40m QIL Cryo_Lab CTN SUS_Lab TCS_Lab OMC_Lab CRIME_Lab FEA ENG_Labs OptContFac Mariner WBEEShop
  ATF eLog, Page 30 of 56  Not logged in ELOG logo
ID Date Authordown Type Category Subject
  2409   Fri Aug 23 17:35:37 2019 KojiNoise Budget2micronLasersNoise Analysis of Circuit using SR785 Spectrum Analyser and Zero Simulation

The TF looks good. But the noise measurement is obviously limited by the SR785 noise. We need a preamp, which is only for the purpose of the measurement. It has to have the input reffered noise about a factor of a few better than the noise predicted by Zero. At high frequency, probably we will be able to use SR560. With this low noise level, probably we can just use the flat gain of 100 for the SR560 setting. This will give you the input referred noise (of the preamp) of  ~4nV/rtHz at kHz band. Note that the gain needs to be larger than 100 to have low noiseness of SR560.

Quote:

I think this is a solid measurement.

 

  2412   Thu Aug 29 15:36:49 2019 KojiNoise Budget2micronLasersNoise Bump observed at 8kHz during TIA noise analysis

You need to check the voltage noise of the regulator outputs with the opamps connected. Probably you did it. If so, it is a riddle why the 8kHz bump is not observed in the regulator outputs, but is in the opamp outputs...

Does the noise bump happen with the +/-15V supplied by 7815/7915? How about to change the capacitor values for LM317/337 to the ones recommended in the data sheet?

It is great to see the noise peaks were largely reduced by LT1792. This is what I found before although I can't explain why.

  2420   Tue Sep 10 18:38:18 2019 KojiNoise BudgetPD noiseDark Noise measurement of Extended InGaAs

- Previously, your TIA was pretty much dominated by the thermal noise current of the 5K transimpedance resistor (=0.129/sqrt(5000) nA/rtHz ~2pA/rtHz).
So, I believe it's impossible to measure 1pA/rtHz. Please check if you had any saturation or anything along the chain.

- Do you need SR560? If you think you are limited by the input noise of SR785 when having no SR560, you can use your whitening filter, which is supposed to be sufficient and better in terms of the output voltage range.

- Please note the serial number of the PD under the test.

- And, try to isolate your box from the optical table.

  2423   Mon Sep 23 10:49:27 2019 KojiSummaryPD QEQE and dark current of InAsSb sensors

The QE and dark current of all the InAsSb sensors were measured. All the measurements were done in room temperature.
- The incident beam power of the 2004nm beam was 0.95mW.
- The beam was focused down to 50um gaussian radius, which was confirmed by DataRay BeamR.
- The angle of incidence was ~0deg.

- The element side (nominally Pin 2, 3, or 6) were connected to the vias boltage (negative) and the common ground was connected to the transimpedance amplifier (Shalika OP140 R=5100Ohm)
- The dark current was highly dependent on the reverse bias voltage. The QE was also bias dependent.
- Sb3512 A2 have different behavior compared to others. Alex mentioned that Sb3512 is the test batch. We can exclude this sensor from the test.
- The best QE was ~0.7 for Sb3513 A3 P2 (Pink) and Sb3513 A2 P6 (Purple). Both have the area of 500um^2. These two particular elements have low dark current of <1mA. The dark noise of this specific sensor should be measured.

Some issues of the measurements

- The transimpedance amp (TIA) has suspicious behavior. The saturation voltage was ~17V rather than <-15V. This indicates that the voltage regulators possibly have leakage of the input voltage (+/-18V) to the output line. This needs to be checked, particularly before the dark noise test.

- TIA saturation: The bias voltages could not be raised to ~1V for some PDs because of the dark noise and the saturation of the TIA. The transimpedance should be lowered by a factor of ~5.
- Because of the low bias voltages of these saturated cases, the max QEs were not reached. This also prevented from checking if there was any clipping loss. This should be checked again with the lower transimpedance.

- TBD: The angular dependence and the reflectivity of the sensor should be checked. It is difficult to carry out these tests without a sensor card.

Attachment 1: InAsSb_QE.pdf
InAsSb_QE.pdf
Attachment 2: InAsSb_DarkCurrent.pdf
InAsSb_DarkCurrent.pdf
Attachment 3: 190921_SbPD_QE.zip
  2424   Mon Sep 23 23:48:12 2019 KojiUpdate2micronLasers2um sensor cards / focusing optics

Fiber Collimator (Thorlabs F028APC-2000+AD11F+LMR1) and MIR sensor cards (Thorlabs VRC6S Qty2) were delivered.

The sensor card is liquid crystal and seems temperature sensitive. It's slow and diffused. But at least we can now see 2um beams in a certain condition.

The fiber collimator seems working fine, but this gave me another issue. Now because the beam is small (w<500um) everywhere, I can't focus it very well. To make a focused beam, one needs a large beam, of course. Previously, the beam was not well focused. Therefore the final focused beam with f=150mm was sufficiently small like w=50um.

It looks like some kind of  telescope is necessary.

Attachment 1: IMG_8936.jpg
IMG_8936.jpg
  2425   Wed Sep 25 01:05:30 2019 KojiSummaryPD QEQE and dark current of InAsSb sensors

The lenses were arranged so that the spot on the PD can become smaller. A quick measurement on a (500um)^2 element showed the QE of ~80%

With the strong focusing lens of f=40mm, the beam was once expanded to a few mm. Then f=75mm lens focuses the beam to ~30um (radius). (See Attachments 1&2)

With this new beam, the QE was quickly checked. The new measurement is indicated as "Sb3513 A2P6new" in the plot. It showed the QE of ~80%.
The AOI was scanned to find any maximum, but the AOI of 0deg was the best at least with the given beam. I'm not sure yet why 500umx500um requires such small beam radius like 30um. Awesome

Attachment 1: P_20190924_233507_vHDR_On.jpg
P_20190924_233507_vHDR_On.jpg
Attachment 2: P_20190925_003614_vHDR_On.jpg
P_20190925_003614_vHDR_On.jpg
Attachment 3: InAsSb_QE.pdf
InAsSb_QE.pdf
Attachment 4: InAsSb_DarkCurrent.pdf
InAsSb_DarkCurrent.pdf
  2436   Tue Oct 22 15:55:52 2019 KojiElectronicsGeneralBorrowed ITC510 from Cryo

From Cryo Cav setup

Borrowed ITC510 Laser Driver/TEC controller combo -> QIL

  2438   Thu Oct 31 18:31:10 2019 KojiLaserPD QEPD EQE vs Spot size

InAsSb PD QE Test

The relationship between the spot radius and the apparent QE (EQE) was measured.

