ID |
Date |
Author |
Type |
Category |
Subject |
352
|
Mon Apr 22 19:54:28 2019 |
Koji | General | | OMC(004): Spot positions at the end of Apr 22nd |
|
Attachment 1: misalignment4.pdf
|
|
353
|
Tue Apr 23 10:21:12 2019 |
Joe | Optics | Configuration | Moving the spots to the centre of the curved mirrors |
[Koji,Philip, Liyuan, Joe]
CM1:
We moved the curved mirrors to these positions:
inner = 0.807mm
outer = 0.983 mm
CM2:
inner = 0.92 mm
outer = 0.85 mm
To do this so that realignment was easier, we moved the screws in steps of 5um. We alternated which mirror we adjusted so that we could monitor with a wincam how well aligned the beam into the cavity was. We only moved the cavity mirrors a small amount so we could still see higher order mode flashes transmitted through the cavity (e.g.TM03 modes). We would then improve the input alignment, and then move the cavity mirrors some more. Once the mirrors were adjusted according to http://nodus.ligo.caltech.edu:8080/OMC_Lab/190422_195450/misalignment4.pdf the spot positions looked near the middle of the curved mirrors (using a beam card). We began beam walking but we ran out of range of the bottom periscope screws in the yaw dof. We tried using the third screw to move the mirrror in both yaw and pitch, hopefully this will let move the mirror such that we can use the just the yaw screw. This screw also ran out of range, so we decided that the cavity needed a small adjustment.
The curved mirrors were moved slightly (>5um) and then we tried to get alignment. By using the fibre coupler translation stage, we move the beam side ways slightly, and then tried to get the periscope mirrors back to a position where the screws could move the mirrors. Once we had an ok alignment, we checked the beam. It looked like it was pretty close to the centre of the curved mirrors, which is where we wanted it to be.
We then tried locking the cavity, although the error signal was quite small. The adjusted the input offset and gain of the servo (there is apparently some problem to do with the input and output offsets). Once the cavity was locked we could make the final adjustments to aligning. We still ran out of range on the periscope. We decided to move the breadboard with the fibre coupler and mode matching lenses on it. Because we knew that the cavity was aligned such that the beam hits the centres of the curved mirrors, we could regain flashes quite quickly. We saw the error signal go down, but eventually this decrease was just to do with the beam clipping on the periscope mirrors. We moved the spot back to where we ok aligned, and slid the periscope so we were not clipping the mirror. This worked very well, and then optimised the alignment.
We then tried to improve the mode matching.
We took photos of the spot positions (quite near the center) and made the detuned locking measurement. The fitting of the data (attachment 1) wsa 1.1318m (what error should we put here?).
I think the order we did things in was:
- turning anti clockwise on the fibre coupler and misalign the diode, we measured the modespacing.
- returned the alignment for the photodiode, and realign fibre couple.
- miss align the photodiode horizontally, and then used fibre coupler to maximise the peak higher order mode peak height. We then used the PD again to make the peak height bigger.
-
|
Attachment 1: FSR_detuned_locking.pdf
|
|
Attachment 2: CM1_IMG_7702.JPG
|
|
Attachment 3: CM2_IMG_7704.JPG
|
|
354
|
Wed Apr 24 13:58:51 2019 |
Joe | Optics | Characterization | OMC power budget and UV Epoxy Bonding of BS1 |
[koji,philip,joe,liyuan,stephen]
need to add spot positions.
Mirrors: PZT11,PZT22, A14, A5
Measurement postion |
Power |
P_normalise |
P_in |
15.66+-0.01mV |
3.251+-0.001 |
V_ref,lock |
64+-2mV |
3.22+-0.001 |
V_ref,unlock |
2.808+-0.001 V |
3.253+-0.001 |
P_qpd |
99.5+-0.5 uW |
3.24+-0.002 |
P_cm1 |
79.0+-0.5 uW |
3.22+-0.002 |
P_cm2 |
76.2+-0.03 uW |
3.22+-0.01 |
P_trans |
14.55+-0.05 mW |
3.22+-0.01 |
Vref,dark |
-6.286 mV +-0.01mV |
|
Mode matching = 97.72%
15.66-> 15.30mW coupled.
~100uW for QPD
->15.2mW in cavity
Trans = 14.55mW -> 95.7% transmission
The flat mirrors were the ones with the most scattering, so we thought about how to improve it. We tried to move the first flat mirror by pushing it with our finger so that he beam would move along the optic. We tried this a couple of times, however the second time we moved it we lost our alignment and could not retrieve it. We looked at the mirror and we could see quite a lot of newtonian rings. We could see a small fibre on the glass bread board. We cleaned the optics base and the gbb, and we could get the alignment back. The beam was aligned to the cavity, the spots no longer hit the centre of the CM2.
We measured the power budget again.
Measurement position |
Power |
P_normalise |
V_ref,lock |
47mV |
3.24V |
P_trans |
14.45+-0.005mW |
3.24 +-0.003 V |
V_ref,unlock |
2.68+-0.001 V |
3.25+-.003 |
|
|
|
mode matching = 1-47/2680 = 0.9824, 98.2% mode matching
same p_normalise so
15.66-> 15.34mW coupled.
~15.24mW in cavity
transmission = 14.45, so 94.8% transmission.
Koji noticed that FM1 wasn't touching the template correctly, so he re-aligned the cavity.
Afternoon session - UV Bonding (E1300201-v1 procedure 6.4.4 "Gluing" using procedure in section 7.2 "UV Gluing")
Wiped down UV PPE, UV Illuminator, and UV Power Meter
Applied Optocast 3553-LV Epoxy to sample fused silica optics, to test quantity of glue needed and to become familiar with the process and tools. Philip and Joe each created a successful bond. Joe's had 3 visible spots in the bulk of the bond. Acetone was used to scrub some residue of epoxy from the surface near the OD, which was likely cured. Short duration exposure (seconds) to acetone at the perimeter of the bond did not yield any weakening of bond.
While test pieces were bonded, Koji was making some adjustments to the cavity alignment in preparation for gluing of the steering mirror BS1.
Koji noticed that the spring clamp was causing pitch in the BS1 mirror, so he recommended that we utilize the "restrain by allen key" technique to load the mirror during curing.
Once aligned, we tried taking the BS1 mirror out of the template and then putting it back. We did this twice and both times the cavity needed realigning (with the curved mirrors as well as the input steering periscope). Why is this? Since the mirror was touching the template it should not have become misaligned right? Maybe the template moves slightly? I think before glueing in the cavity mirrors we should find out why probably? Koji took a look and claimed that a few optics may have been unconstrained.
