ID |
Date |
Author |
Type |
Category |
Subject |
2460
|
Mon Nov 25 21:46:56 2019 |
Koji | Summary | PD QE | System Diagram |
System diagram of the PD QE test with the IRLabs cryostat.
PT-SE (MS/PT-SE) connector data sheets
Connector/receptacles/tools https://www.peigenesis.com/images/content/pei_tabs/amphenol/pt-ptse-series/new-thumbs/123-146_pt_series.pdf
Amphenol catalog http://www.amphenol-industrial.com/images/catalogs/PT.pdf
Detoronics Hermeic Sealed Connectors (DT02H-18-*PN) http://www.hselectronics.com/pdf/Detoronics-Hermetic-Connectors.pdf
AF8 crimping tool (expensive!) https://www.mouser.com/ProductDetail/DMC-Tools/AF8?qs=gvhpkjpQEVSjrLbsepewjg%3D%3D
AF8 alternative https://www.jrdtools.com/?gclid=Cj0KCQiA2vjuBRCqARIsAJL5a-IQ9ztCEYKdo645v_RhUBJS3eMIars1LubjlKZoorS-lnx6ClDDiMUaAlZiEALw_wcB
Thermistor link: https://www.tec-microsystems.com//Download/Docs/Thermistors/TB04-222%205%25%20Thermistor_Specification_upd2018.pdf
TEC spec: Mounted TEC type: 2MD04-022-08/1 https://www.tec-microsystems.com/products/thermoelectric-coolers/2md04-series-thermoelectric-coolers.html
2MD04-022-08/1 dTmax = 96, Qmax = 0.4W, Imax = 0.7A, Umax = 2.0, ACR = 2.29 Ohm |
Attachment 1: cryo_pd_test.pdf
|
|
Attachment 2: InAsSb_PD_mount_short.PDF
|
|
Attachment 3: PD_pin.pdf
|
|
2459
|
Mon Nov 25 15:03:34 2019 |
Koji | Update | PD QE | In solder and PD mounts are in |
The PD mounts were delivered from ProtoLabs. The order was sent on Tue last week and it's here on Monday. Excellent!
And the quality looks pretty good.
The surfaces are sandblasted. Do we want to do any process on the bottom surface to reduce the thermal resistance?
An indium solder string also came in. |
Attachment 1: PB259778.JPG
|
|
Attachment 2: PB259780.JPG
|
|
Attachment 3: PB259781.JPG
|
|
2458
|
Sat Nov 23 13:00:06 2019 |
Koji | Lab Infrastructure | Optics | Optical window transmission measurement |
The power transmission of the optical window for the IRLab cryostat was measured to be 0.966+/-0.002 at 2004nm. (Attachment 1)
A chopper powermeter was set to the QE measurement setup (Attachment 2). The window was held with a mount as shown in Attachmnent 3. The laser source was excited with the pumping current of 101.04mA. The output power was monitored with a Thorlabs DET10D (PD#2 with Amp#2) attached at the 10% side of the 90:10 beamsplitter. The detected photocurrent after subtracting the dark current of 15.7uA was 152uA. The power meter detected the power around 0.95mW, while the power with the window inserted was around 0.91~0.92.
PD1 Window No Window
[V] [mW] [mW]
-0.855 0.913 0.944
-0.855 0.906 0.951
-0.855 0.914 0.947
-0.855 0.922 0.950
-0.855 0.913 0.949
-0.855 0.912 0.948
-0.855 0.920 0.946
-0.855 0.915 0.946
-0.855 0.916 0.951
-0.855 0.915 0.952
-0.855 0.919 0.947
-0.855 0.921 0.944
-0.855 0.916 0.948
Note: PD1 had the dark output of -0.0809V.
Note2: The power meter readings had the fluctuation of +/-0.005 mW
|
Attachment 1: optical_window_T.pdf
|
|
Attachment 2: P_20191122_183426_vHDR_On.jpg
|
|
Attachment 3: P_20191122_183436_vHDR_On.jpg
|
|
2457
|
Fri Nov 22 15:33:40 2019 |
Koji | Lab Infrastructure | General | Moved IR Labs cryostat into QIL from Cryo Lab |
Salvaged an assort of vented/non-vented screws, washers, spring washers, and clamps for #4-40 & 1/4-20 from the 40m cleanroom stock. They are clean enough for the cryostat use. |
Attachment 1: P_20191122_150845_vHDR_On.jpg
|
|
2456
|
Fri Nov 22 13:21:26 2019 |
Raymond | Lab Infrastructure | General | Moved IR Labs cryostat into QIL from Cryo Lab |
Removed the IR Labs cryostat window for testing. It's on the cryocooler bench, see attached photos |
Attachment 1: IMG_0497.JPG
|
|
Attachment 2: IMG_0498.JPG
|
|
2455
|
Thu Nov 21 21:58:27 2019 |
Raymond | DailyProgress | Cryo vacuum chamber | Tank Update |
Update of our available electrical feedthroughs:
2 x 19 pin round with corresponding internal connectors and external connectors
2 x 15 D sub
- re-tapped the PEEK support pieces to 1/4-20 to match the bottom of the tank, added them with vented socket set screws. These will need to be replaced with brass or aluminum to better match thermal contraction (steel screws likely to crack the PEEK upon cooling)
- Drilled holes (attached, highlighted in orange) in the pump station base in order to utilize the more robust shock absorbers that came with the oil pump.