1) The spot size was checked with DataRay Beam'R2. The beam scanner was mounted on the post with a micrometer stage in the longitudinal direction. (Attachment1 upper plot)
It was confirmed that the beam is focused down to ~22um. The incident power was about 0.9mW.

2) The InAsSb detector (Sb3513A2) was mounted on the PD holder and then mounted on the stage+post. The photocurrent was amplified by a FEMTO's transimpedance amp (V/A=1e3Ohm). The dark current and the total photocurrent were measured at each measurement point with the beam aligned to the PD every time. The estimated EQEs were plotted in the lower plot of the attachment.

Note that P2, P3, and P6 elements have the size of (500um)^2, (750um)^2, and (1000um)^2, respectively.

The absolute longitudinal position of the sensor was of course slightly different from the position of the beam scanner. So the horizontal axis of the plots was arbitrary adjuted based on the symmetry.

The remarkable feature is that the QE goes down with small spot size. This is suggesting a nonlinear loss mechanism such as recombination loss when the carrier density is high.

With the present incident power, the beam size of 100um is optimal for all the element sizes. For the larger elements, a bigger beam size seems still fine.

The next step is to estimate the clipping loss and the saturation threshold with the Gaussian beam model.

Attachment 1: QE_vs_spotsize.pdf
QE_vs_spotsize.pdf
  2439   Fri Nov 1 12:47:18 2019 KojiLaserPD QEPD EQE vs Spot size

Clipping and saturation were investigated by the semi-analytical model. In the analysis, the waist radius of 20um at the micrometer position of 8mm is used.

1) Clipping

Firstly, the clipping loss was just geometrically calculated. Here the saturation issue was completely ignored. The elements P6, P3, and P2 have the sizes of (500um)^2, (750um)^2m, and (1000um)^2, respectively. However, these numbers could not explain the clipping loss observed at the large spot sizes. Instead, empirically the effective sizes of (350um)^2, (610um)^2, and (860um)^2 were given to match the measurement and the calculation. This is equivalent to have 70um of an insensitive band at each edge of an element (Attachment 1). These effective element sizes are used for the calculation throughout this elog entry.

2) Saturation modeling

To incorporate the saturation effect, set a threshold power density. i.e. When the power density exceeds the threshold, the power density is truncated to this threshold. (Hard saturation)

Resulting loss was estimated using numerical integration using Mathematica. When the threshold power density was set to be 0.85W/mm^2, the drop of QE was approximately matched at the waist (Attachment 2). However, this did not explain the observed much-earlier saturation at the lower density. This suggests that the saturation is not such hard.

In order to estimate the threshold power density, look at the beam size where the first saturation starts. The earlier sagging of the QE was represented by the threshold density of 0.1W/mm^2. (Attachment 3)

Attachment 1: QE_vs_spotsize_no_saturation.pdf
QE_vs_spotsize_no_saturation.pdf
Attachment 2: QE_vs_spotsize_saturation_0_85.pdf
QE_vs_spotsize_saturation_0_85.pdf
Attachment 3: QE_vs_spotsize_saturation_0_1.pdf
QE_vs_spotsize_saturation_0_1.pdf
  2443   Tue Nov 12 03:40:39 2019 KojiLaserPD QEPD EQE vs Spot size

The QE of the (500um)^2 element has been tested with a half-power (0.51mW) instead of 0.92mW.
It is clear that the central dip depth is reduced by the lower power density.

 

Attachment 1: QE_vs_spotsize_half_power.pdf
QE_vs_spotsize_half_power.pdf
  2446   Fri Nov 15 20:10:00 2019 KojiSummary2micronLasersInAsSb PD Mounts designed

LIGO-Number Title Author(s) Topic(s) Last Updated
E1900369-v1 InAsSb Photodiode Mount (Short) Assembly Koji Arai Assembly
Basic R&D
15 Nov 2019
E1900368-v1 InAsSb Photodiode Mount Assembly Koji Arai Assembly
Basic R&D
15 Nov 2019
D1900490-v1 InAsSb Photodiode Mount Face Plate Koji Arai Basic R&D 15 Nov 2019
D1900489-v1 InAsSb Photodiode Mount (short) Koji Arai Basic R&D 15 Nov 2019
D1900488-v1 InAsSb Photodiode Mount Koji Arai Basic R&D 15 Nov 2019

  2450   Wed Nov 20 11:59:17 2019 KojiLab InfrastructureGeneralMoved IR Labs cryostat into QIL from Cryo Lab

Ah, I have designed the PD holder with the venting targeted for 1/4-20 holes with 1" grid...

The dog clamps to hold the PD units also need to be compatible with 4-40 screws.

How big the hole diameter should be? Can you find a suitable drill at the 40m?

 

  2451   Wed Nov 20 12:25:58 2019 KojiLab InfrastructureGeneralMoved IR Labs cryostat into QIL from Cryo Lab

The large cryostat has 1/4-20 holes on a 2 inch grid

The IR labs cryostat has 4-40 holes on a 1 cm grid

I'll check the 40m for a bit (5/8-3/4")

  2452   Wed Nov 20 17:44:10 2019 KojiLab InfrastructureGeneralMoved IR Labs cryostat into QIL from Cryo Lab

Here you are.

Attachment 1: P_20191120_174034_vHDR_On.jpg
P_20191120_174034_vHDR_On.jpg
Attachment 2: P_20191120_174040_vHDR_On.jpg
P_20191120_174040_vHDR_On.jpg
  2457   Fri Nov 22 15:33:40 2019 KojiLab InfrastructureGeneralMoved IR Labs cryostat into QIL from Cryo Lab

Salvaged an assort of vented/non-vented screws, washers, spring washers, and clamps for #4-40 & 1/4-20 from the 40m cleanroom stock. They are clean enough for the cryostat use.

