40m QIL Cryo_Lab CTN SUS_Lab TCS_Lab OMC_Lab CRIME_Lab FEA ENG_Labs OptContFac Mariner WBEEShop
  ATF eLog  Not logged in ELOG logo
Entry  Thu Aug 5 11:53:26 2021, Radhika, DailyProgress, Cryo vacuum chamber, Cooldown model fitting for MS model_fit_v_data.pdf
    Reply  Wed Aug 11 14:58:47 2021, Radhika, DailyProgress, Cryo vacuum chamber, Cooldown model fitting for MS rad_model_fit_v_data.pdfrad_cond_model_fit_v_data.pdf
       Reply  Wed Aug 11 18:00:19 2021, Koji, DailyProgress, Cryo vacuum chamber, Cooldown model fitting for MS 
          Reply  Fri Aug 13 15:14:14 2021, Radhika, DailyProgress, Cryo vacuum chamber, Cooldown model fitting for MS rad_295_model_fit_v_data.pdf
             Reply  Fri Aug 13 21:01:42 2021, Radhika, DailyProgress, Cryo vacuum chamber, Cooldown model fitting for MS 
                Reply  Thu Aug 19 14:34:10 2021, Radhika, DailyProgress, Cryo vacuum chamber, Cooldown model fitting for MS model_fit_tm_painted.pdfmodels_painted.pdf
                   Reply  Fri Aug 20 13:44:58 2021, rana, DailyProgress, Cryo vacuum chamber, Cooldown model fitting for MS 
                      Reply  Fri Aug 20 14:05:45 2021, Radhika, DailyProgress, Cryo vacuum chamber, Cooldown model fitting for MS 
Message ID: 2636     Entry time: Thu Aug 5 11:53:26 2021     Reply to this: 2641
Author: Radhika 
Type: DailyProgress 
Category: Cryo vacuum chamber 
Subject: Cooldown model fitting for MS 

I've used the following model for cooling of the coldplate and testmass in Megastat:

P_{coldplate} = c \frac{\kappa A}{l}(T_{coldhead} - T_{coldplate}) + F_e(bp, cp) A_{coldplate} \sigma (T_{baseplate}^4 - T_{coldplate}^4),

where F_e(bp, cp) = \frac{e_{bp} e_{cp}}{e_{bp} + e_{cp} - e_{bp}e_{cp}}, and e_cp and e_bp are the emissivities of the coldplate and baseplate, respectively. The first term is conductive cooling of the cold plate via copper braid, and the second term is radiative heating of the coldplate from the baseplate (roughly room temp). In the model, the coefficient c is the fit parameter.

P_{testmass} = Fe(is, tm) A_{testmass} \sigma (T_{innershield}^4 - T_{testmass}^4),

where \frac{1}{F_e(is, tm)} = \frac{1}{e_{is}} + (\frac{1}{e_{tm}} - 1)\frac{A_{tm}}{A_{is}} and e_is and e_tm are the emissivities of the inner shield and test mass, respectively. This equation considers radiative cooling of the test mass from the surrounding inner shield. Here, the fit parameter is e_tm. 

Attachment 1 (top plot) shows the results of the fitting. For conductive cooling of the coldplate, the best fit parameter is c=0.62. This means that 62% of the calculated conductive cooling power is actually being delivered to cool the coldplate, according to this model. Another way to look at it is that the constant factors (A, l of copper braid) that are used in the model need a correction of 0.62. Regardless, the model predicts a plateau temperature a few degrees cooler than the data shows. This means there must be a heat source we are not considering that delivers extra heating power at lower temperatures. 

The testmass cooldown best fit parameter is e_tm = 1. I supplied bounds on e_tm from 0 to 1, since it is an emissivity value; the fit hits the upper limit. This is consistent with Koji's result that the calculated test mass emissivity is over 1. It is not clear why/how the test mass is cooled so quickly, since the black paint realistically has an emissivity between 0.5-1. Just like for the coldplate, the current model predicts a plateau temperature lower than what the data shows.

The bottom plot of Attachment 1 shows the difference between the fits and the data. The coldplate model does fairly well at high temperatures, but starts to break down around 100K. Then, other effects must be kicking in that we are failing to consider. 

Next I plan to simplify further and model cooling power as a polynomial of T, and fit for its coefficients. Hopefully this can give insight into the temperature dependence of cooldown curve. 

Attachment 1: model_fit_v_data.pdf  38 kB  Uploaded Thu Aug 5 15:53:31 2021  | Hide | Hide all
model_fit_v_data.pdf
ELOG V3.1.3-