- Noticed significant flaking of the nuts/bolts when removing the tank lid. Suggested using anit-seize compound on the tank lid bolts but Chris advised against anything lube-like on the system. Just a note to remember to check the integrity of the bolts going forward before tightening the lid to avoid bolt seizing. |
Attachment 1: IMG_0490.JPG
|
|
Attachment 2: IMG_0491.JPG
|
|
Attachment 3: DiaphragmAdapt.pdf
|
|
2454
|
Thu Nov 21 21:45:10 2019 |
Raymond | Lab Infrastructure | General | Moved IR Labs cryostat into QIL from Cryo Lab |
Ordered the electrical feedthrough from IR Labs on overnight shipping. I've attached the diagram of the feedthrough, 32 pin is the only available configuration for this size feedthrough.
Will attempt to use my makeshift 12 pin feedthrough if the proper one does not arrive tomorrow (thanks Koji for the 40m drill bit tip). I'll clear the bench of the IR Labs carcasses tomorrow.
UPDATE: feedthrough will arrive by 10:30 on Monday the 25th |
Attachment 1: DT02H_18_32PN.pdf
|
|
2452
|
Wed Nov 20 17:44:10 2019 |
Koji | Lab Infrastructure | General | Moved IR Labs cryostat into QIL from Cryo Lab |
Here you are. |
Attachment 1: P_20191120_174034_vHDR_On.jpg
|
|
Attachment 2: P_20191120_174040_vHDR_On.jpg
|
|
2451
|
Wed Nov 20 12:25:58 2019 |
Koji | Lab Infrastructure | General | Moved IR Labs cryostat into QIL from Cryo Lab |
The large cryostat has 1/4-20 holes on a 2 inch grid
The IR labs cryostat has 4-40 holes on a 1 cm grid
I'll check the 40m for a bit (5/8-3/4") |
2450
|
Wed Nov 20 11:59:17 2019 |
Koji | Lab Infrastructure | General | Moved IR Labs cryostat into QIL from Cryo Lab |
Ah, I have designed the PD holder with the venting targeted for 1/4-20 holes with 1" grid...
The dog clamps to hold the PD units also need to be compatible with 4-40 screws.
How big the hole diameter should be? Can you find a suitable drill at the 40m?
|
2449
|
Wed Nov 20 11:51:27 2019 |
Raymond | Misc | HVAC | Dueling vents |
In the QIL and noticed that the vent above the cryo chamber is heating the lab while the vent above the 2um laser bench is blasting AC. Both have been running continuously since I first entered the lab (~10:30) |
2448
|
Tue Nov 19 20:16:40 2019 |
Raymond | Lab Infrastructure | General | Moved IR Labs cryostat into QIL from Cryo Lab |
The cold plate breadboard holes are indeed 4-40.
I've installed a new o-ring and vacuum valve, but I've scoured the labs for any piece that fits the open port on the side of the cryostat and have come up empty-handed. I've attached a photo with all of the IR labs input pieces found thus far (except duplicates or ones that match these same dimensions), none fit the drill pattern or counter sunk hole of the cryostat port. I tried but could not find mention of this specific port's removal in the elog history.
Spent a while trying to make a Franken-stat from the innards and limbs of the other decommisioned IR lab cryostats but nothing allowed for a correct optical path. So I then started to make a custom port with a 122 o-ring and an old ISO blank flange, but I need a drill bit larger than 0.5" for the center electrical feedthrough and am having ID card issues accessing the student shop over in CES.
I will call IR labs tomorrow and see if they have an a standard piece for this feedthrough. |
Attachment 1: IMG_0483.JPG
|
|
Draft
|
Mon Nov 18 17:17:29 2019 |
Duo | Summary | | Restart model in QIL lab |
Here are the commands.
ssh fb4
sudo /sbin/rmmod c4tst c4iop && cd /opt/rtcds/caltech/c4/target/c4iop/scripts/
./startupC4rt && cd ../../c4tst/scripts/ && ./startupC4rt && systemctl start rts-awgtpman@c4iop.service && systemctl start rts-awgtpman@c4tst.service && systemctl restart daqd@standiop.service
|
2446
|
Fri Nov 15 20:10:00 2019 |
Koji | Summary | 2micronLasers | InAsSb PD Mounts designed |
|
2445
|
Fri Nov 15 17:29:14 2019 |
Raymond | Lab Infrastructure | General | Moved IR Labs cryostat into QIL from Cryo Lab |
See attached photos for the internal layout of Zach's cantilever cryostat (all internal components left in cryo lab (except the heater)) The holes are on a 1cm grid and, I believe, are threaded for 4-40 (will check Monday). The internal 'window' is about an inch off the colplate. There is ~2 inches of space from the colplate to the first radiation shield lid.
The external optical port on the vacuum tank is 1.75" from the bench and is 0.75" in diameter. The cryostat is missing the lid o-ring, electrical feedthrough vacuum port, and intermediary valve between the vacuum space and the vacuum pumps. I will search for these on Monday. |
Attachment 1: IMG_0270.JPG
|
|
Attachment 2: IMG_0269.JPG
|
|
2444
|
Tue Nov 12 17:44:39 2019 |
Raymond | DailyProgress | Cryo vacuum chamber | Tank Update |
Last week I moved the upper portion of the crane to the new, bolted crane support stand. Chub removed the wheeled lower section from the lab shortly thereafter. I also re-threaded the nylon lifting strap to remove slack and level the lid a bit better during lifting and moved one of the side tables next to the crane so the lid can be safely lowered after being lifted off the tank (see first photo).
Opened the tank today to check internal dimensions. It is now closed (top bolts finger tight) but not under vacuum. The diaphragm pump was dispatched today, so will replace the dirty pump and pull vacuum again upon arrival.