Planning between Koji and Joe led to placement of 5 drops of epoxy on the BS1 surface, to match the bonding area. At this point we noticed that the template was not secured very well, by poking down on it we could see it move. This might explain why we are becoming misaligned very easily. Once the prism was back on the board, Koji used allen keys to move around the prism. This was done until we could align it again (i.t looked too pitched). The beam was aligned back into the cavity, and the UV light was used to cure the bond. The reflected DC when locked was
- pre-cured = 47mV
- cured = 55 mV
so it looks ok still.
|
355
|
Thu Apr 25 15:05:19 2019 |
Joe | Optics | Characterization | Looking at PZT HOM spacing dependance and thinking about workflow |
[koji, joe]
The template or glass breadboard was wobbling, and we noticed that the caivty alignment became worse/better when it was pressed down. We saw that it was the glass breadboard, so it was fixed into the transport fixture more securely. Now its alignement didn't change when it was pressed down. We took a pzt mirror out and replaced it, the alignment din't change much so that was good. We set up posts to hold the pzt wires.
We noticed that the bottom of the mirrors were dirty, so we cleaned them, and once we were happy with the newton rings, we aligned the cavity
Took a photo of CM2, the spot is maybe 1 beam diameter vertically and horizontally from the centre, and quite a bright spot could be seen. The same problem with CM1. We thought it would be good to see a measurement of higher order mode spacing dependence on PZT DC voltage rather than doing the full characterisation since the alignment seems to change quite a lot when ever we do anything, and this cavity arrangement probably isn't very good anyway (can see scattering on both curved mirrors with the IR camera).
did measurements of FSR, = 2.64835MHz
did HOM spacing for 0,75,150V on CM1 in pitch and yaw.
we want to come up with a work flow for how to do these measurements, and make automate parts of the analysis?
|
356
|
Wed May 1 15:40:46 2019 |
Koji | Optics | Characterization | OMC(004): Spot positions and the scattering |
Tried a few things.
1. Replaced CM1 (PZT ASSY #10=M21+PZT#22+C12) with PZT ASSY #7 (=M1+PZT#13+C13)
We tried PZT ASSY #7 at the beginning and had the spots at almost at the top edge of the curved mirrors. As we found a particle on the bottom of the M1 prism (and removed it), I gave it a try again. Resulting spots are again very high. This results in rejecting PZT ASSY #7 and we set the combination of the PZT ASSYs as #8 (M7+P11+C11) and #10 (M21+P22+C12). This combination nominally gives the spot ~1mm above the center of the curved mirrors.
2. Swapped FM1 and FM2. Now FM1=A5 and FM2=A14.
No significant change of the scattering features on the FMs. The transmitted power was 14.85mW (Ref PD Vin = 3.42V), Reflection PD Vrefl,lock = 54.3mV and Vrefl,unlock = 2.89V (Vin=3.45V), Vrefl,offset = -6.39mV. The incident power was 17.43mW (Vin 3.69V).
==> Coupling 0.979 , OMC transmission 0.939 (This includes 0.6% loss to the QPD path) ...Not so great number
3. Built better camera setups to check the spot position and the scattering from the cavity mirrors.
Now the spot heights are fixed and safe to move the camera up for inches to obtain better views of the mirror faces. The camera was set 15" away from the mirrors with 1.5" height from the beam elevation. This is 0.1rad (~ 5 deg) and Cos(0.1)~0.995 so the distortion (compression) of the view is negligible. (Attachment) The spot photo were taken with the fixed CCD gain, the focus on the glass, and lens aperture F=8.0. Later the focus and aperture were adjusted to have clear view of the scattring points.
The intensity of each scattering was constant at different views. I suppose this is because the scattering is coming from a spot smaller than the wavelength. The bright spots does not show any visible feature on the mirror surfaces when they were inspected with a green flash light.
CM2 has the excellent darkness and we want to keep this spot position. FM1, FM2, and CM1 showed bright scattering.
The spot at CM1 is not well centered on the mirror. And this is the way to avoid this scattering point. So let's think about to move the spot on CM1 by 1.3mm towards the center while the spot on the CM2 is fixed. Note that this is going to be done by the micrometers for CM1 and CM2.
By turning right micrometer of CM1 forward (50um = 5div = 1/10 turn) and the left micrometer of CM2 backward (60um = 6div) moves the spots on FM1, FM2, CM1, and CM2 by (0.43, 0.87, 1.3, 0)mm. This basically moves the spots toward the center of each mirror. Let's give it a try.
|
Attachment 1: misalignment.pdf
|
|
357
|
Fri May 3 11:06:28 2019 |
Koji | Optics | Characterization | OMC(004): Spot positions and the scattering |
Experiment on 5/1
- CM1 right knob was moved 1div (10um) backward such that the spots were better centered on the mirrors
FM1 (A5): h=-0.2mm -> 0.4mm made the spot much darker but still it has a few scattering spots.
FM2 (A14): h=-0.8mm -> 0.2mm reduced the number of spots from 2 to 1. And it is darker. The remaining spot at the center.
CM1 (C11): h=-1.3mm -> +1.0mm made the spot much darker.
CM2 (C12): h=-0.7mm -> +0.2mm remains dark.
Note: CM1 h=1mm and CM2 h~0mm are good locations. h+ is the good direction to move. Avoid h-.
FM1 and FM2 has the scat spots at the center. Want to go h+ more.
Uniformly go h+ is the good move. => This can be done by rotate CM1 positive => CM1 right knob CCW.
2019/5/1 |
CM1 right micrometer 1div backward |
|
|
|
|
|
|
|
Unit |
|
V_RefPD [V] |
P_TRANS |
13.53 |
[mW] |
|
3.09 |
V_REFL_LOCKED |
53.4 |
[mV] |
|
3.09 |
V_REFL_UNLOCK |
2.52 |
[V] |
|
3.065 |
P_IN |
14.45 |
[mW] |
|
3.07 |
V_REFL_OFFSET |
-6.35 |
[mV] |
|
|
|
|
|
|
|
Coupling |
0.977 |
|
|
|
OMC_Trans |
0.953 |
|
|
|
Improvement of the transmission from 93.9%->95.3%
- Further moved CM1 right knob 0.5div (0.5um) backward such that the spots were moved to h+ directions.
FM1 (A5): h=0.4mm -> 1.1mm (there is only one spot rather than multiple spots)
FM2 (A14): h=0.2mm -> 1.1mm (darker but multiple spots)
CM1 (C11): h=1.0mm -> 1.8mm (brighter but single spot)
CM2 (C12): h=0.2mm -> 1.5mm (dark multiple spots)
2019/5/1 |
CM1 right micrometer 0.5div backward |
|
|
|
|
|
|
|
Unit |
|
V_RefPD [V] |
P_TRANS |
14.55 |
[mW] |
|
3.28 |
V_REFL_LOCKED |
49 |
[mV] |
|
3.28 |
V_REFL_UNLOCK |
2.755 |
[V] |
|
3.299 |
P_IN |
15.64 |
[mW] |
|
3.3 |
V_REFL_OFFSET |
-6.316 |
[mV] |
|
|
|
|
|
|
|
Coupling |
0.980 |
|
|
|
OMC_Trans |
0.955 |
|
|
|
Not much improvement of the transmission but kept 95% level.
