%% tilt-free seismometer primary mass % estimate of pitch moment of inertia % KLD Apr. 30, 2015 % =========== <-- cuboid mass % | | % | | % | | % | | % | | <--> pitch axis about which system rotates % | | % | | % | | % | | % =========== <-- cuboid mass % parameters M = 5; % [kg] cuboid mass h = 0.025; % [m] cuboid height d = 0.30; % [m] cuboid depth w = 0.25; % [m] cuboid width m = 0.5; % [kg] rod mass l = 0.82; % [m] rod length %% cuboid mass (one each at top and bottom) % MOI about its own center of mass (axis parallel to system pitch axis) I_cub_CoM = 1/12*M*(h^2+d^2); % MOI about system pitch axis (apply parallel axis theorem) I_cub = I_cub_CoM + M*(l/2+h/2)^2; %% rod (one at each corner) % MOI about its own center of mass (axis parallel to system pitch axis) % infinitely thin approximation I_rod_CoM = 1/12*m*l^2; % MOI about system pitch axis (apply parallel axis theorem) I_rod = I_rod_CoM + m*(d/2)^2; %% total system moment of inertia % sum of parts I_pitch = 2*I_cub + 4*I_rod; sprintf('Moment of inertia (pitch) = %2.1f kg m^2' , I_pitch) %% Eigenfrequencies % analytic equations from Malik's T000134 % parameters m_tot = 2*M + 4*m; g = 9.8; % [m/s^2] L = l/2 + 0.15; % [m] wire length to suspension point b = 0.001; % [w] distance from CoM to wire attachment w_pitch = sqrt(m_tot*g*b*(L+b)/(I_pitch*L)); %w_roll = sqrt(m_tot*g*b*(L+b)/(I_roll*L)); (???) two wires! %w_yaw = sqrt(m_tot*g*R1*R2/(I_yaw*L)); sprintf('Natural frequency (pitch) = %1.3f Hz' , w_pitch/(2*pi))