Attached a photo of the baseplate for future drill pattern reference. Note there are three anomalous holes, this is where the PEEK support poles should go. It was discovered today that these holes are 1/4-20 tapped but the PEEK pillars are dirlled/threaded for a smaller bolt.
I've attached a rough cartoon of the cold plate height relative to the optical ports and the tank wall. The outer rad shield is not shown and is slightly misaligned, but it can be easily aligned with a ~1.5 mm shim (better for thermal isolation anyways). |
Attachment 1: IMG_0258.JPG
|
|
Attachment 2: IMG_0257.JPG
|
|
Attachment 3: IMG_0259.JPG
|
|
2443
|
Tue Nov 12 03:40:39 2019 |
Koji | Laser | PD QE | PD EQE vs Spot size |
The QE of the (500um)^2 element has been tested with a half-power (0.51mW) instead of 0.92mW.
It is clear that the central dip depth is reduced by the lower power density.
|
Attachment 1: QE_vs_spotsize_half_power.pdf
|
|
2442
|
Mon Nov 11 22:19:09 2019 |
Raymond | DailyProgress | Cryo vacuum chamber | Changes to preserve long strap for internal chamber use |
I've attached a photo of some changes to the cryocooler-tank connection design. We can save money and space by removing the 45 degree 1.33" conflat ports from the custom CH104 to 6" conflat adapter and using zero length conflat reducers at the unused 4 way cross ports, ie replace the 4-way piece blanks with holes for the vacuum line and gauge. The primary goal for these changes is to shorten the path from the cooler's heat station to the tank so that we keep the long thermal strap for use inside the tank. Also, the height is reduced from 89 cm to 59 cm.
A slightly different cupper adapter is needed to accomodate the thick strap, but no adapter will be needed anymore between the heat station and the thermal strap (same diameter round mates(new holes will need to be drilled though)). |
Attachment 1: ShortAdapter.png
|
|
2441
|
Wed Nov 6 17:05:33 2019 |
Raymond | DailyProgress | Cryo vacuum chamber | Conflat flange tightening |
Tightened all of the vacuum ports on the chamber so that the flange interfaces are all now metal-to-metal, ie full copper gasket compression. All of the ports required at least two star pattern passes before reaching this point, except for the bellows line to the turbo/backing pumps which was already at complete compression. Prior to tighening, the wide range gauge gave a pressure reading of 5.8x10-6 Torr and the ion-gauge showed 5.75x10-6 Torr. After tightening the wide range flange the reading dropped to 5.6x10-6 ; after tightening the ion-gauge flange the gauge reading dropped to 5.69x10-6.
For future reference: the 4.625" flanges use 5/16" torx bolts and 1/2" nuts, and the 2.75" flanges use a 1/4" torx bolt and 7/16" nuts. |
2440
|
Tue Nov 5 20:06:36 2019 |
Raymond | Update | Cryo vacuum chamber | Cooler to tank connection |
Attached is a drawing of the first phase (minimal vibration isolation) cryocooler attachment, where the main tank connects via the blue rimmed feedthrough. Boxed/circled components are those that will require custom fabrication:
- Copper adaptor from heat station to thermal strap
- 5.25" outer diameter 2-153 o-ring connection to conflat adapter (DN75 (4-5/8" outer diameter, 3" tube OD) pictured, but am comparing this with the DN100 (6" OD, 4" tube diameter))
- Conflat to ASA o-ring adapter
- a + b: Copper adapter from the flat strap connector to the round copper vacuum feedthrough (closeup shown in second figure)
Currently there are only two connections that require viton o-ring rather than conflat connections (cooler to piece 1, piece 3 to HV feedthrough). |
Attachment 1: CoolerCartoon.pdf
|
|
Attachment 2: Screen_Shot_2019-11-05_at_20.25.54.png
|
|
2439
|
Fri Nov 1 12:47:18 2019 |
Koji | Laser | PD QE | PD EQE vs Spot size |
Clipping and saturation were investigated by the semi-analytical model. In the analysis, the waist radius of 20um at the micrometer position of 8mm is used.
1) Clipping
Firstly, the clipping loss was just geometrically calculated. Here the saturation issue was completely ignored. The elements P6, P3, and P2 have the sizes of (500um)^2, (750um)^2m, and (1000um)^2, respectively. However, these numbers could not explain the clipping loss observed at the large spot sizes. Instead, empirically the effective sizes of (350um)^2, (610um)^2, and (860um)^2 were given to match the measurement and the calculation. This is equivalent to have 70um of an insensitive band at each edge of an element (Attachment 1). These effective element sizes are used for the calculation throughout this elog entry.
2) Saturation modeling
To incorporate the saturation effect, set a threshold power density. i.e. When the power density exceeds the threshold, the power density is truncated to this threshold. (Hard saturation)
Resulting loss was estimated using numerical integration using Mathematica. When the threshold power density was set to be 0.85W/mm^2, the drop of QE was approximately matched at the waist (Attachment 2). However, this did not explain the observed much-earlier saturation at the lower density. This suggests that the saturation is not such hard.
In order to estimate the threshold power density, look at the beam size where the first saturation starts. The earlier sagging of the QE was represented by the threshold density of 0.1W/mm^2. (Attachment 3) |
Attachment 1: QE_vs_spotsize_no_saturation.pdf
|
|
Attachment 2: QE_vs_spotsize_saturation_0_85.pdf
|
|
Attachment 3: QE_vs_spotsize_saturation_0_1.pdf
|
|
2438
|
Thu Oct 31 18:31:10 2019 |
Koji | Laser | PD QE | PD EQE vs Spot size |
InAsSb PD QE Test
The relationship between the spot radius and the apparent QE (EQE) was measured.
