{Yehonathan, Shruti}
1. Grabbed 30Hz-3GHz HP spectrum analyzer from the Cryolab. Installed it in the WOPO lab under the optical table. We figured out how to do a zero-span measurement around 10MHz. The SA has only one input so we try to combine the signals with an RF splitter. We test this capability by sourcing the RF splitter with 10MHz 4Vpp sine waves from a function generator and measuring the output with a scope. We measure with the scope 1.44Vpp for each channel. The combined channel was 2.73Vpp. We then realized that we still don't have a way to adjust the gains electronically, so we moved on to trying the RF amplifiers (ZFL500 LN).
We assemble two amps on the two sides of a metal heatsink. We solder their DC inputs such that they are powered with the same wire (Attachment 1). We attach the heatsink to the optical table with an L bracket (Attachment 2).
We powered the amps using a 15V DC power supply and tested them by feeding them with 10MHz 10mVpp sine waves from a function generator. We observe on a scope an amplification by a factor of ~ 22. Which makes a power amplification of ~ 26db consistent with the amplifiers' datasheet.
We couldn't find highpass filters with a cutoff around 1MHz, so we resumed using the DC blocks, we test them by feeding white noise into them with a function generator and observing the resulting spectrum. First, we try the DC blocks with a 50 Ohm resistor in parallel. That happened to just cut the power by half. We ditch the resistor and get almost unity transmission above 20kHz.
Moving on to observing LO shot noise, we open the laser shutter. We find there is only 0.7mW coming out of each port of the fiber BHD BS. We measure the power going into the BS to be 4mW. This means the coupling between the LO fiber and the BS fiber is bad. We inspect the fibers and find a big piece of junk on the BS fiber core. We also find a small particle on the LO fiber side. We cleaned both fibers and after butt coupling them we measure 1.6mW at each port. We raise this power to 2mW per port.
We connect the outputs of the PDs to the amps through the DC blocks. The outputs of the amps were connected to the Moku's inputs. The PDs were responding very badly and their noise was also bad. We bypass the amps to debug what is going on. We connect the PDs to a scope. We see they have 300mV (attachment 3) dark noise which is super bad and that they hardly respond to the light impinging on them (attachment 4). We shall investigate tomorrow. |