Attachment 1: P_20191122_150845_vHDR_On.jpg
P_20191122_150845_vHDR_On.jpg
  2458   Sat Nov 23 13:00:06 2019 KojiLab InfrastructureOpticsOptical window transmission measurement

The power transmission of the optical window for the IRLab cryostat was measured to be 0.966+/-0.002 at 2004nm. (Attachment 1)

A chopper powermeter was set to the QE measurement setup (Attachment 2). The window was held with a mount as shown in Attachmnent 3. The laser source was excited with the pumping current of 101.04mA. The output power was  monitored with a Thorlabs DET10D (PD#2 with Amp#2) attached at the 10% side of the 90:10 beamsplitter. The detected photocurrent after subtracting the dark current of 15.7uA was 152uA. The power meter detected the power around 0.95mW, while the power with the window inserted was around 0.91~0.92.


PD1       Window   No Window
[V]       [mW]     [mW]
-0.855    0.913    0.944
-0.855    0.906    0.951
-0.855    0.914    0.947
-0.855    0.922    0.950
-0.855    0.913    0.949
-0.855    0.912    0.948
-0.855    0.920    0.946
-0.855    0.915    0.946
-0.855    0.916    0.951
-0.855    0.915    0.952
-0.855    0.919    0.947
-0.855    0.921    0.944
-0.855    0.916    0.948

Note: PD1 had the dark output of -0.0809V.
Note2: The power meter readings had the fluctuation of +/-0.005 mW

Attachment 1: optical_window_T.pdf
optical_window_T.pdf
Attachment 2: P_20191122_183426_vHDR_On.jpg
P_20191122_183426_vHDR_On.jpg
Attachment 3: P_20191122_183436_vHDR_On.jpg
P_20191122_183436_vHDR_On.jpg
  2459   Mon Nov 25 15:03:34 2019 KojiUpdatePD QEIn solder and PD mounts are in

The PD mounts were delivered from ProtoLabs. The order was sent on Tue last week and it's here on Monday. Excellent!
And the quality looks pretty good.

The surfaces are sandblasted. Do we want to do any process on the bottom surface to reduce the thermal resistance?

An indium solder string also came in.

Attachment 1: PB259778.JPG
PB259778.JPG
Attachment 2: PB259780.JPG
PB259780.JPG
Attachment 3: PB259781.JPG
PB259781.JPG
  2460   Mon Nov 25 21:46:56 2019 KojiSummaryPD QESystem Diagram

System diagram of the PD QE test with the IRLabs cryostat.

 

PT-SE (MS/PT-SE) connector data sheets

Connector/receptacles/tools https://www.peigenesis.com/images/content/pei_tabs/amphenol/pt-ptse-series/new-thumbs/123-146_pt_series.pdf
Amphenol catalog http://www.amphenol-industrial.com/images/catalogs/PT.pdf

Detoronics Hermeic Sealed Connectors (DT02H-18-*PN) http://www.hselectronics.com/pdf/Detoronics-Hermetic-Connectors.pdf

AF8 crimping tool (expensive!) https://www.mouser.com/ProductDetail/DMC-Tools/AF8?qs=gvhpkjpQEVSjrLbsepewjg%3D%3D
AF8 alternative https://www.jrdtools.com/?gclid=Cj0KCQiA2vjuBRCqARIsAJL5a-IQ9ztCEYKdo645v_RhUBJS3eMIars1LubjlKZoorS-lnx6ClDDiMUaAlZiEALw_wcB

 

Thermistor link: https://www.tec-microsystems.com//Download/Docs/Thermistors/TB04-222%205%25%20Thermistor_Specification_upd2018.pdf

TEC spec: Mounted TEC type: 2MD04-022-08/1 https://www.tec-microsystems.com/products/thermoelectric-coolers/2md04-series-thermoelectric-coolers.html
2MD04-022-08/1 dTmax = 96, Qmax = 0.4W, Imax = 0.7A,  Umax = 2.0, ACR = 2.29 Ohm

Attachment 1: cryo_pd_test.pdf
cryo_pd_test.pdf cryo_pd_test.pdf
Attachment 2: InAsSb_PD_mount_short.PDF
InAsSb_PD_mount_short.PDF
Attachment 3: PD_pin.pdf
PD_pin.pdf
  2462   Tue Nov 26 18:49:11 2019 KojiUpdatePD QESocket soldering test piece made

Normal solder (Sn63 Pb37): with flux, wetting o

Pure Indium - In 99.995: no flux, wetting x, low melting temp, like paste

Pb93.5 Sn5 Ag1.5: with flux, wetting o, high melting temp (soldering iron setting 380~430F)

Cryo solder In97 Ag3: no flux, wetting x, low melting temp, like paste

Attachment 1: IMG_9118.jpeg
IMG_9118.jpeg
Attachment 2: IMG_9120.jpeg
IMG_9120.jpeg
Attachment 3: IMG_9121.jpeg
IMG_9121.jpeg
Attachment 4: IMG_9123.jpeg
IMG_9123.jpeg
Attachment 5: IMG_9125.jpeg
IMG_9125.jpeg
Attachment 6: socket.pdf
socket.pdf
  2463   Wed Nov 27 20:38:57 2019 KojiSummaryPD QESystem Diagram

The external Dsub cable is ready except for the 32pin connector to be plugged-in to the chamber. See QIL ELOG 2460 for the pin assignment.

 

Attachment 1: P_20191127_203612_vHDR_On.jpg
P_20191127_203612_vHDR_On.jpg
  2464   Sun Dec 1 01:32:19 2019 KojiSummaryPD QEPD TEC cooling test

While I'm still waiting for the proper connector for the vacuum feedthru of the IRLabs cryostat, I have connected to the Dsub9/15 split cable to another Dsub9 connector so that I can test the cooling of the InAsSb sensor in air. Also, the 2004nm laser, a fiber-coupled faraday isolator, and 90:10 beam splitter was moved to the cryostat table and fixed on a black al breadboard. [Attachment 1]

The InAsSb TEC was controlled by the TEC controller of ITC-50. I didn't change the PID parameters of the controller but the temperature nicely setteled to the setpoint. The sensor has a 2.2kOhm thermister. And the max current for the TEC was unknown. The TEC driver had the current limiter of 0.3A and it was not changed for now. With this current limit, the thermistor resistance of 10Kohm was realized. This corresponds to the temperature of about -20degC. According to the data sheet given by Alex, the resistance/temperature conversion is given by the formula

1/T = 7.755e-4 + 3.425e-4*log(R)+1.611e-13*log(R)^3

Questions:

  • What is the max current for the TEC?
  • What is the calibration formula of the thermister (TB04-222) at cryogenic temperature?
    -> Thermistor datasheet link (pdf)

To satisfy the curiosity, the dark current of a (500um)^2 element was measured between -250K and -300K. At -254K, the dark current went down to the level of 40uA (1/15 of the one at the room temp). For the measurement, the bias voltage was set to be 0.5 and 0.6V. However, it was dependent on the diode current. (Probably the bias circuit has the output impedance). This should be replaced by something else.