1) The spot size was checked with DataRay Beam'R2. The beam scanner was mounted on the post with a micrometer stage in the longitudinal direction. (Attachment1 upper plot)
It was confirmed that the beam is focused down to ~22um. The incident power was about 0.9mW.
2) The InAsSb detector (Sb3513A2) was mounted on the PD holder and then mounted on the stage+post. The photocurrent was amplified by a FEMTO's transimpedance amp (V/A=1e3Ohm). The dark current and the total photocurrent were measured at each measurement point with the beam aligned to the PD every time. The estimated EQEs were plotted in the lower plot of the attachment.
Note that P2, P3, and P6 elements have the size of (500um)^2, (750um)^2, and (1000um)^2, respectively.
The absolute longitudinal position of the sensor was of course slightly different from the position of the beam scanner. So the horizontal axis of the plots was arbitrary adjuted based on the symmetry.
The remarkable feature is that the QE goes down with small spot size. This is suggesting a nonlinear loss mechanism such as recombination loss when the carrier density is high.
With the present incident power, the beam size of 100um is optimal for all the element sizes. For the larger elements, a bigger beam size seems still fine.
The next step is to estimate the clipping loss and the saturation threshold with the Gaussian beam model. |
Attachment 1: QE_vs_spotsize.pdf
|
|
2437
|
Thu Oct 24 11:58:27 2019 |
Chris | Electronics | CDS | new QIL AA boards |
The anti-alias boards in the QIL AA chassis have been replaced with newer ones I found in the EE shop (serial numbers S1200217, S1200274, S1200275, S1200277).
The new boards (D070081-v4) have input buffers and a reasonably high input impedance (20k), unlike the old boards (D070081-v1). However, according to the DCC revision notes, they may suffer from some excess low frequency noise caused by LT1492 opamps. If it becomes a problem for us, we can replace those opamps.
The low input impedance of the original boards explains the anomalous ADC/DAC loopback measurement Jon made several months ago. It should now be close to 0.5 ADC ct per DAC ct. I have checked the DC gain for the first few channels, but have not exhaustively tested the new boards. (Perhaps Jon has a script to automate this?) |
2436
|
Tue Oct 22 15:55:52 2019 |
Koji | Electronics | General | Borrowed ITC510 from Cryo |
From Cryo Cav setup
Borrowed ITC510 Laser Driver/TEC controller combo -> QIL |
2435
|
Mon Oct 21 17:07:17 2019 |
Chris | Lab Infrastructure | Cryo vacuum chamber | Cryo chamber vacuum pressure logging |
Ever since the initial pumpdown the pressure in the new cryo chamber has been stuck at ~6e-6 torr, so there's probably a small leak.
Our vacuum gauge controller has a serial communications port, which we can use to log the system pressure to aid in leak hunting. It's connected now to an unused port on fb4. A small python-based epics server queries the pressure gauges and makes the data available as two epics channels, C4:VAC-CRYO_PRES_P1 (wide range gauge) and C4:VAC-CRYO_PRES_P2 (ion gauge). These are recorded by the framebuilder. The script is stored under ~controls/services on fb4 and should start automatically on reboot. |
Attachment 1: vac.png
|
|
2434
|
Fri Oct 18 14:44:22 2019 |
Chris | Lab Infrastructure | Cryo vacuum chamber | 208V electrical service was installed in the QIL |
A historical note - electricians from Facilities visited the lab several weeks ago and installed new electrical service. To do this with a minimum of disruption to the lab, they de-installed some electrical outlets along the south wall and reused the conductors. They also taped up plastic sheeting to the table enclosure to protect the squeezing and laser stabilization experiments. |
2433
|
Thu Oct 17 14:12:10 2019 |
Duo | Lab Infrastructure | | IOGEAR GWU637 failure |
The spectrum analyzer SR785 uses a Ethernet-Wifi converter GWU637 from IOGEAR to connect to the WIFI in the lab. Today I am trying to download experiment data from SR785 as always but somehow it cannot find the device anymore. After struggling for a while, I restart the GWU637 device (unplug and plug the power cable) and then I can download data again.
I think it needs to be restarted after running for a couple weeks. |
2431
|
Fri Oct 11 17:33:47 2019 |
rana | DailyProgress | Cryo vacuum chamber | Closing the vacuum chamber |
we'll suffer if we use a oil based pump long term - please find and order a dry pump to back this turbo. Not only is it bad for the vac chamber, its bad for other optics in the lab, |
2430
|
Fri Oct 11 17:12:26 2019 |
Raymond, Chris | DailyProgress | Cryo vacuum chamber | Closing the vacuum chamber |
We installed the oil filter/trap on the roughing pump and began pulling a vacuum. This was delayed due to the turbo pump flashing an error message and shutting off automaticallly after failing to spin up within its preset ramp-up time (error message 1221(3)). Upon restarting the system there were no ramp up issues, likely due to the chamber already having pumped down to ~0.5 Torr at the time of restart. Fix: need to increase the turbo pump delay start time, currently at 0 (immediately spins up). After 30 minutes of pumping the pressure reached ~4e-5 Torr in the chamber. (It reached 7e-6 torr after 3 days of pumping.)
We also tested an alternate internal configuration with the unwrapped components (see attached doodle, unlabelled green disc is the cold plate). This has the advantage of thermally isolating the outer radiation shield from the cold plate, but, we found, would slightly misalign the optical input ports.
