this stage is also sent to a buffered monitor output.
  10. A summing amplifier adds the (large) offset that controls the quiescent heater current via trimpot. This, along with the collector resistance, will need to be carefully chosen based on the heating element.
  11. The heater is actually controlled using a voltage-controlled current source comprising an OP27 and a MMBT2222A medium-power BJT.

You can find some more details in the schematic below.

Please reply with your questions and/or comments on the design. I am happy to take them (for now), because this is something we may all need at one point or another. I'm talking to you, 40m'ers(!).


  1567   Mon Nov 14 22:31:46 2011 DenElectronicsIodinePrecision temperature controller


I have begun designing a precision temperature controller for use in (at least) the following three applications:

  • EOM RFAM stabilization
  • Doubling oven stabilization
  • Iodine cell finger stabilization

The idea is to have one controller suitably adaptable to each of the three situations. In effect, the only major difference will be the type or specifications of the resistive heaters used in each case, so it is logical to make one design. Here is a basic functional diagram (the actual schematic can be found at the bottom of the post):

 What is the precision of the temperature controller? May be it is possible to create a feed-forward correction in temperature caused devices, such as knife-edge tiltmeter.

  1645   Mon Mar 12 21:46:50 2012 ZachLaserGYROPredicted cavity/HOM spectra

Here are the Arbcav-predicted cavity transmission and HOM spectra for the new cavity and current modulation frequency.

cavity_spectrum_3_12_12.png HOM_3_12_12.png

In case you haven't used this tool yet, note that this was all produced with one line:

[finesse, coefs, df] = arbcav([200e-6 20e-6 200e-6 20e-6],[0.75 0.75 0.75 0.75],[1e10,9,1e10,9],[45 45 45 45],29.189e6,20e-6,1064e-9,1000);

  81   Wed Aug 20 23:19:39 2008 DmassLaserDoublingPreliminary Doubling MZ Setup
A prelim expermintal setup for measuring the phase/freq noise of 532 nm light generated by PPKTP crystals relative to the 1064 nm seed light from the YAG laser.

The mirrors in the Mach-Zehnder will all be dichroically reflective. The pink mirrors on the output will be reflective in one wavelength, and transmissive in the other.

I may need to add some sort of absorption/reflection before the PPKTP crystals for the green light if it is emitted in both directions by the SHG process.

I should be able to look at the difference between the MZ output in 1064 and 532 to isolate the more interesting sources of noise (phase/frequency) from the acoustic noise.
Attachment 1: MachZenderPPKTP.PNG
  1918   Wed Apr 29 17:57:38 2015 KateMiscSeismometerPreliminary Michelson design to prompt discussion

We want to order parts by the end of the week for building a table-top Michelson that will later be mounted on top of the seismometer masses.

This is a first sketch of what the layout might look like. We'll most likely fiber couple light from the NPRO on the gyro table over to the table we're working on. The plan is to first test the amplitude and frequency noise of such a setupt by using the approximate fiber length and path, but instead mounting the output on the gyro table so we can beat it with a pick-off of the original light. In the actual setup, the output coupler will be mounted on top of the 45mm diameter Bosch suspension frame. The sketch below shows a potential arrangement of optics. The most important part is that one arm of the Michelson will be fixed in length and the other will be along the same axis as the pitch mode of the two intertial masses. A PZT will be mounted on one of the end mirrors (the one on the main mass, not the inverted pendulum) in order to dither lock the Michelson. Both the dither (10s of kHz?) and the feedback can be applied to the same PZT. The PD output will need to be demodulated. We'll need both a frequency generator and demodulation electronics. 

The input to the Michelson should be along the pitch axis so that there is no translation of the beam entering the Michelson as the rhomboid pitches back and forth. We will want to also expand the beam so it's relatively large in the Michelson and then put a lens just in front of the PD.

There will need to be counterweights added to the rhomboid to compensate for the weight of optics on one the side. 

Parts list:

  • high reflectors: 2x Y1-1025-0
  • beam splitter: 1x BS1-1064-50-1012-45P
  • PBS: 1x PBSH-450-1300-050
  • steering mirror: 1x Y1-1025-45
  • lenses
  • fiber coupler hardware
  • beam dumps
  • mounts
  • PZT actuator
  • DC photodiode 
Attachment 1: MichelsonTopView.pdf
  103   Tue Nov 25 17:30:32 2008 AidanLaserFiberPreliminary noise budgets for fibre stabilization

Here are some preliminary noise budgets for the FS experiment ... or rather, the setup shown in attached figure. Looks like the laser frequency noise dominates.
Not surprising given that the optical path length difference is ~150m.

The photodiode noise is not particularly high, although if we stabilize the frequency and intensity of the NPRO it might become a factor.