- Replaced FM1 (A5) with A1 mirror (No photo)
Good news: This did not change the cavity alignment at all.
Transmission 95.4%
- Tweaked the CM1 angle
Transmission 95.3%
=> A1 mirror does not improve the transmission much.
Next Plan: Use A5 (or something else) as FM2 and see if A14 caused the dominant loss. |
Attachment 1: misalignment.pdf
|
|
358
|
Thu May 9 16:07:18 2019 |
Stephen | Mechanics | General | Improvements to OMC Bonding Fixture |
[Stephen, Koji]
As mentioned in eLOG 331, either increased thermal cycling or apparent improvements in cured EP30-2 strength led to fracture of curved mirrors at unintended locations of bonding to the PEEK fixture parts.
The issue and intended resolution is summarized in the attached images (2 different visualizations of the same item).
Redline has been posted to D1600336-v3.
Drawing update will be processed shortly, and parts will be modified to D1600336-v4.
|
Attachment 1: image_of_issue_with_OMC_PZT_bonding_fixture_from_D16003336-v3.png
|
|
Attachment 2: image_02_of_issue_with_OMC_PZT_bonding_fixture_from_D16003336-v3.PNG
|
|
359
|
Thu May 9 17:35:07 2019 |
Koji | Optics | General | Alignment strategy |
Notes on the OMC cavity alignment strategy
- x3=1.17 γ + 1.40 δ, x4=1.40 γ + 1.17 δ
- This means that the effect of the two curved mirrors (i.e. gouy phases) are very similar. To move x3 and x4 in common is easy, but to do differentially is not simple.
- 1div of a micrometer is 10um. This corresponds to the angular motion of 0.5mrad (10e-6/20e-3 = 5e-4). ~0.5mm spot motion.
- ~10um displacement of the mirror longitudinal position has infinitesimal effect on the FSR. Just use either micrometer (-x side).
- 1div of micrometer motion is just barely small enough to keep the cavity flashing. => Easier alignment recovery. Larger step causes longer time for the alignment recovery due to the loss of the flashes.
- After micrometer action, the first move should be done by the bottom mirror of the periscope. And this is the correct direction for beam walking.
- If x3 should be moved more than x4, use CM2, and vise versa.
- If you want to move x3 to +x and keep x4 at a certain place, 1) Move CM2 in (+). This moves x3 and x4 but x3>x4. 2) Compensate x4 by turning CM1 in (-). This returnes x4 to the original position (approximately), but leave x3 still moved. Remember the increment is <1div of a micrometer and everytime the cavity alignment is lost, recover it before loosing the flashes. |
Attachment 1: T1500060_OMC_Optical_Testing_Procedure.pdf
|
|
360
|
Thu May 9 18:10:24 2019 |
Koji | Optics | Characterization | OMC(004): Spot position scan / power budget |
(Now the CCD image is captured as a movie and the screen capture is easier!)
Various spot positions on CM1 and CM2 were tried to test how the transmission is dependent on the spot positions. CM1 has a few bright spots while CM2 shows very dark scattering most of the case. Attachment 1 is the example images of one of the best alignment that realized the transmission of ~96%. FM1 and FM2 also showed bright spots. The replacement of the FM mirrors does not improve nor degrade the transmission significantly. The transmission is still sensitive to the spot positions on the alignment. This indicates that the loss is likely to be limited by CM1.
Attachment 2 shows the distribution of the (known) scattering spots on CM1. The bright spots are distributed every ~1mm on the spot height and the beam (with beam radius of .5mmm) can't find a place where there is no prominent spots.
We will be able to examine if the transmission can be improved or not by replacing this CM1 mirror. |
Attachment 1: 190508.png
|
|
Attachment 2: scattering_spots_CM1.png
|
|
361
|
Wed May 15 19:07:53 2019 |
Koji | Clean | General | What is this??? |
Suddenly something dirty emerged in the lab. What is this? It looks like an insulation foam or similar, but is quite degraded and emits a lot of particulates.
This does not belong to the lab. I don't see piping above this area which shows broken insulation or anything. All the pipes in the room are painted white.
The only possibility is that it comes from the hole between the next lab (CRIME Lab). I found that the A.C. today is much stronger and colder than last week. And there is a positive pressure from CRIME Lab. Maybe the foam was pushed out from the hole due to the differential pressure (or any RF cable action).
|
Attachment 1: P_20190515_185602.jpg
|
|
Attachment 2: P_20190515_185844.jpg
|
|
362
|
Thu May 16 12:41:28 2019 |
Chub | General | General | fire pillow found on optics table |
That is an expanding fire pillow, also known as firebrick. It is used to create a fire block where holes in fire-rated walls are made and prevents lab fires from spreading rapidly to adjacent labs. I had to pull cable from B254 to our labs on either side during a rather narrow window of time. Some of the cable holes are partially blocked, making it difficult to reach the cable to them. The cable is then just guided to the hole from a distance. With no help, it's not possible to see this material getting shoved out of the hole. I can assure you that I took great pains not to allow the CYMAC coax to fall into any equipment, or drag against any other cables. |
363
|
Mon May 20 19:53:17 2019 |
Koji | Optics | Configuration | DCPD high power test |
We want to perform a damage test of OMC DCPDs with high power beam. The OMC DCPD is the 3mm InGaAs photodiodes with high quantum efficiency, delivered by Laser Components.
The sites want to know the allowed input power during the OMC scan for beam mode analysis. The nominal bias voltage of the PDs is +12V. Therefore, 30mA of photocurrent with the transimpedance of 400 Ohm is already enough to saturate the circuit. This means that the test is intended to check the damage of the photodiode mainly by the optical power.
The test procedure is as follows:
1. Illuminate the diode with certain optical power.
2. Measure the dark current and dark noise of the PD with no light on it.
3. Check the condition of the PD surface with a digital camera.
4. Repeat 1~3 with larger optical power.
The beam from an NPRO laser is delivered to the photodiode. The maximum power available is 300~400mW. The beam shape was regulated to have the beam radius of ~500um.
- When the PD is exposed to the high power beam, the circuit setup A) is used. This setup is intended to mimic the bias and transimpedance configuration used in the DCPD amp at the site.
- When the dark noise is measured, the circuit setup B) is used. This setup is low noise enough to measure the dark noise (and current) of the PD.
- The test procedure is going to be tested with an Excelitas 3mm InGaAs PD (C30665), and then tested with the high QE PD. |
Attachment 1: BIAS.pdf
|
|
Attachment 2: P_20190520_204822.jpg
|
|
364
|
Wed May 22 07:31:37 2019 |
Koji | Optics | Configuration | Camera test (DCPD high power test) |
C30665 (3mm) camera test. The camera was Canon PowerShot G7X MkII. Exposure 1/15s, F 5.6, ISO 125, MF (~the closest), no zoom.