Several ant traps were placed around the lab to combat the observed ant problem. |
Attachment 1: IMG_0204.JPG
|
|
2429
|
Thu Oct 10 17:28:33 2019 |
Raymond, Chris | DailyProgress | Cryo vacuum chamber | Radiation shields unpacked |
Today we unpacked the radiation shields and started to puzzle out how to assemble them. Attached are photos of the parts as we guessed they are intended to stack up. We didn't see how the outer shield would be supported and isolated from the cold plate, so we are contacting Rahul to clarify.
One detail not shown in these photos is the rather poor weld quality on the interior of the outer shield.
|
Attachment 1: IMG_20191010_150645.jpg
|
|
Attachment 2: IMG_20191010_150700.jpg
|
|
Attachment 3: IMG_20191010_150711.jpg
|
|
Attachment 4: IMG_20191010_150757.jpg
|
|
Attachment 5: IMG_20191010_150817.jpg
|
|
Attachment 6: IMG_20191010_150826.jpg
|
|
2428
|
Wed Oct 9 17:40:57 2019 |
Raymond, Chris, Duo | DailyProgress | Cryo vacuum chamber | Closing the vacuum chamber |
We closed the chamber without installing the radiation shields or cold plate in order to test the vacuum pressure of the empty system. Upon turning on the backing pump there was a fine oil mist from exhaust port, so the pump was turned off and an oil trap/filter has been purchased.
It was estimated that 12 inch/pound of torque is required for each of the top plate bolts in order to compress the 75 Shore hardness Viton o-ring by 20% (recommended by O'Hanlon).
|
2427
|
Tue Oct 1 19:25:08 2019 |
Jon | Computing | Cymacs | IP address changes |
Someone (not me) has recently changed the IP addresses of the lab machines. I see the new assignments are the following:
10.0.1.14 |
? |
QIL Lab |
fb4 |
10.0.1.20 |
? |
QIL Lab |
qil-nfs |
10.0.1.21 |
? |
QIL Lab |
qil-ws1 |
10.0.1.22 |
? |
QIL Lab |
qil-ws2 |
|
2426
|
Thu Sep 26 18:05:31 2019 |
Duo | Lab Infrastructure | | Cryo cooler and pump test run |
[Chris, Duo]
We tested the cryo cooler and the turbo pump this afternoon. We ran the cryo cooler for two hours. The equalization pressure is 275psi(the pressure before we turn it on) and operating pressure (pressure after running for two hours) is 295psi(attachment 1). The operating pressure is lower than expected; the manual indicates the pressure is expected to be 300-320psi.
We cycled the turbo pump. It appears to be functioning properly. |
Attachment 1: IMG_0990.jpg
|
|
2425
|
Wed Sep 25 01:05:30 2019 |
Koji | Summary | PD QE | QE and dark current of InAsSb sensors |
The lenses were arranged so that the spot on the PD can become smaller. A quick measurement on a (500um)^2 element showed the QE of ~80%
With the strong focusing lens of f=40mm, the beam was once expanded to a few mm. Then f=75mm lens focuses the beam to ~30um (radius). (See Attachments 1&2)
With this new beam, the QE was quickly checked. The new measurement is indicated as "Sb3513 A2P6new" in the plot. It showed the QE of ~80%.
The AOI was scanned to find any maximum, but the AOI of 0deg was the best at least with the given beam. I'm not sure yet why 500umx500um requires such small beam radius like 30um. Awesome |
Attachment 1: P_20190924_233507_vHDR_On.jpg
|
|
Attachment 2: P_20190925_003614_vHDR_On.jpg
|
|
Attachment 3: InAsSb_QE.pdf
|
|
Attachment 4: InAsSb_DarkCurrent.pdf
|
|
2424
|
Mon Sep 23 23:48:12 2019 |
Koji | Update | 2micronLasers | 2um sensor cards / focusing optics |
Fiber Collimator (Thorlabs F028APC-2000+AD11F+LMR1) and MIR sensor cards (Thorlabs VRC6S Qty2) were delivered.
The sensor card is liquid crystal and seems temperature sensitive. It's slow and diffused. But at least we can now see 2um beams in a certain condition.
The fiber collimator seems working fine, but this gave me another issue. Now because the beam is small (w<500um) everywhere, I can't focus it very well. To make a focused beam, one needs a large beam, of course. Previously, the beam was not well focused. Therefore the final focused beam with f=150mm was sufficiently small like w=50um.
It looks like some kind of telescope is necessary. |
Attachment 1: IMG_8936.jpg
|
|
2423
|
Mon Sep 23 10:49:27 2019 |
Koji | Summary | PD QE | QE and dark current of InAsSb sensors |
The QE and dark current of all the InAsSb sensors were measured. All the measurements were done in room temperature.
- The incident beam power of the 2004nm beam was 0.95mW.
- The beam was focused down to 50um gaussian radius, which was confirmed by DataRay BeamR.
- The angle of incidence was ~0deg.
- The element side (nominally Pin 2, 3, or 6) were connected to the vias boltage (negative) and the common ground was connected to the transimpedance amplifier (Shalika OP140 R=5100Ohm)
- The dark current was highly dependent on the reverse bias voltage. The QE was also bias dependent.
- Sb3512 A2 have different behavior compared to others. Alex mentioned that Sb3512 is the test batch. We can exclude this sensor from the test.