Anyway, the phase and frequency noise plots are attached. Will post references to the origin of the actual curves for the different noise sources soon.
Attachment 1: simulation_v1B.jpg
Attachment 2: phaseNoiseBudget-NPRO-PDA255.pdf
Attachment 3: freqNoiseBudget-NPRO-PDA255.pdf
  2618   Mon Jul 26 01:30:42 2021 KojiSummaryCryo vacuum chamberPrep for the 2nd cooling of the suspension

Updated Jul 26, 2022 - 22:00


  1. Reconstruct the cryostat
    1. [Done] Reinstall the cryo shields and the table (Better conductivity between the inner shield and the table)
    2. [Done] Reattach the RTDs (Inner Shield, Outer Shield)
      -> It'd be nice to have intermediate connectors (how about MIllMax spring loaded connectors? https://www.mill-max.com/)
    3. Reattach the RTD for the test mass
  2. Test mass & Suspension
    1. [Done] Test mass Aquadag painting (How messy is it? Is removal easy? All the surface? [QIL ELOG 2619]
    2. [Done] Suspension geometry change (Higher clamping point / narrower loop distance / narrower top wire clamp distance -> Lower Pend/Yaw/Pitch resonant freq)
    3. [Done] Setting up the suspension wires [QIL ELOG 2620]
    4. [Done] Suspend the mass
  3. Electronics (KA)
    1. [Done] Coil Driver / Sat Amp (Power Cable / Signal Cables)
    2. Circuit TF / Current Mon
    3. [Done] DAC wiring
    4. [Done] Damping loop
  4. Sensors & Calibration (KA)
    1. [Done] Check OSEM function
    2. [Done] Check Oplev again
    3. Check Oplev calibration
    4. [Done] Check Coil calibration
    5. Use of lens to increase the oplev range
    6. Recalibrate the oplev
  5. DAQ setup (KA)
    1. [Done] For continuous monitoring of OSEM/OPLEV
  2012   Thu Feb 4 21:23:31 2016 KojiNMiscPD QEPreparation of some components

I prepared some basic optics for a PD QE enhancement experiment.

Specifically, two half wave plates, a PBS, a BS, a PD mount, and a stage for the PD mount are prepared.

The PD mount has a glued connector for PDs for replacing them easily.

The sage for the PD mount has three micrometers for moving PDs accurately to three axes.


A male pin assignment for a DC power supply of a circuit for the PD is confirmed.

As shown in the following image, #1 pin, #2 pin, and #5 or #9 pin should be connected to +15 V, -15 V, and GND, respectively.

Male pin assignment for the DC power supply of the circuit for the PD


In addition, for aligning the optics, a CCD camera and a lens for the camera are also prepared.

All things are placed on an optical bench without being aligned.


I will align the optics and test the PD circuit and the camera with laser light.

  2547   Thu Apr 1 18:42:55 2021 Stephen DailyProgressCryo vacuum chamberPreparations for Q measurements

2021.03.30, StephenA

1. Viewport swap to nozzle that is not occluded by cryo shield = complete. All bolts on both Active Ion Gauge and Viewport have been torqued gradually (about a half turn at a time, around the clock dial) until the conflat seal was metal-to-metal. Periscope on damped optical rod was rotated to make room for replacement.

Before viewport swap - IMG_8487

After viewport swap - IMG_8502

2. Cryo RTD repair = complete. Two RTDs had been damaged during prior mounting efforts by me. I was able to repair the clamped RTD at the single damaged solder joint. I was able to repair the former Al-Block RTD by replacing the RTD element, and making a new direct attachment (not preloaded, not varnished to the aluminum block anymore)

Materials and set-up for solder repair - IMG_8491

Repaired Clamp-2 RTD - IMG_8494

Damaged Al-Block RTD - IMG_8492 (note short length between kapton strain relief and aluminum block was not ideal, one lead had already fractured and the second soon followed at the slightest touch)

Repaired, remounted Al-Block RTD - IMG_8495 (heater sandwiched underneath threaded adapter, clamp threaded into adapter, sandwiching RTD at top plane)

Remounted Clamp-2 RTD - IMG_8496 (RTD clamped at cold flange, strap is mounted)

Remaining Clamp-1 and Varnish RTDs are free - IMG_8497

Current readouts of CTC-100 controller, with repaired RTDs now behaving (note need to rename the Al-Block RTD) - IMG_8501

3. Next steps:

 - Karthik to install clamps, align in-air relay, and confirm positition of radiation shield aperture.

 - Remaining free RTDs to be mounted; current RTDs are mounted at Heater and Cold Flange, would be good to mount RTD at Work Piece/Clamp and at Outer Radiation Shield.