This image was taken before the beam illumination. Will tune the green lighting to have some gradient on the surface so that we can see any deformation of the surface.
|
Attachment 1: 20190521201838_IMG_7939_2.jpg
|
|
365
|
Thu May 23 01:42:46 2019 |
Koji | Optics | Characterization | C30665 high power test |
An Excelitas C30665 PD with the cap removed (SN07 in Case H slot #2) was exposed to the beam with the optical power of 1.4mW to 334mW.
After each illumination, the dark current and the dark noise level were tested. Also the photo image of the PD surface was taken each time.
- No significant change of the dark current after each illumination.
- No significant change of the dark noise after each illumination.
- No visible change of the surface observed.
|
Attachment 1: C30665_high_power_test.pdf
|
|
Attachment 2: pd_surface.jpg
|
|
366
|
Thu May 23 23:27:38 2019 |
Koji | Optics | Characterization | IGHQEX3000 high power test |
LaserComponents IGHQEX3000 (Cage B2: Serial# B1-23) was exposed to the beam with the optical power from 1.6mW to 332mW.
After each illumination, the dark current and the dark noise level were measured. Also the photo image of the PD surface was taken each time.
- No significant change of the dark current after each illumination.
- No significant change of the dark noise after each illumination.
- No visible change of the surface observed.
(During this dark noise measurement, the current amp gain was set to be 1e8 V/A, instead of 1e7 for the measurements yesterday.) |
Attachment 1: HQEPD_high_power_test.pdf
|
|
Attachment 2: pd_images.png
|
|
367
|
Tue May 28 12:14:20 2019 |
Stephen | Optics | General | CM PZT Assembly Debonding of EP30-2 in Acetone |
[LiyuanZ, StephenA]
Downs B119
Summary: Beginning on 20 May 2019, two CM PZT assemblies were soaked in Acetone in an effort to debond the EP30-2 bonds between tombstone-PZT and between PZT-optic. Debonding was straightforward after 8 days of soaking. 24 hours of additional acetone soaking will now be conducted in an attempt to remove remnant EP30-2 from bonding surfaces.
Procedure: The assemblies were allowed to soak in acetone for 8 days, with acetone level below the HR surface of the optic. No agitation of the solution, mechanical abrasion of the bond, or other disturbance was needed for the bond to soften.
GariLynn contributed the glassware and fume hood, and advised on the process (similar to debonding of CM and PZT from OMC SN002 after damaging event). The equipment list was (WIP, more detail / part numbers will be gathered today and tomorrow):
- crystallizing dish (no spout, like a deep petri dish)
- curved lid
- wax sheet (to seal)
- acetone
- fume hood
Results: Today, 28 May 2019, I went to the lab to check on the optics after 8 days of soaking. Liyuan had monitored the acetone level during the first 4 days, topping up once on 24 May. All bonds were fully submerged for 8 days.
There were 2 assemblies soaked in one crystallizing dish. Debonded assemblies - ref OMC eLOG 328 for specified orientations and components:
PZT Assy #9 - ref. OMC eLOG 334 - M17+PZT#12+C10
PZT Assy #7 - ref. OMC eLOG 332 - M1+PZT#13+C13
PZT Assy #7 was investigated first.
- C13 was removed with no force required.
- PZT#13 was removed with no force required.
- EP30-2 remained at the bond surfaces and tracing the diameters of each bond on each of the 3 bonding surfaces of the PZT and tombstone - these components were returned to the dish to soak.
- No EP30-2 remained on the surface of the curved mirror - C13 was removed and stored.
A video of removal of C10 and PZT#12 from PZT Assy #9 was collected (See Attachment 8), showing the ease with which the debonded components could be separated.
- C10 was removed with no force required.
- A slight force - applied by gripping the barrel of the PZT and pushing with the index finger on the surface of the tombstone - was required to separate PZT#12 from M17,
- likely due to excess glue at the barrel of the PZT
- EP30-2 remained at the bond surfaces and tracing the diameters of each bond on each of the 3 bonding surfaces of the PZT and tombstone - these components were returned to the dish to soak.
- No EP30-2 remained on the surface of the curved mirror - C13 was removed and stored.
Photos and video have been be added to supplement this report (edit 2019/07/08).
|
Attachment 1: omc367_IMG_3499_omc_removal_c13_from_CM7.JPG
|
|
Attachment 2: omc367_IMG_3500_omc_removal_pzt13_from_CM7.JPG
|
|
Attachment 3: omc367_IMG_3501_omc_removal_pzt13_from_CM7_thickness.JPG
|
|
Attachment 4: omc367_IMG_3505_omc_removal_M1_from_CM7.JPG
|
|
Attachment 5: omc367_IMG_3507_omc_removal_c10_from_CM9.JPG
|
|
Attachment 6: omc367_IMG_3512_omc_removal_pzt12_from_CM9.JPG
|
|
Attachment 7: omc367_IMG_3515_omc_removal_m17_from_CM9.JPG
|
|
Attachment 8: omc367_IMG_3506_omc_removal_of_c10_and_pzt12_from_CM9.MOV
|
368
|
Mon Jun 24 12:54:58 2019 |
Koji | Clean | General | HEPA BOOTH |
https://www.airscience.com/purair-flow-laminar-flow-cabinets |
369
|
Mon Jul 1 12:38:49 2019 |
Koji | Optics | Characterization | A and M prisms perpendicularity measurement |
[Stephen, Koji]
The perpendicularity of some of the A and M prisms were tested.
Results
- The measurement results are listed as Attachment 1 and 2 together with the comparisons to the measurement in 2013 and the spec provided from the vendor.
- Here, the positive number means that the front side of the prism has larger angle than 90deg for the air side. (i.e. positive number = facing up)
- The RoC of the curved mirrors is 2.5m. Therefore, roughly speaking, 83arcsec corresponds to ~1mm beam spot shift. The requirement is 30 arcsec.
- The A prisms tend to have positive and small angle deviations while the M prisms to have negative and large (~50arcsec) angle deviations.
- The consistency: The measurements in 2013 and 2019 have some descrepancy but not too big. This variation tells us the reliability of the measurements, say +/-30arcsec.
Setup
- The photos of the setup is shown as Attachments 3/4/5. Basically this follows the procedure described in Sec 2.2.2 of T1500060.
- The autocollimator (AC) is held with the V holders + posts.
- The periscope post for the turning Al mirror was brought from Downs by Stephen.
- The turning mirror is a 2" Al mirror. The alignment of the turning mirror was initially aligned using the retroreflection to the AC. Then the pitching of the holder was rotated by 22.5deg so that the AC beam goes down to the prism.
- The prism is held on a Al mirror using the post taken from a prism mount.
- If the maximum illumination (8V) is used, the greenish light becomes visible and the alignment becomes easier.