- The best QE was ~0.7 for Sb3513 A3 P2 (Pink) and Sb3513 A2 P6 (Purple). Both have the area of 500um^2. These two particular elements have low dark current of <1mA. The dark noise of this specific sensor should be measured.
Some issues of the measurements
- The transimpedance amp (TIA) has suspicious behavior. The saturation voltage was ~17V rather than <-15V. This indicates that the voltage regulators possibly have leakage of the input voltage (+/-18V) to the output line. This needs to be checked, particularly before the dark noise test.
- TIA saturation: The bias voltages could not be raised to ~1V for some PDs because of the dark noise and the saturation of the TIA. The transimpedance should be lowered by a factor of ~5.
- Because of the low bias voltages of these saturated cases, the max QEs were not reached. This also prevented from checking if there was any clipping loss. This should be checked again with the lower transimpedance.
- TBD: The angular dependence and the reflectivity of the sensor should be checked. It is difficult to carry out these tests without a sensor card. |
Attachment 1: InAsSb_QE.pdf
|
|
Attachment 2: InAsSb_DarkCurrent.pdf
|
|
Attachment 3: 190921_SbPD_QE.zip
|
2422
|
Fri Sep 20 17:31:25 2019 |
Duo | DailyProgress | General | General update |
Basically two things are happening in the lab now.
1) We are assembling a shop list for the lab, buying a couple things to put the stuff together. After the purchase, relevant items will be uploaded under this post.
2) I made the TIA with OP27, trying to measure it noise. But the lab has too much environment noise. I will try measuring it after hours or in the EE shop and see if that gives a better results. Progress on that front will reply to this post later too. |
2421
|
Tue Sep 17 23:42:41 2019 |
Shalika Singh | Laser | PD QE | Measuring Quantum Efficiency of Extended InGaAs Photodiode |
**[Internal Quantum Efficiency added]
[Koji, Shalika]
Further measurements were done after elog:2419 for Quantum Efficiency of Extended InGaAs Photodiodes(X8906). A Laser of wavelength 2um was used with an incident power of 0.80+0.02mW. The Ophir RM9 power meter was used to check the incident power and also measure the reflectivity.
Attachment 1: The Setup. A Fibre launcher was used to project the laser along with a converging lens of the focal length of 40.0 mm which was further arranged with a subsequent converging lens of 150mm focal length. A mirror was used to reflect the laser light on the photodiode at an angle of 45o. The bias voltage was provided to pin 4 of photodiode using a Sallen Key low pass filter and the output at pin 3 of the photodiode was fed to a transimpedance amplifier (with a gain of 5.1k) which converted the photocurrent to voltage.
Attachment 2: The Quantum Efficiency is plotted with respect to different bias voltages, It was observed that the quantum efficiency increases with an increase in bias voltage. An External Quantum Efficiency of 77.4% was observed at 1V(maximum bias voltage for the photodiode). The Internal Q.E was observed to be 83.8% taking into account Reflectivity of (60.0+1) uW at an angle of 17deg.
Attachment 3: To recreate all data |
Attachment 1: IMG_8915.JPG
|
|
Attachment 2: QE_X8906.pdf
|
|
Attachment 3: Extended_InGaAs.zip
|
2420
|
Tue Sep 10 18:38:18 2019 |
Koji | Noise Budget | PD noise | Dark Noise measurement of Extended InGaAs |
- Previously, your TIA was pretty much dominated by the thermal noise current of the 5K transimpedance resistor (=0.129/sqrt(5000) nA/rtHz ~2pA/rtHz).
So, I believe it's impossible to measure 1pA/rtHz. Please check if you had any saturation or anything along the chain.
- Do you need SR560? If you think you are limited by the input noise of SR785 when having no SR560, you can use your whitening filter, which is supposed to be sufficient and better in terms of the output voltage range.
- Please note the serial number of the PD under the test.
- And, try to isolate your box from the optical table. |
2419
|
Tue Sep 10 17:17:11 2019 |
Shalika Singh | Noise Budget | PD noise | Dark Noise measurement of Extended InGaAs |
**edited as per suggestions in elog:2420
The dark noise of IG22X2000T9(serial: X8906 and X8905), Extended InGaAs photodiodes was measured. A low pass sallen key filter(using OP27) with a gain of +1 and cut off frequency of 1Hz was used to provide the bias voltage to the photodiode. A transimpedance amplifier(using OPA140, refer elog:2416 for noise spectrum of TIA) with a gain of 5.1k was used to convert the output current of the photodiode to voltage. The input range was maintained at -50 dBVpk during the measurement.
A bias voltage of 1.017 V was provided and the output voltage across the transimpedance amplifier was observed to be as follows:
X8906: -0.030V, which implies that the dark current was -5.887uA.
X8905: -0.097V, which implies that the dark current was -19.01uA.
Attachment 1: Setup representation
Attachment 2: Experimental Setup. It was made sure that the cables are free from any tension. Connections were made using BNC connectors. The transimpedance amplifier and sallen key filter were placed in a box and were not in direct contact with the optical bench. During measurement data was taken with a linewidth of 125mHz(was increased logarithmically for subsequent measurements, since measurement was taken in parts) with 200 averages for each set.
Attachment 3: Dark noise plot. The data was taken for X8906 for 5 different bias voltages. The input range was maintained at -50 dBVpk during the measurement. It was observed that dark noise decreases with decrease in bias voltage.
Attachment 4: Dark noise plot. The data was taken for X8905 for 4 different bias voltages. The input range was maintained at -46 dBVpk during the measurement. It was again observed that the dark noise decreases with a decrease in bias voltage.