To Do

  • 2um laser beam setup (w=100um beam)
  • Bias circuit
  • Quick check of the QE and dark noise at -20degC

 

Attachment 1: 20191129191814_IMG_9146.JPG
20191129191814_IMG_9146.JPG
Attachment 2: cooling_dark_current.pdf
cooling_dark_current.pdf
  2465   Tue Dec 3 13:52:04 2019 KojiUpdatePD QESocket soldering test piece made

[Raymond and Koji]

We dunked the PD socket test piece into LN2 and repeated heat cycle 8 times. No obvious change was observed. Then the wires were pulled to find any broken joint or etc.
None of the solder joints showed the sign of failure.

For cleanliness, we are going to use In-Ag solder (no flux) for the actual wiring.

Attachment 1: Frozen connector

Attachment 2-4: Inspection after thawing.

Attachment 1: PC029784.jpeg
PC029784.jpeg
Attachment 2: PC029788.jpeg
PC029788.jpeg
Attachment 3: PC029786.jpeg
PC029786.jpeg
Attachment 4: PC029787.jpeg
PC029787.jpeg
  2466   Tue Dec 3 15:32:39 2019 KojiSummaryPD QEPD TEC cooling test

The quantities we want to measure as a function of the temperature:

- Temperature: 2.2k thermister resistance / 100ohm platinum RTD

- QE (Illuminating output / Dark output / Reference voltage / Reference dark output)

- Dark current (vs V_bias) -> Manual measurement or use a source meter

- Dark noise (PSD) 100kHz, 12.8k, 1.6kHz, 100Hz

 

  2468   Thu Dec 5 13:50:59 2019 KojiSummaryPD QEDark current measurement with the sourcemeter

I borrowed KEITHLEY 2450 source meter from Rich. The unit comes with special coaxial cables and banana clips. Most of the peripherals are evacuated in the OMC lab.

The dark current of A2P2, A2P3, A2P6 were measure with different temperatures (300K, 270K, 254K). The plot combined with the previous measurement ELOG QIL 2425.


== How to use the source meter ==

- Two-wire mode: Connect the wires to the diode

- Over voltage protection: [MENU] button -> SOURCE / SETTINGS->Over Voltage Protectiuon 2V

- Sweep setting: [MENU] button -> SOURCE / SWEEP -> e.g. Start -750mV, Stop +500mV, Step 10mV, Source Limit 1mA -> Select Generate

- Graph View: [MENU] button -> VIEWS / GRAPH

- Start measurement: Note: The response of [TRIGGER] button is not good. You need to push hard
  This starts the sweep, or a menu shows up if your push is too long -> Select "Initiate ..."

- Data Saving: [MENU] button -> MEASURE / READING BUFFERS -> Save to a USB stick

Attachment 1: InAsSb_DarkCurrent_markedup.pdf
InAsSb_DarkCurrent_markedup.pdf
  2471   Mon Dec 9 12:34:14 2019 KojiDailyProgressPD QE 

I can see some screws are not vented. You also need to use a vented screw for the additional temp sensor if the face screws of the PD mounts are not vented.

You can use a bunch of clean clamps and screws I brought. They are in a mylar bag.
If you need more vented screws, please specify the size and length. I can grab some from the 40m cleanroom.

  2473   Mon Dec 9 14:45:45 2019 KojiDailyProgressPD QEToward PD testing automation

Wow. This is great, thanks Chris.

 

  2475   Wed Dec 11 01:29:26 2019 KojiSummaryPD QESb3513 A2P6 Dark Current / QE / Dark Noise measurement @77K

[Raymond, Aidan, Chris, Koji]

P6 element (500um)^2

- We looked at the current amp (FEMTO) output. The amplifier saturated at the gain of 10^3 V/A. Looking at the output with a scope, we found that there is a huge 1.2MHz oscillation. Initially, we thought it is the amplifier oscillation. However, this oscillation is independent of the amplifier bandwidth when we tried the our-own made transimpedance amp.

- Shorting the cryostat chamber to the optical table made the 1.2MHz significantly reduced. Also, connecting the shield of the TEC/Laser controller made the oscillation almost invisible. This improvement allowed us to increase the amp-gain up to 10^7.

- Then the dominant RMS was 60Hz line. This was reduced by more grounding of the cable shields. The output was still dominated by the 60Hz line, but the gain could be increased to 10^8. This was sufficient for us to proceed to the careful measurements.

----

- The dark current was measured by the source meter, while the photocurrent (together with the dark current) was measured under the illumination of the ~1mW light on the PD.

- Attachment 1 shows the dependence of the dark current against the swept bias voltage. We had ~mA dark current at the room temp. So, this is ~10^5 improvement.

- Attachment 2 shows the dependence of the apparent QE against the swept bias voltage. The dark current was subtracted from the total current, to estimate the contribution of the photocurrent in the measurement.

- Attachment 3 shows the dark noise measurement at the reverse bias of ~0.6V. Up to 1kHz, the noise level was below the equivalent shotnoise level of 1mA photocurrent.

---------

All the data and python notebook in the attached zip file.