- There are two reflections 1) The beam which hits the prism first, and then the bottom mirror second, 2) The beam which hits the bottom mirror first and then the prism second. Each beam gains 2 theta compared to the perfect retroreflection case. Therefore the two beams have 4 theta of their relative angle difference. The AC is calibrated to detect 2 theta and tells you theta (1div = 1 arcmin = 60 arcsec). So just read the angle defferencein the AC and divide the number by 2 (not 4). |
Attachment 1: A_prism.png
|
|
Attachment 2: M_prism.png
|
|
Attachment 3: P_20190627_222658.jpg
|
|
Attachment 4: setup2.JPG
|
|
Attachment 5: M01_1_id.JPG
|
|
Attachment 6: A14_meas.JPG
|
|
370
|
Mon Jul 1 12:49:42 2019 |
Koji | Optics | Characterization | Scattering measurement of A and C mirrors |
Liyuan's scattering measurement for the A and C mirrors. |
Attachment 1: omc_cm_tis_062419.pdf
|
|
Attachment 2: omc_prism_tis_062419.pdf
|
|
371
|
Thu Aug 22 12:35:53 2019 |
Stephen | Optics | Characterization | Wedging of the debonded PZTs 2019 August |
Wedge and thickness measurements of PZTs 12 and 13 took place after debonding and cleaning - results are shown in the first image (handwritten post-it format).
These thickness measurements seem to have come back thinner than previous measurements. It is possible that I have removed some PZT material while mechanically removing glue. It is also possible that there is systematic error between the two sets of measurements. I did not run any calculations of wedge ange or orientation on these data.
Note that cleaning of debonded PZTs involved mechanically separating glue from the planar faces of PZTs. The second image shows the razer blade used to scrape the glue away.
There were thick rings of glue where there had been excess squeezed out of the bond region, and there was also a difficult-to-remove bond layer that was thinner. I observed the presence of the thin layer by its reflectivity. The thick glue came off in patches, while the thin glue came off with a bit of a powdery appearance. It was hard to be certain that all of the thin bond layer came off, but I made many passes on each of the faces of the 2 PZTs that had been in the bonded CM assemblies. I found it was easiest to remove the glue in the bonded
I was anticipating that the expected 75-90 micron bond layer would affect the micrometer thickness measurements if it was still present, but I did not notice any irregularities (and certainly not at the 10 micron level), indicating that the glue was removed successfully (at least to the ~1 micron level).
Quote: |
Yesterday I measured the thickness of the PZTs in order to get an idea how much the PZTs are wedged.
For each PZT, the thickness at six points along the ring was measured with a micrometer gauge.
The orientation of the PZT was recognized by the wire direction and a black marking to indicate the polarity.
A least square fitting of these six points determines the most likely PZT plane.
Note that the measured numbers are assumed to be the thickness at the inner rim of the ring
as the micrometer can only measure the maximum thickness of a region and the inner rim has the largest effect on the wedge angle.
The inner diameter of the ring is 9mm.
The measurements show all PZTs have thickness variation of 3um maximum.
The estimated wedge angles are distributed from 8 to 26 arcsec. The directions of the wedges seem to be random
(i.e. not associated with the wires)
As wedging of 30 arcsec causes at most ~0.3mm spot shift of the cavity (easy to remember),
the wedging of the PZTs is not critical by itself. Also, this number can be reduced by choosing the PZT orientations
based on the estimated wedge directions --- as long as we can believe the measurements.
Next step is to locate the minima of each curved mirror. Do you have any idea how to measure them?
|
|
Attachment 1: IMG_4775.JPG
|
|
Attachment 2: IMG_4770.JPG
|
|
372
|
Fri Aug 23 11:11:44 2019 |
shruti | Optics | Characterization | Finding the curvature bottom |
I attempted to fit the data taken by Koji of the beam spot precession at the CCD in order to find the location of the curvature bottom in terms of its distance (d) and angle ( ) from the centre of the mirror. This was done using the method described in a previous similar measurement and Section 2.1.3 of T1500060.
Initially, I attempted doing a circle_fit on python as seen in Attachment 1, and even though more points seem to coincide with the circle, Koji pointed out that the more appropriate way of doing it would be to fit the following function:
![f(i, \theta, r, \phi) = \delta_{i,0} [r \cos(\theta+\phi) + x_c] + \delta_{i,1} [r \sin(\theta+\phi) +y_c]](https://latex.codecogs.com/gif.latex?f%28i%2C%20%5Ctheta%2C%20r%2C%20%5Cphi%29%20%3D%20%5Cdelta_%7Bi%2C0%7D%20%5Br%20%5Ccos%28%5Ctheta+%5Cphi%29%20+%20x_c%5D%20+%20%5Cdelta_%7Bi%2C1%7D%20%5Br%20%5Csin%28%5Ctheta+%5Cphi%29%20+y_c%5D)
since that would allow us to measure the angle more accurately; is the anti-clockwise measured angle that the curvature bottom makes with the positive x direction.
As seen on the face of the CCD, x is positive up and y is positive right, thus, plotting it as the reflection (ref. Attachment 2) would make sure that is measured anti-clockwise from the positive x direction.
The distance from the curvature bottom is calculated as

r: radius of precession on CCD screen (value obtained from fit parameters, uncertainty in this taken from the std dev provided by fit function)
R: radius of curvature of the mirror
L: Distance between mirror and CCD
R = 2.575 0.005 m (taken from testing procedure doc referenced earlier) and L = 0.644 0.005 m (value taken from testing doc, uncertainty from Koji)
|
d (mm) |
(deg) |
C7 |
0.554 0.004 |
-80.028 0.005 |
C10 |
0.257 0.002 |
-135.55 0.02 |
C13 |
0.161 0.001 |
-79.31 0.06 |
|
Attachment 1: CircleFit.pdf
|
|
Attachment 2: SineFit.pdf
|
|
373
|
Thu Aug 29 11:51:49 2019 |
shruti | Optics | Characterization | Wedging of the debonded PZTs - Calculation |
Using the measurements of PZTs 12,13 taken by Stephen, I estimated the wedging angle and orientation following Section 2.3.1 of T1500060. The results can be found in Attachment1 and is summarised as follows.
For PZT 12, PZT 13 respectively:
Avg. height = 2.0063 mm, 2.0035 mm
Wedge direction (from the same direction as in the doc: positive right) = 120 deg, 120 deg
Wedge angles = 45.8 arcsec, 30.6 arcsec
This was done assuming that the measurements were taken uniformly at intervals of 60deg along the inner rim of the PZT. The diameter (2r) of the inner rim, according to T1500060, is 9mm. The measured heights were fitted with the function

as depicted in Attachment2 to find wedging angle and orientation .
Quote: |
Wedge and thickness measurements of PZTs 12 and 13 took place after debonding and cleaning - results are shown in the first image (handwritten post-it format).
These thickness measurements seem to have come back thinner than previous measurements. It is possible that I have removed some PZT material while mechanically removing glue. It is also possible that there is systematic error between the two sets of measurements. I did not run any calculations of wedge ange or orientation on these data.