***** The noise is observed very low for a 0V bias for both the photodiodes below 10kHz. It was observed that noise is high above 10kHz at all the bias voltages for both the series.
Attachment 5: Dark Current plot for both X8905 and X8906 series of photodiodes.
Attachment 6: Dark Current Density for both X8905 and X8906 series.
Although being made of the same material both the photodiodes have some difference in their dark current. It was observed that the photodiodes are very noisy at room temperature. I think they will deliver better performance at low temperatures.
Attachment 7: The 1/f noise was observed at 10Hz for both the series of photodiodes.
Attachment 8: Zip file to re-create the data. |
Attachment 1: PD_test_setup.pdf
|
|
Attachment 2: setup.jpg
|
|
Attachment 3: Noise_across_extended_InGaAs_X8906.pdf
|
|
Attachment 4: Noise_across_extended_InGaAs_X8905.pdf
|
|
Attachment 5: Dark_current_Extended_InGaAs.pdf
|
|
Attachment 6: Dark_current_density_Extended_InGaAs.pdf
|
|
Attachment 7: 1_fnoise_Extended_InGaAs.pdf
|
|
Attachment 8: Extended_InGaAs.zip
|
2418
|
Sun Sep 8 16:08:04 2019 |
rana | Electronics | General | Solder: what kind of solder to use and why? |
This is a summary of some information on types of solder and their usefulness.
Summary: use the 63/37 Sn/Pb solder from Kester. It is eutectic and has a low melting point so that your opamps won't get damaged.
Eutectic:
We want our solders to be "eutectic" so that it goes from the liquid phase directly to solid with no intermediate slurry. This makes a reliable (and nice looking!) solder joint.
Lead:
The tin-lead solder is a good combo.
Links:
- Basics of solder choice from Hackaday
- NASA's Tin Whiskers homepage
- "Tin Whiskers are Real & Complex" Maxim
|
2417
|
Thu Sep 5 15:40:22 2019 |
rana | Noise Budget | PD noise | Noise Analysis of transimpedance amplifier |
I'm pretty sure that the OP27 data is still not right. You should use the small binwidth and larger # of averages as we talked about earlier this week. In the elog, you should give the PSD parameters. |
2416
|
Thu Sep 5 11:10:08 2019 |
Shalika Singh | Noise Budget | TIA | Noise Analysis of transimpedance amplifier |
Noise analysis was done using SR785. SR560 was used with a flat gain of 100 to get above the noise floor of SR785. The input range was constantly maintained at -44dBVpk for all measurements. Voltage regulators LM317 and LM337 were used to power the circuit. 200 averages were taken for all the measurements. The TIA was configured with a 5.1k feedback resistor and 100pf feedback capacitor. Please refer elog:2390 for better understanding of the circuit diagram.
** Referring to elog:2411 the 8kHz noise bump went away on its own without changing anything in the circuit. I have no clue how it happened and why it's not happening again.
Attachment 1: Noise analysis using OP27 in transimpedance amplifier. At Frequencies below 100Hz, data was taken in 4 parts, starting from 0Hz with a span of 25Hz but with 10 number of averages(fewer averages were taken only in this case). At high frequencies(above 100Hz) data was taken with 200 averages. A noise was observed to be 10pA/rtHz was observed at 10Hz and 3pA/rtHz above 300Hz.
Attachment 2: LT1792 was used in this case. It was seen that it is less noisy as compared to OP27. The noise was observed to be 2pA/rtHz above 20Hz.
Attachment 3: LT1012 was used for this measurement. The noise was observed to be 3pA/rtHz above 20Hz.
Attachment 4: AD820 was used for this case. The noise was observed to be 3pA/rtHz above 500Hz.
Attachment 5: OPA140 was used for the TIA during this measurement. The noise was observed to be 2pA/rtHz above 2Hz.
Attachment 6: Noise comparison between all the OpAmps used. It was seen that OP27 isn't able to deliver performance as expected because it is getting affected a lot by the noise(1/f noise). OPA140 performs better than all the others.
Attachment 7: Zip file to re-create all data |
Attachment 1: Noise_across_TIA_Op27.pdf
|
|
Attachment 2: Noise_across_TIA_LT1792.pdf
|
|
Attachment 3: Noise_across_TIA_LT1012.pdf
|
|
Attachment 4: Noise_across_TIA_AD820.pdf
|
|
Attachment 5: Noise_across_TIA_OPA140.pdf
|
|
Attachment 6: Noise_comparison_across_TIA.pdf
|
|
Attachment 7: TIA_4sep.zip
|
2415
|
Wed Sep 4 22:14:12 2019 |
rana | Lab Infrastructure | | QIL lab floor plan |
what about attaching a crane to the ceiling on one of the supporting beams?
|
2414
|
Tue Sep 3 16:47:08 2019 |
Duo | Lab Infrastructure | | QIL lab floor plan |
We plan to set up the big cryostat in the QIL lab. We make a plan on how to use the space in this area.
We have these items related to this experiment: the chamber, the compressor, the pump and the crane. The crane is used to lift the lid of the chamber when we open it.
The chamber sits on the table, its diameter is about 2'4''. We put it at the corner of the table, giving us more accessible space around it.
The compressor is used to cool the system. It is connected to the chamber via the coldhead so we will need a small table to hold the coldhead at the output of the chamber.
The pump has two parts: rough pump and turbo pump. Rough pump has more noise so we put it under the table. The turbo pump is connected to the chamber and we need a stand for that too.