Attachment 1: Sb3513_A2P6_DarkCurrent_77K.pdf
Sb3513_A2P6_DarkCurrent_77K.pdf
Attachment 2: Sb3513_A2P6_QE_77K.pdf
Sb3513_A2P6_QE_77K.pdf
Attachment 3: Sb3513_A2P6_DarkNoise_77K.pdf
Sb3513_A2P6_DarkNoise_77K.pdf
Attachment 4: 191210_3513A2P6.zip
  2482   Fri Dec 20 21:58:14 2019 KojiUpdatePD QEPD TEC driver / A2P6 aligned / Lens moved

== Currently, A2P6 is aligned ==


1) I've brought another TEC driver fro the PD temp control. This unit was borrowed from the 2um ECDL setup. Eventually, we need to return this to ECDL. (Attachment 1)
The PID loop of the TEC control works. But it is not well optimized yet. If you change the target temp too quickly, the TEC out seemed oscillating. Watch the TEC out carefully and change the temp setpoint slowly.
So far I have tried to cool the thermister up to 30kOhm (~232K) and I_TEC was 0.33A.
I did not try further. I felt it was better to cool the PD base for further trial.

2) A part of the alignment study, the beam is aligned to A2P6. Also, the lens position was investigated, and I decided to move the lens ~1 inch away from the window.  (Attachment 2)
    In fact, this allowed us to insert the power meter between the lens and the window. 

Attachment 1: P_20191220_192440_vHDR_On.jpg
P_20191220_192440_vHDR_On.jpg
Attachment 2: P_20191220_180929_vHDR_On.jpg
P_20191220_180929_vHDR_On.jpg
  2483   Fri Dec 20 22:26:19 2019 KojiUpdatePD QEPD TEC driver / A2P6 aligned / Lens moved

The QEs were measured at 293K, 239K, 232K, and 293K again. The cooling was provided by the PD TEC.  At each temperature, the incident power was changed from 30uW to 1mW to see the dependence of the QE on the incident power to check the possible saturation.

The QE was 79~81% (the window T=96.6% was already compensated). I'm not 100% sure this 1% variation in the plateau is real or due to insufficient calibration of the REF PD.
The REF PD was calibrated at 1mW at 100mA injection current to the laser.

No obvious saturation was observed.

We can cool the PD with LN2 and we should make a careful alignment of the beam at each temperature.

Attachment 1: Sb3513_A2P6_DarkCurrent_293K.pdf
Sb3513_A2P6_DarkCurrent_293K.pdf
Attachment 2: Sb3513_A2P6_DarkCurrent_239K.pdf
Sb3513_A2P6_DarkCurrent_239K.pdf
Attachment 3: Sb3513_A2P6_DarkCurrent_232K.pdf
Sb3513_A2P6_DarkCurrent_232K.pdf
Attachment 4: Sb3513_A2P6_DarkCurrent_293K_2.pdf
Sb3513_A2P6_DarkCurrent_293K_2.pdf
Attachment 5: Sb3513_A2P6_DarkCurrent_Comparison.pdf
Sb3513_A2P6_DarkCurrent_Comparison.pdf
Attachment 6: 191220_3513A2P6.zip
  2488   Thu Feb 27 14:26:52 2020 KojiSummaryLab MonitoringItem lending: Particle Counter from OMC Lab to QIL

Item lending as per Ian's request: Particle Counter from OMC Lab to QIL

The current particle class of the room was measured to be 800.

The particle counter went back to the OMC lab on Aug 10, 2020.

Attachment 1: P_20200227_134755_vHDR_On.jpg
P_20200227_134755_vHDR_On.jpg
  2490   Mon Mar 9 13:13:02 2020 KojiLab InfrastructureHVACHVAC work concluded for today

Last Friday, I found the HEPA units on the squeezer table were not on. I turned them on at "SLOW".

 

  2491   Mon Apr 6 18:35:48 2020 KojiSummaryGeneralWest Bridge flooding Apr 6th

West Bridge flooding Apr 6th due to rain in the night

Looks like the first responder was Calum. The attached photos were sent from him.

 

Attachment 1: image2.jpeg
image2.jpeg
Attachment 2: image1.jpeg
image1.jpeg
  2492   Mon Apr 6 18:38:50 2020 KojiUpdateGeneralWest Bridge flooding Apr 6th

To check the status of all the labs, I went to WB. There was no ongoing water leakage in the labs.

Attachment 1: The subbasement was completely dry.

Attachment 2: Upon the lab inspection, I took PPE from the OMC lab. This was intended to prevent me to pick up anyone's anything and you to pick up my anything.

Attachment 3: The EE shop has no problem

Attachment 4: Cryo Lab. No problem.

Attachment 5: Crackle Lab. No problem, but a lot of dead cockroaches on the floor!

Attachment 6: OMC Lab. No problem.

Attachment 7: C.Ri.Me Lab. Gabriele has already checked the status in the morning. And I found no problem. Didn't bother to turn on the light.

Attachment 8: CTN Lab. No problem.

Attachment 9: QIL Lab. The floor was mostly dry. Did someone wipe the floor?

Attachment 10: Some water drip was found in front of the workbench.

Attachment 11: It comes from the ceiling.

Attachment 12: Left a trash box to catch future possible leak.

Attachment 13/14: TCS Lab. No problem found.

Attachment 15: As per Aidan's request, the instruments were moved to the North-East area of the room to avoid future possible leak.

Attachment 1: 20200406143251_IMG_9618.jpg
20200406143251_IMG_9618.jpg
Attachment 2: 20200406143856_IMG_9621.jpg
20200406143856_IMG_9621.jpg
Attachment 3: 20200406143932_IMG_9622.jpg
20200406143932_IMG_9622.jpg
Attachment 4: 20200406144014_IMG_9623.jpg
20200406144014_IMG_9623.jpg
Attachment 5: 20200406144119_IMG_9626.jpg
20200406144119_IMG_9626.jpg
Attachment 6: 20200406143837_IMG_9620.jpg
20200406143837_IMG_9620.jpg
Attachment 7: 20200406144413_IMG_9633.jpg
20200406144413_IMG_9633.jpg
Attachment 8: 20200406144522_IMG_9635.jpg
20200406144522_IMG_9635.jpg
Attachment 9: 20200406144648_IMG_9639.jpg
20200406144648_IMG_9639.jpg
Attachment 10: 20200406144730_IMG_9643.jpg
20200406144730_IMG_9643.jpg
Attachment 11: 20200406144752_IMG_9644.jpg
20200406144752_IMG_9644.jpg
Attachment 12: 20200406144942_IMG_9645.jpg
20200406144942_IMG_9645.jpg
Attachment 13: 20200406145125_IMG_9646.jpg
20200406145125_IMG_9646.jpg
Attachment 14: 20200406145127_IMG_9647.jpg
20200406145127_IMG_9647.jpg
Attachment 15: 20200406145347_IMG_9652.jpg
20200406145347_IMG_9652.jpg
  2493   Mon Apr 6 19:01:21 2020 KojiUpdateGeneralWest Bridge flooding Apr 6th

Additional notes:

I did not see anyone in the building.