Note that cleaning of debonded PZTs involved mechanically separating glue from the planar faces of PZTs. The second image shows the razer blade used to scrape the glue away.
There were thick rings of glue where there had been excess squeezed out of the bond region, and there was also a difficult-to-remove bond layer that was thinner. I observed the presence of the thin layer by its reflectivity. The thick glue came off in patches, while the thin glue came off with a bit of a powdery appearance. It was hard to be certain that all of the thin bond layer came off, but I made many passes on each of the faces of the 2 PZTs that had been in the bonded CM assemblies. I found it was easiest to remove the glue in the bonded
I was anticipating that the expected 75-90 micron bond layer would affect the micrometer thickness measurements if it was still present, but I did not notice any irregularities (and certainly not at the 10 micron level), indicating that the glue was removed successfully (at least to the ~1 micron level).
Quote: |
Yesterday I measured the thickness of the PZTs in order to get an idea how much the PZTs are wedged.
For each PZT, the thickness at six points along the ring was measured with a micrometer gauge.
The orientation of the PZT was recognized by the wire direction and a black marking to indicate the polarity.
A least square fitting of these six points determines the most likely PZT plane.
Note that the measured numbers are assumed to be the thickness at the inner rim of the ring
as the micrometer can only measure the maximum thickness of a region and the inner rim has the largest effect on the wedge angle.
The inner diameter of the ring is 9mm.
The measurements show all PZTs have thickness variation of 3um maximum.
The estimated wedge angles are distributed from 8 to 26 arcsec. The directions of the wedges seem to be random
(i.e. not associated with the wires)
As wedging of 30 arcsec causes at most ~0.3mm spot shift of the cavity (easy to remember),
the wedging of the PZTs is not critical by itself. Also, this number can be reduced by choosing the PZT orientations
based on the estimated wedge directions --- as long as we can believe the measurements.
Next step is to locate the minima of each curved mirror. Do you have any idea how to measure them?
|
|
|
Attachment 1: PZT_Wedging_Results.pdf
|
|
Attachment 2: PZT_Wedging_Calc.pdf
|
|
374
|
Thu Sep 5 15:40:42 2019 |
shruti | Optics | Configuration | PZT Sub-Assembly |
Aim: To find the combinations of mounting prism+PZT+curved mirror to build two PZT sub-assemblies that best minimises the total vertical beam deviation.
(In short, attachment 1 shows the two chosen sets of components and the configuration according which they must be bonded to minimize the total vertical angular deviation.)
The specfic components and configuration were chosen as follows, closely following Section 2.3.3 of T1500060:
Available components:
Mounting prisms: 1,2,12,14,15 (Even though there is mention of M17 in the attachments, it can not be used because it was chipped earlier.)
PZTs: 12,13
Curved mirrors: 10,13
Method:
For a given choice of prism, PZT and mirror, the PZT can be placed either at 0deg or 180deg, and the mirror can rotated. This allows us to choose an optimal mirror rotation and PZT orientation which minimises the vertical deviation.
Total vertical angle 
was measured by Koji as described in elog 369.
, are the wedge angle and orientation respectively and were measured earlier and shown in elog 373 .
, The measurement of the location of the curvature bottom (d, ) of the mirrors is shown in elog 372 . The optimal is to be found.
These steps were followed:
- For every combination of prism, PZT, and mirror, the total vertical deviation was minimized with respect to the angle of rotation of the curved mirror computationally (SciPy.optimize.minimize). The results of this computation can be found in Attachment 2: where Tables 1.1 and 2.1 show the minimum achievable deviations for mirrors C10 and C13 respectively, and Tables 1.2 and 2.2 show the corresponding angle of rotation of the mirrors
.
- From the combinations that show low total deviations (highlighted in red in Attachment 2), the tolerances for 5 arcsec and 10 arcsec deviations with mirror rotation were calculated, and is shown in Tables 1.3, 1.4, 2.3, 2.4 of Attachment 2.
- While calculating the tolerances, the dependence of the vertical deviations with rotation were also plotted (refer Attachment 3).
- Two sets from available components with low total deviation and high tolerance were chosen.
Result:
These are the ones that were chosen:
- M14 + PZT13 at 0deg + C13 rotated by 169deg anticlockwise (tot vertical dev ~ -3 arcsec)
- M12 + PZT12 at 0deg + C10 rotated by 88deg clockwise (tot vertical dev ~0 arcsec)
The method of attaching them is depicted in Attachment 1.
|
Attachment 1: Diagrams_SubAssembly.pdf
|
|
Attachment 2: C10_C13_Combinations.pdf
|
|
Attachment 3: Plots_Config_Tolerance.pdf
|
|
375
|
Wed Sep 18 22:30:11 2019 |
Stephen | Supply | General | EP30-2 Location and Status |
Here is a summary of the events of the last week, as they relate to EP30-2.
1) I lost the EP30-2 syringes that had been ordered for the OMC, along with the rest of the kit.
- Corrective action: Found in the 40m Bake Lab garbing area.
- Preventative action: log material moves and locations in the OMC elog
- Preventative action: log EP30-2 moves and locations in PCS via location update [LINK]
- Preventative action: keep EP30-2 kit on home shelf in Modal Lab unless kit is in use
2) The EP30-2 syringes ordered for the OMC Unit 4 build from January had already expired, without me noticing.
- Corrective action: Requested LHO ship recently-purchased EP30-2 overnight
- Preventative action: log expiration dates in OMC elog
- Preventative action: begin purchasing program supported by logistics, where 1 syringe is maintained on hand and replaced as it expires
3) LHO shipped expired epoxy on Thursday. Package not opened until Monday.
- Corrective action: Requested LHO ship current EP30-2 overnight, this time with much greater scrutiny (including confirming label indicates not expired)
- Preventative action: Packages should be opened, inspected, and received in ICS or Techmart on day of receipt whenever possible.
4) Current, unopened syringe of EP30-2 has been received from LHO. Expiration date is 22 Jan 2020. Syringe storage has been improved. Kit has been docked at its home in Downs 303 (Modal Lab) (see attached photo, taken before receipt of new epoxy).
Current Status: Epoxy is ready for PZT + CM subassembly bonding on Monday afternoon 23 September. |
Attachment 1: IMG_5217.JPG
|
|
376
|
Wed Sep 18 23:16:06 2019 |
Stephen | Supply | General | Items staged at 40m Bake Lab for PZT Subassembly Bonding |
The following items are presently staged at the 40m Bake Lab (see photo indicating current location) (noting items broght by Koji as well):
- Bonding fixtures, now modified with larger washers to constrain springs, and with modification from OMC elog 358.
- Curved Mirrors and Tombstones as selected by Shruti in OMC elog 374.