The current plan for the crane is that we want to screw the crane onto the floor. We do not have space for a big crane base.
|
Attachment 1: qilfloor.pdf
|
|
2413
|
Fri Aug 30 05:11:11 2019 |
Chris | Noise Budget | 2micronLasers | Noise Analysis of Voltage Regulator Circuit using SR785 Spectrum Analyzer |
In case we need to seek a further reduction in the voltage regulator noise, Wenzel has kindly published their ideas for a little noise-eating circuit at the regulator output.
Quote: |
As it was observed that normal voltage supply is noisy and not suitable for our circuit, we plan to use a voltage regulator that will help us provide a clean supply. Referring to previous elog entries the corresponding corrections were made( polarity of electrolytic capacitors, ceramic cap in parallel to electrolytic, 3V difference between input and output of respective regulators).
Attachment 1: The Circuit Diagram of Voltage regulator
The component used Input Voltage Output Voltage
a. LM7915 -18 V -15.1 V
b. LM7815 18 V 14.86 V
c. LM317 18 V 14.96 V
Attachment 2: Output Voltage noise of regulator circuit
The noise observed using SR785 at the output of each regulator is shown. It clearly shows that LM317 manifests less noise in comparison to LM7915 and LM7815. It will be therefore a good idea to use this to provide 15V bias in our circuit.
Attachment 3: The Scripts
Find all the scripts and data used in this measurement.
|
|
2412
|
Thu Aug 29 15:36:49 2019 |
Koji | Noise Budget | 2micronLasers | Noise Bump observed at 8kHz during TIA noise analysis |
You need to check the voltage noise of the regulator outputs with the opamps connected. Probably you did it. If so, it is a riddle why the 8kHz bump is not observed in the regulator outputs, but is in the opamp outputs...
Does the noise bump happen with the +/-15V supplied by 7815/7915? How about to change the capacitor values for LM317/337 to the ones recommended in the data sheet?
It is great to see the noise peaks were largely reduced by LT1792. This is what I found before although I can't explain why. |
2411
|
Wed Aug 28 21:25:20 2019 |
Shalika Singh | Noise Budget | 2micronLasers | Noise Bump observed at 8kHz during TIA noise analysis |
The noise analysis for TIA was done. The circuit was in open but kept away from SR785 (to avoid any noise effect)
Attachment 1 and 2 show how the setup was placed. The wires were kept in a way that there is no tension. The wires that were used for connection from the voltage supply were twisted in order to avoid any inductance issue. The input range was kept at -44BVpk (this was maintained at all points when taking measurements with SR560) while using the SR785. SR560 was used with a flat gain of 100 in order to get above the noise of SR785 and also the AC coupling was used. LM317 and LM337 were used to provide a 15V(+/-) supply to OpAmp. The OpAmp used here is Op27.
Attachment 3 shows the noise analysis across TIA(using Op27). It was observed that the voltage regulators help in noise reduction to a great extent at low frequencies but somehow at around 8kHz, a huge noise bump is being observed. I also checked the noise by using directly the voltage supply at the lab. It does impart high noise at low frequencies but it's clearly visible that noise bump at 8kHz isn't there. The noise bump exists only when the voltage regulators are being used with the OpAmp. I did check if the output of voltage regulators were oscillating due to some reason but they provided a constant output of 15.04V(+/-). I did check if the OpAmp was broken but it isn't the case because the difference between the voltage at pin 2 and 3 is zero, I have two TIA on my board so I checked the noise for both of them and I observed the same results.
Attachment 4 shows the noise of TIA using LT1792. It was seen that the 8kHz noise bump is evident on even changing the OpAmp.
I am unable to understand how is this issue coming up. I did the measurement quite a few times just to be sure It's not a one-time thing but the noise bump is dominant.
Attachment 5: Zip
|
Attachment 1: circuit.jpg
|
|
Attachment 2: circuit_setup.jpg
|
|
Attachment 3: Noise_across_TIA_op27.pdf
|
|
Attachment 4: Noise_across_TIA_LT1792.pdf
|
|
Attachment 5: TIA.zip
|
2410
|
Mon Aug 26 10:45:43 2019 |
Shalika Singh | Noise Budget | PD noise | 1/f noise analysis and dark current density |
The 1/f noise and dark current density were analysed for Sb3513_A2 photodiode.
Attachment 1: Dark current density plot
It was observed that the dark current density has a very less difference for measurements taken across 500um, 750um and 1000um. It means that the leakage current is of low magnitude.
Attachment 2: 1/f noise at 10Hz
The 1/f noise for 500um, 750um and 1000um was plotted and 1/f noise is high for 1000um as the bias is increased. and 1/f noise is high for 500um at low bias voltages.
Attachment 3: Zip file |
Attachment 1: Dark_current_density.pdf
|
|
Attachment 2: 1_fnoise.pdf
|
|
Attachment 3: JPL_Sb35313_A2.zip
|
2409
|
Fri Aug 23 17:35:37 2019 |
Koji | Noise Budget | 2micronLasers | Noise Analysis of Circuit using SR785 Spectrum Analyser and Zero Simulation |
The TF looks good. But the noise measurement is obviously limited by the SR785 noise. We need a preamp, which is only for the purpose of the measurement. It has to have the input reffered noise about a factor of a few better than the noise predicted by Zero. At high frequency, probably we will be able to use SR560. With this low noise level, probably we can just use the flat gain of 100 for the SR560 setting. This will give you the input referred noise (of the preamp) of ~4nV/rtHz at kHz band. Note that the gain needs to be larger than 100 to have low noiseness of SR560.
Quote: |
I think this is a solid measurement.
|
|