Attachment 1/2: Our labs have no sticker/paper to indicate any disinfection of the room. (Make sense)

Attachment 3: Most of the basement offices have the notes to indicate disinfection.

Attachment 4/5: Our offices have no notes.

Attachment 1: 20200406151420_IMG_9653.jpg
20200406151420_IMG_9653.jpg
Attachment 2: 20200406151428_IMG_9654.jpg
20200406151428_IMG_9654.jpg
Attachment 3: 20200406151459_IMG_9655.jpg
20200406151459_IMG_9655.jpg
Attachment 4: 20200406151633_IMG_9656.jpg
20200406151633_IMG_9656.jpg
Attachment 5: 20200406151709_IMG_9658.jpg
20200406151709_IMG_9658.jpg
  2521   Fri Nov 20 18:47:42 2020 KojiSummaryGeneralPermenant exchange of TED200C(QIL) and TED200C(2umECDL)

I moved the brand new TED200C on the workbench to Crackle for 2um ECDL (permanently)
The TED200C temp controller used in the 2um PD test setup will stay there (permanently)

http://nodus.ligo.caltech.edu:8080/SUS_Lab/1851

  2522   Fri Nov 20 18:49:43 2020 KojiSummaryGeneralInstrument loan

FEMTO DLPCA200 low noise preamp (brand new)

Keithley Source Meter 2450 (brand new) => Returned 11/23/2020

were brought to the OMC lab for temporary use.

  2526   Tue Dec 22 15:20:14 2020 KojiSummaryGeneralInstrument loan

Is the reverse bias programmable? FEMTO has a bias trimmer on it. It's useful in the usual application, but for automation, the configuration of the input becomes cumbersome.

  2572   Thu May 20 16:57:32 2021 KojiElectronicsGeneralKeithley Source Meter returned to Downs

I've returned the Keithley Source Meter unit
- The unit (Keithley 2450?2460?)
- A power cable
- A pair of banana clips
- the transistor test fixture & triax cable/connectors
 

Attachment 1: P_20210520_154439.jpg
P_20210520_154439.jpg
Attachment 2: P_20210520_154505.jpg
P_20210520_154505.jpg
Attachment 3: P_20210520_154523.jpg
P_20210520_154523.jpg
  2589   Wed Jun 16 17:17:12 2021 KojiUpdateGeneralI2 cell

I was searching an I2 (Iodine) cells back to the days of the laser gyro.

I found a likely box at a very tricky location. Took the photos and returned to this tricky place.
 

2021/Jul The box was moved to the OMC lab (KA)

Attachment 1: P_20210616_170104.jpeg
P_20210616_170104.jpeg
Attachment 2: P_20210616_170038.jpeg
P_20210616_170038.jpeg
Attachment 3: P_20210616_170021.jpeg
P_20210616_170021.jpeg
  2603   Thu Jul 15 23:34:17 2021 KojiSummaryTempCtrlTemprerature Log for cooling down / warming up

[Stephen Koji Radhika]

Stephen and Radhika worked on the cooling down and warming up of the cryostat with the cold head RTD attached using a spring-loaded screw. No other configuration changes compared to QIL/2599. Here are the temperature log plots. Photos of spring clamped RTD are outstanding, but the clamp is the same as the workpiece pictured in QIL/2599/Attachment 12.

Attachment 1: temp_log_cooldown_20210709_1747.pdf
temp_log_cooldown_20210709_1747.pdf
Attachment 2: temp_log_warmup_20210712_1315.pdf
temp_log_warmup_20210712_1315.pdf
  2604   Thu Jul 15 23:37:53 2021 KojiSummaryCryo vacuum chamberBonding work for the prep of the preliminary suspension test

[Stephen / Koji]

Bonding work for the prep of the preliminary suspension test

- 1" sq mirror-ish polished SUS piece was bonded to a face of the silicon mass. We chose the location right next to a line on the barrel. (Attachment 1)

- The mass was flipped with two more same thickness pieces used for the spacers to keep the mass horizontal.

- A pair of an OSEM and dumbbell-magnet was brought from the 40m (courtesy by Yehonathan). The magnet was glued on the mass at the opposite position of the attached mirror because the optical ports are going to be arranged to share an axis. A piece of cryo varnish was also painted with a piece of cigarette paper at the center of the mass so that we can attach an RTD. (Attachment 2)

Next Things To Do (Attachment 3)

  • Vent the chamber
  • We will move an optical port to the opposite position of the other port.
  • A DB9 feedthru is going to be installed.
     
  • Suspension
    • Move the sus frame in the chamber
    • Suspend the mass
  • Sensor arrangement
    • Set up the oplev
    • Hold the OSEM at the height of the magnet
    • Set up a camera to observe the magnet-OSEM clearance
    • We improvise the DB crimping sockets so that we can electrically connect the OSEM (optional)
  • Pump down / cool down the chamber
    • The main target of the cooling is to check the cooling capability of the test mass mainly with radiative cooling.
    • An optional target is to observe the misalignment as a function of the temperature -
      • -> Oplev signals are to be connected to CDS / check if CDS is logging the data
    • Check if the OSEM/magnets survive the thermal cycle
    • If possible we can try to actuate the OSEM / check the LED/PD function at the cryo temp
       
Attachment 1: P_20210715_170102-1.jpg
P_20210715_170102-1.jpg
Attachment 2: P_20210715_172218-1.jpg
P_20210715_172218-1.jpg
Attachment 3: experiment_plan.pdf
experiment_plan.pdf
  2605   Fri Jul 16 23:28:24 2021 KojiSummaryCryo vacuum chamberSus Test Work 07/16/2021

[Stephen Koji]

We started cooling down of the test mass.

Venting

- Stephen vented the chamber at 2PM. An optical port was moved to see the OSEM from the back.