 - Radiation shield lids to be installed (might be easiest to install Outer Radiation Shield RTD after installing lid)

 - Mount lid, install bolts, pump down, turn on cryo cooler, the usual!

Attachment 1: IMG_8487.JPG
Attachment 2: IMG_8502.JPG
Attachment 3: IMG_8491.JPG
Attachment 4: IMG_8494.JPG
Attachment 5: IMG_8492.JPG
Attachment 6: IMG_8495.JPG
Attachment 7: IMG_8496.JPG
Attachment 8: IMG_8497.JPG
Attachment 9: IMG_8501.JPG
  2868   Mon Apr 3 16:01:36 2023 YehonathanUpdateWOPAPreparing for injecting 1064 into the waveguide

We figured it would be a good idea to inject 1064nm light together with the 532nm into the waveguide for various reasons:

1. We will be able to measure the visibility of the BHD readout and optimize it.

2. We will be able to measure the nonlinear gain and more importantly the squeezing inside the waveguide regardless of losses.

3. By adding an AOM to that additional 1064nm path we will be able to do coherent locking which is needed for audio-band squeezing.

One concern is that the input green fiber should be very lossy for 1064nm. We don't need much power, but we need to check how much is attenuated.

To make this check we pump 1064nm in reverse into the waveguide, much the same way we do when we generate SHG. We use 100mW of 1064nm and observe a bright SHG. We turn of the TEC to suppress the SHG. We amount of power coming out of the fiber with a 845 low pass filter (there was still 300nW of green). However, we couldn't see anything, meaning the power of the 1064nm was less than 1nW. We checked with the 1064nm coming out of the laser that the filter is passing 1064nm with 10% loss. We couldn't even see the beam on a camera (beam profiler). There is probably 70mW of 1064nm at the waveguide 1064 input and almost all of it is lost in the green fiber.

We think it would be quite impractical to inject 1064nm until we break the waveguide free from its fiber shackles.

  2758   Wed Apr 20 00:00:39 2022 YehonathanLab InfrastructureGeneralPreparing for planned power outage

{Yehonathan, Shruti}

We shut down the workstations and the FBs by doing sudo shutdown and unplugged them from the wall.

Electronic equipment on the FB rack was shut down and unplugged from the wall.

Diablo's current was ramped down and the control unit was shutdown. Optical table electronic equipment was shutdown and the table's powerstrip was switched off.

Equipment under the optical table was switched off and unplugged.

  2840   Thu Feb 9 09:41:17 2023 RadhikaDailyProgressGeneralPreparing north optical table for lowering

[JC, Stephen, Radhika]

Yesterday we cleared off the north optical table in QIL to prepare it for leg replacement. Detailed photo documentation of the "before" state has been uploaded to the WB Google photo dump here.

1. Disassembly of optical setup leading to Megastat viewport

- Attachment 1 is a photo of the untouched setup. The optics were transferred to the cabinet above the solvent cabinet [Attachment 2].

2. Complete transfer of PD testing experiment to CAML

- The IR Labs dewar, vacuum pump, and most electronics for PD testing had been previously moved to CAML; but the laser diode, controllers, and ref PD had remained in QIL [Attachent 3]. These components were moved to the north table of CAML - all PD testing equipment is now located there.

4. Preparation for Megastat transport

- The vacuum pump flexible hose was detatched from Megastat [Attachment 4], and we covered the viewport + hose with foil [Attachment 5]. 

- We disconnected the pressure gauges and TIC controller, along with the RTD connections to the CTC100 [Attachments 6, 7]. These electronics were moved to the rack underneath the table.

- The plumbing from the compressor to the cryocooler was left connected.

- A cooler box under the table [Attachment 8] was moved to CAML.

- The electronics rack was moved out from under the table.

5. Megastat transport

- The engine hoist was used to lift the chamber off of its aluminum supports [Attachment 9]. 

- While moving the engine hoist, we made sure to move the compressor + plumping lines with it.

- Megastat was lowered onto a table pushed against the north wall of the lab [Attachment 10]. 

- Attachment 11 shows the final state of the north optical table.

Attachment 1: IMG_4357.JPG
Attachment 2: IMG_4383.JPG
Attachment 3: IMG_4363.JPG
Attachment 4: IMG_4402.JPG
Attachment 5: IMG_4406.jpg
Attachment 6: IMG_4390.JPG
Attachment 7: IMG_4387.JPG
Attachment 8: IMG_4384.JPG
Attachment 9: IMG_4411.JPG
Attachment 10: IMG_4413.JPG
Attachment 11: IMG_4412.JPG
  2842   Thu Feb 9 10:27:11 2023 RadhikaDailyProgressGeneralPreparing north optical table for lowering

The north table legs have been swapped.

Attachment 1: IMG_4CA7B6CB4665-1.jpeg
ELOG V3.1.3-