- PZTs as debonded from first iteration subassemblies (SN 12 and SN 13)
- Epoxy-cure-testing toaster oven
- Other items I can't think of but will populate later =D
The following item is in its home in Downs 303 (Modal Lab)
- EP30-2 epoxy (expiration 2020 Jan 22) with full kit (tracked in PCS via location update [LINK])
|
Attachment 1: IMG_5216.JPG
|
|
Attachment 2: IMG_5215.JPG
|
|
377
|
Wed Sep 18 23:38:52 2019 |
Stephen | General | General | Dirty ABO ready for PZT Subassembly Bonding |
The 40m Bake Lab's Dirty ABO's OMEGA PID controller was borrowed for another oven in the Bake Lab, so I have had to play with the tuning and parameters to recover a suitable bake profile. This bake is pictured below (please excuse the default excel formatting).
I have increased the ramp time, temperature offset, and thermal mass within the oven; after retuning and applying the parameters indicated, the rate of heating/cooling never exceeds .5°C/min.
Expected parameters: |
Ramp 2.5 hours |
Setpoint 1 (soak temperature) 94 °C |
no additional thermal mass |
Current parameters: |
Ramp 4 hours |
Setpoint 1 (soak temperature) 84 °C |
Thermal mass added in the form of SSTL spacers (see photo) |
The ABO is controlled by a different temperature readout from the data logger used to collect data; the ABO readout is a small bead in contact with the shelf, while the data logger is a lug sandwiched between two stainless steel masses upon the shelf. I take the data logger profile to be more physically similar to the heating experienced by an optic in a gluing fixture, so I feel happy about the results of the above bake.
I plan to add the data source file to this post at my earliest convenience. |
Attachment 1: index.png
|
|
378
|
Mon Sep 23 21:29:51 2019 |
Koji | Optics | General | OMC(004): PZT sub-assembly gluing (#9/#10) |
[Stephen, Shruti, Koji]
We worked on the gluing of the PZT sub-assy (#9 and #10) along with the designed arrangement by Shruti (OMC ELOG 374).
The detailed procedures are described in E1300201 Section 6.2 PZT subassembly and Section 7.3 EP30-2 gluing.
We found that the PZTs, which were debonded from the previous PZT sub assy with acetone, has some copper wires oxidized. However, we confirmed that this does not affect the conductivity of the wires, as expected.
The glue test piece cooked in the toaster oven showed excellent curing. GO SIGNAL
Stephen painted the PZT as shown in Attachment 1.
The fixtures were closed with the retaining plate and confirmed that the optics are not moving in the fixtures.
At this point, we checked the situation of the air-bake oven. And we realized that the oven controller was moved to another vacuum oven and in use with a different setting.
Stephen is going to retrieve the controller to the air bake oven and test the temp profile overnight. Once we confirm the setting is correct, the PZT sub assys will be heat cured in the oven. Hopefully, this will happen tomorrow. Until then, the sub-assys are resting on the south flow bench in the cleanroom. |
Attachment 1: IMG_8933.jpg
|
|
Attachment 2: IMG_8934.jpg
|
|
379
|
Tue Sep 24 12:19:20 2019 |
Stephen | General | General | Dirty ABO test run prior to PZT Subassembly Bonding |
The 40m Bake Lab's Dirty ABO's OMEGA PID controller was borrowed for another oven in the Bake Lab (sound familiar? OMC elog 377), so I have had to play with the tuning and parameters to recover. This bake seemed to inadequately match the intended temperature profile for some reason (intended profile is shown by plotting prior qualifying bake for comparison).
The parameters utilized here are exactly matching the prior qualifying bake, except that the autotuning may have settled on different parameters.
Options to proceed, as I see them, are as follows:
- reposition the oven's driving thermocouple closer to the load and attempt to qualify the oven again overnight
- retune the controller and attempt to qualify the oven again overnight
- proceed with current bake profile, except monitor the soak temperature via data logger thermocouple and intervene if temperature is too high by manually changing the setpoint.
|
Attachment 1: image_showing_20190923_abo_qualifying_bake.png
|
|
380
|
Thu Sep 26 17:33:52 2019 |
Stephen | General | General | Dirty ABO test run prior to PZT Subassembly Bonding - ABO is Ready! |
Follow up on OMC elog 379
I was able to obtain the following (dark blue) bake profile, which I believe is adequate for our needs.
The primary change was a remounting of the thermocouple to sandwich it between two stainless steel masses. The thermocouple bead previously was 1) in air and 2) close to the oven skin. |
Attachment 1: image_showing_20190924_abo_qualifying_bake.png
|
|
381
|
Mon Sep 30 23:16:53 2019 |
Koji | Optics | General | OMC(004): PZT sub-assembly gluing (#9/#10) |
Friday: [Stephen, Koji]
As the oven setting has qualified, we brought the PZT assys in the air bake oven.
Monday: [Stephen, Shruti, Koji]
We brought the PZT assys to the clean room. There was not bonding between the flexture and the PZT subassy (Good!). Also the bonding o at each side looks completely wetted and looks good. The package was brought to the OMC lab to be tested in the optical setup. |
Attachment 1: IMG_8950.jpeg
|
|
Attachment 2: IMG_8953.jpeg
|
|
Attachment 3: IMG_8954.jpeg
|
|
Attachment 4: IMG_8955.jpeg
|
|
382
|
Tue Oct 22 10:25:01 2019 |
Stephen | General | General | OMC PZT Assy #9 and #10 Production Cure Bake |
OMC PZT Assy Production Cure Bake (ref. OMC elog 381) for PZT Assy #9 and #10 started 27 September 2019 and completed 28 September 2019. Captured in the below figure (purple trace). Raw data has been posted as an attachment as well.
We have monitored the temperature in two ways:
1) Datalogger thermocouple data (purple trace).
2) Checking in on temperature of datalogger thermocouple (lavender circles) and drive thermocouple (lavender diamonds), only during initial ramp up.
Comments on bake:
- No changes were made to the tuning or instrumentation of the oven between the successful qualifying bake obtained on 26 September (ref. OMC elog 380). However, the profile seems to have been more similar to prior qualifying bake attempts that were less successful (ref. OMC elog 379), particularly as the oven seems to have ramped to an overtemperature state. I am a bit mystified, and I would like to see the oven tuning characterized to a greater extent than I have had time and bandwith to complete within this effort.
- The maximum datalogger temperature was 104 °C, and the duration of the soak (94 °C or higher) was 68 minutes. This was in contrast to a programmed soak of 2.5 hours and a programmed setpoint of 84 °C.
- The drive thermocouple did appear to be under-reporting temperature relative to the datalogger thermocouple, but this was not confirmed during the soak period. Neither thermocouple was calibrated as part of this effort.
|
Attachment 1: OMC_ABO_PZT_Curing_Bake_effort_201906_thru_201909.xls
|
Attachment 2: production_cure_bake_pzt_assys_9_and_10_20190927.png
|
|
383
|
Tue Oct 22 11:52:53 2019 |
Stephen | General | General | Epoxy Curing Timeline of OMC PZT Assy #9 and #10 |
This post captures the curing timeline followed by OMC PZT Assys #9 and #10.