OSEM wiring

- Brought DSub crimp sockets from the 40m. We picked up 3x 1m LakeShore WCT-RB-34-50 (twisted silver-plated copper, 34 AWG with Teflon insulation). The ends of the wires were dangled so that crimping is possible. A single wire resistance was measured to be ~1Ohm at room temp. (Attachment 1)

- OSEM pin out / backside view (cable going down) (Attachment 2)

|   o   o   o |
| o   o   o   |                 Wire
  ^ ^ ^ ^ ^ ^---PD K        ---- R3
  | | | | |-----PD A        ---- B3
  | | | |-------LED A       ---- B2
  | | |---------LED K       ---- R2
  | |-----------Coil End    ---- B1
  |-------------Coil Start  ---- R1


Twisted Pair 1: (R1&B1) with 1 knot  at the feedthru side
Twisted Pair 2: (R2&B2) with 1 knot  at the feedthru side
Twisted Pair 3: (R3&B3) with 1 knot  at the feedthru side

Dsub feedthru in-air pinout (Mating side)

    1  2  3  4  5
\ o  o  o  o  o /
 \ o  o  o  o  /
   6  7  8  9

Pin1 - Coil Start
Pin6 - Coil End
Pin2 - LED K
Pin7 - LED A
Pin3 - PD A
Pin8 - PD K

Pin1-6 R=16Ohm
Pin2-7 Diode V (with Fluke) 1.18V (Pin2 black probe / Pin7 red probe)
Pin3-8 Diode V (with Fluke) 0.7V (Pin3 red probe / Pin8 black probe)

- OSEM pin out / backside view (cable going down)

Suspension installation (Attachment 3)

- The sus frame was moved into the chamber

- We measured the test mass dimension before installation: L 3.977" D 4.054"

- The attached mirror size is 1"x1" made of SUS #8 (?)

- The mass was suspended. The height / rotation of the mass was adjusted so that the reflecting mirror is visible from the oplev window and also the OSEM magnet is visible from the OSEM window.

- The OSEM was placed on an improvised holder. (Attachment 4)

Oplev installation

- ...Just the usual oplev installation. Adjusted the alignment and the return beam hits right next to the laser aperture. This beam was picked off by a mirror and steered into a QPD. (Attachments 5/6)

- The lever arm length is ~38" (960mm) -- 9" internal / 29" external
- The oplev signal is shaking so much and occupying ~50% of the full scale. Added a lens with f=250 to make the beam bigger, but the improvement was limited.

Pumping down

- Started ~8:30PM?

DAQ setup

- Wired 3 BNC cables from the table to the DAQ rack. CHX/Y/S are connected to ADC16/1718ch.

- The real-time processes seemed dead. Looked at [QIL ELOG 2546] to bring them up. TIM/DAQ error remains, but the data stream seems alive now. Leave it as it is.

Cooling

- Temp Logging started. Filename: temp_log_cool_down_20210716_2255.txt

- Cryocooler turned on. ~10:55PM

- Confirmed the cold head temp was going down. The cold head temp is 75K at 0:30AM

OSEM photo

- An example photo was taken from the rear window. The attempt with 40m's Canon failed. Attachment 7 was taken with KA's personal compact camera with a smartphone LED torch. The gap between magnet and OSEM is highly dependent on the view axis. So this is just a reference for now.

Attachment 1: 20210716170727_IMG_0719.jpeg
20210716170727_IMG_0719.jpeg
Attachment 2: 20210716174712_IMG_0723.jpeg
20210716174712_IMG_0723.jpeg
Attachment 3: 20210716195953_IMG_0726.jpeg
20210716195953_IMG_0726.jpeg
Attachment 4: 20210716200005_IMG_0728.jpeg
20210716200005_IMG_0728.jpeg
Attachment 5: 20210716200224_IMG_0734.jpeg
20210716200224_IMG_0734.jpeg
Attachment 6: 20210716200112_IMG_0733.jpeg
20210716200112_IMG_0733.jpeg
Attachment 7: 20210716234113_IMG_0742.jpeg
20210716234113_IMG_0742.jpeg
  2606   Sat Jul 17 00:55:41 2021 KojiSummaryCryo vacuum chamberTemp Log 210716_2255

Temperature log for the first 2 hours (Attachment 1)

I wonder why the temperatures displayed on CTC100 and the ones logged are different...?

 

Attachment 1: temp_log_cool_down_20210716_2255.pdf
temp_log_cool_down_20210716_2255.pdf
  2609   Mon Jul 19 17:21:19 2021 KojiSummaryCryo vacuum chamberTemp Log 210716_2255

Temp Log on Jul 19 2021 17:20

I wonder what is the heat transfer mode for the test mass right now. Radiative? or Conductive through the wires?

 

Attachment 1: temp_log_cool_down_20210716_2255.pdf
temp_log_cool_down_20210716_2255.pdf
  2610   Tue Jul 20 11:33:52 2021 KojiSummaryCryo vacuum chamberA cooling model (Temp Log 210716_2255)

A naive cooling model was applied to the cooling curve.
A wild guess:

- The table temp is the same as the test piece temp as measured on 2021/7/9
- The inner shield temp is well represented by the table temp
- The specific heat of Si is almost constant (0.71 [J/(g K)] between 300K~200K

Radiative cooling:
The curve was hand-fitted by changing the emissivity of the inner shield and the silicon mass. I ended up having the same values for these to be 0.15.
Surprisingly well fitted!

Conductive cooling:
The conductive cooling through the wire does not fit the cooling curve, although the quantitative evaluation of the wire conductivity needs to be checked carefully.

Appendix:
Stephen shared attachments 2 and 3, which contain insights on the wire used to hang the Si mass. .017" diameter Music Wire from California Fine Wire, 2004 vintage, borrowed from Downs High Bay.

Attachment 1: cooling_model.pdf
cooling_model.pdf
Attachment 2: IMG_9390.JPG
IMG_9390.JPG
Attachment 3: IMG_9391.JPG
IMG_9391.JPG
  2611   Tue Jul 20 17:28:30 2021 KojiSummaryCryo vacuum chamberA cooling model (Temp Log 210716_2255)

Updated the model the latest log data with cooling prediction

  • The radiative cooling is expected to be the dominant cooling mode.
  • It will take ~3 more days to reach 123K. We don't need to wait for it.
  • For more informative temp data, we need the temperature of the inner shield and the table.

  • We know the cold head temp from the measurement. For the prediction, the constant cold head temp of 65K was assumed.
  • The table temp was estimated using conductive cooling model + linear empirical dependence of the conductivity on the temp
  • The constant specific heat of the silicon mass (0.71 J/K/g) was assumed. This may need to be updated.
  • The radiative cooling is given from Stefan–Boltzmann law with the emissivity of 0.15 for both the shield and the mass.
     
  • The conductive cooling of the test mass was estimated using: Wire diameter 0.017" (=0.43mm), 4 wires, length of ~10cm (guess), no thermal resistance at the clamps (-> upper limit of the conductive cooling)

Radiative cooling already gives us a good agreement with the measured temp evolution for the test mass. The conductive cooling is not significant and does not change the prediction.


Updated the plot with the new data (2021/7/21 12:30PM)

Attachment 1: cooling_model.pdf
cooling_model.pdf
  2613   Wed Jul 21 14:53:28 2021 KojiSummaryGeneralJul 17, 2021: Canon camera / small silver tripod / macro zoom lens / LED ring light borrowed -> QIL

See https://nodus.ligo.caltech.edu:8081/40m/16250

  2614   Wed Jul 21 21:05:59 2021 KojiSummaryCryo vacuum chamberTest mass cooling (2021/07/16 ~ 2021/07/21)

[Stephen and Koji for discussion / Koji for the execution]

1. Temperature Trend

See [QIL ELOG 2611] for the updated temp log and the cooling model.

Considerations for the next cycle:
-> How can we accelerate the cooling? It seems that the table cooling is conduction limited. Improve the cold head connection.
-> We want to move the RDTs
-> How can we improve radiative cooling?

2. Oplev Trend (Attachment 1)

Sum: The beam has been always on the QPD (good). See also Attachment 2

X&Y: In the first few hours the beam drifted in -X and then +X while Y had slow continuous drift in +Y. ~11hours later sudden drift in -Y and totally saturated. Also -X saturation observed @~16hrs. Again +Y drift was seen @~25hrs. The totally saturated in -X and +Y.
They may be related to the drift of various components with various cooling time scale.

Visual check: ~2mm shift in X&Y is visually observed. Attachment 2

-> How can we quantify the drift? What information do we want to extract?

3. OSEM and the magnet

The magnet is intact. And the suspension seemed still free after cooling (Attachment 3)
Significant misalignment was not visible. No visible damage by cooling was found. The coil is alive and the PD/LED are also intact. Fluke showed that they are still diodes, but their function was not checked.

The coil resistance changed from 16Ohm -> 4.2Ohm. For the 16Ohm, 2 Ohm was from the wire. Let's assume we still have 2Ohm overhead -> The coil R changed from 14->2.2. This corresponds to the coil temperature of the order of ~100K. This is not so crazy.

Some actuation current was applied to the magnet. For this test, the oplev was realigned.
First, some ~300mA current pulses were applied to the coil. The ringdown of the yaw mode was visible. Then the DC current of 100mA was applied. This didn't make visible change on the spot position but the data showed that there was a DC shift.

-> We prefer to have a softer suspension for the next test.

4. CTC100 logging

During the cooling we kept having inaccurate data logged compared with the displayed data on the screen of CTC100.
As soon as the cooling logging was stopped, telneting to CTC100 was available. So, I telnetted to the device and sent the data transfer command ("getOutput"). Surprisingly, the returned values agreed with the displayed values.
So my hypothesis is that somehow the data strings are buffered somewhere and gradually the returned values get delayed. From the behavior of the device, I imagined that the fresh telnet connection gives us the latest data and there is no buffering issue.

So I tweaked the data logging code to establish the telnet connection every time the values are asked. The connection is closed after the every data acquisition. I like this as we can also make the test connection between each data acquisition points, although I have not tried it yet. The code is in the same folder named ctc100_controller_v2.py

5. Heating

Now I thought that I did all I wanted to do this evening, so the heater was turned on at ~20:50, Jul 21. The heating power saturated at 22W, which is the set limit.

Attachment 1: oplev_trend.png
oplev_trend.png
Attachment 2: 20210721201333_IMG_0765.jpeg
20210721201333_IMG_0765.jpeg
Attachment 3: 20210716234113_IMG_0742.jpeg
20210716234113_IMG_0742.jpeg
Attachment 4: Screenshot_from_2021-07-21_20-19-09.png
Screenshot_from_2021-07-21_20-19-09.png
  2615   Thu Jul 22 22:03:45 2021 KojiSummaryCryo vacuum chamberTest mass heating in progress (2021/07/21 ~ 2021/07/23)

- Temperature Log updated 2021/7/23 12:00 Heating Ended

- Assuming reaching the room temp at ~30hrs and heating power saturated at 22W: Predicted heat injection 30*3600*22 = ~2.4MJ

Update from Stephen
- Note that we can check logging accuracy against the snapshot (timestamp 20210723_1113).
If my math is correct, this would be time = 37.35 38.35 hours

Update from KA
=> The corresponding time in sec is 138060 sec
The raw data line for the corresponding time is:

138016.839614, 295.805, 306.678, 302.518, 312.401, 0.000, 0.000, -0.001, 0.621, 0.622, 1.429, 0, 0, NaN, NaN, NaN
The values on the photo 295.806, 306.677, 302.518, 312.401 ==> Well matched. Victory!

Attachment 1: IMG-9395.jpg
IMG-9395.jpg
Attachment 2: temp_log_warmup_20210721_2052.pdf
temp_log_warmup_20210721_2052.pdf
  2616   Fri Jul 23 20:53:40 2021 KojiSummaryGeneralJul 17, 2021: Canon camera / small silver tripod / macro zoom lens / LED ring light returned / ELectronics borrowed

[Returned] Brought one HAM-A coil driver (D1100687 / S2100619) and one Satellite Amplifier (D1002818 / S2100741) from the 40m

Also brought some power cables.

Brought ~1m of 0.0017" (~43um) misical wire. This will make the tension stress be 341MPa. The safety factor will be ~7.

 

Attachment 1: P_20210723_212158.jpg
P_20210723_212158.jpg
ELOG V3.1.3-