Source file posted in case any updates or edits need to be made. |
Attachment 1: omc_elog_383_Epoxy_Curing_Timeline_of_OMC_PZT_Assy_20191022.png
|
|
Attachment 2: omc_elog_383_Epoxy_Curing_Timeline_of_OMC_PZT_Assy.pptx
|
384
|
Tue Oct 22 11:56:09 2019 |
Stephen | Supply | General | Epoxy Status update as of 22 October 2019 |
The following is the current status of the epoxies used in assembly of the OMC (excerpt from C1900052)
Re-purchasing efforts are underway and/or complete
- DONE
- Masterbond EP30-2 currently located in Downs 303, Modal Lab (see image)
- Electronic Materials Inc Optocast 3553-LV procured via PCard, will arrive today 22 October
- plan to track using PCS is WIP
- WIP
- Epoxy Pax EP-1730-1 quoted and requisitioned, PO is WIP
|
Attachment 1: image_ep30-2_epoxy_kit_pcs_item_1582_location_downs_3303.JPG
|
|
385
|
Tue Oct 22 15:54:59 2019 |
Koji | Electronics | Loan / Lending | Borrowed LB1005 from Cryo Cav |
From Cryo Cav setup
Borrowed LB1005 Servo box -> OMC
|
386
|
Fri Dec 6 00:55:25 2019 |
Koji | Optics | General | Beamdump gluing |
[Stephen, Koji]
20 glass beamdumps were bonded at the 40m cleanroom.
Attachment 1: We had 20 fused silica disks with a V-groove and 40 black glass pieces
Attachment 2: The black glass pieces had (usual) foggy features. It is well known to be very stubborn. We had to use IPA/acetone and wiping with pressure. Most of the feature was removed, but we could still see some. We decided to use the better side for the inner V surfaces.
Attachment 3: EP30-2 expiration date was 1/22/2020 👍. 7.66g of EP30-2 was poured and 0.38g of glass sphere was added. Total glue weight was 8.04g
Attachment 4: Glue test piece was baked at 200F in a toaster oven for ~12min. It had no stickiness. It was totally crisp. 👍👍👍
Attachment 5: Painted glue on the V-groove and put the glass pieces in. Then gave a dub of blue at the top and bottom of the V from the outside. In the end, we mostly had the glue went through the V part due to capillary action.
Attachment 6: The 20 BDs were stored in stainless vats. We looked at them for a while to confirm there is no drift and opening of the V part. Because the air bake oven was not available at the time, we decided to leave the assys there for the room temp curing, and then later bake them for the completion of the curing.
|
Attachment 1: 20191205114336_IMG_9171_1.jpeg
|
|
Attachment 2: 20191205114538_IMG_9173_1.jpeg
|
|
Attachment 3: 20191205161458_IMG_9175_1.jpeg
|
|
Attachment 4: 20191205163305_IMG_9183_1.jpeg
|
|
Attachment 5: 20191205172409_IMG_9187_1.jpeg
|
|
Attachment 6: 20191205172432_IMG_9188_1.jpeg
|
|
387
|
Fri Dec 13 14:59:18 2019 |
Stephen | General | General | OMC Beam Dump Production Cure Bake |
[Koji, Jordan, Stephen]
The beam dumps, bonded on Fri 06 Dec 2019, were placed in the newly tuned and configured small dirty ABO at the Bake Lab on Fri 13 Dec 2019.
Images are shared and references are linked below
Bonding log entry - https://nodus.ligo.caltech.edu:8081/OMC_Lab/386
Bake ticket - https://services.ligo-wa.caltech.edu/clean_and_bake/request/992/
OMC Beam Dump - https://dcc.ligo.org/LIGO-D1201285 |
Attachment 1: IMG_6080.JPG
|
|
Attachment 2: IMG_6079.JPG
|
|
388
|
Wed Dec 18 21:54:53 2019 |
Koji | General | General | OMC Beam Dump Production Cure Bake |
The beamdumps were taken out from the oven and packed in bags.
The bottom of the V are completely "wet" for 17 BDs among 20 (Attachment 1/2).
3 BDs showed insufficient glue or delamination although there is no sign of lack of rigidity. They were separated from the others in the pack. |
Attachment 1: P_20191218_160650_vHDR_On.jpeg
|
|
Attachment 2: P_20191218_160705_vHDR_On.jpeg
|
|
Attachment 3: P_20191218_160733_003.jpeg
|
|
389
|
Thu Feb 27 14:31:13 2020 |
Koji | General | General | Item lending |
Item lending as per Ian's request: Particle Counter from OMC Lab to QIL
|
Attachment 1: P_20200227_134755_vHDR_On.jpg
|
|
390
|
Mon Aug 10 15:29:54 2020 |
Koji | General | General | Item lending |
The particle counter came back to the OMC lab on Aug 10, 2020
|
391
|
Mon Aug 10 15:34:04 2020 |
Koji | Facility | Loan / Lending | Glue bake oven |
Black and Decker Glue Baking Oven came back to the OMC lab on Aug 10, 2020, Georgia had lent the unit for the SAMS assembly/testing. |
392
|
Mon Aug 10 15:53:46 2020 |
Koji | General | General | Lab status check |
Check-in to the OMC lab to see the status. Nothing seemed changed. No bug. The HEPA is running normal. The particle level was 0.
Went into the HEPA enclosure and put a cover on the OMC. Because of the gluing template, the lid could not be close completely (that's expected and fine).
The IPA vector cloth bag was not dry yet but seemed expired (some smell). There is no stock left -> 5 bags to be ordered. |
393
|
Mon Sep 28 16:03:13 2020 |
rana | General | General | OMC Beam Dump Production Cure Bake |
are there any measurements of the BRDF of these things? I'm curious how much light is backscattered into the incoming beam and how much goes out into the world.
Maybe we can take some camera images of the cleaned ones or send 1-2 samples to Josh. No urgency, just curiosity.
I saw that ANU and also some labs in India use this kind of blue/green glass for beam dumps. I don't know much about it, but I am curious about its micro-roughness and how it compares to our usual black glass. For the BRDF, I think the roughnesss matters more for the blackness than the absorption.

|
394
|
Mon Sep 28 16:13:08 2020 |
Koji | General | General | OMC Beam Dump Production Cure Bake |
According to the past backscatter test of the OMC (and the black glass beamdump: not V type but triangular type on a hexagonal-mount), the upper limit of the back reflection was 0.13ppm. https://nodus.ligo.caltech.edu:8081/OMC_Lab/209
I don't have a BRDF measurement. We can send a few black glass pieces to Josh. |
395
|
Thu Oct 8 19:55:22 2020 |
Koji | General | Characterization | Power Measurement of Mephisto 800NE 1166A |
The output of Mephisto 800NE (former TNI laser) was measured.
The output power was measured with Thorlabs sensors (S401C and S144C). The reference output record on the chassis says the output was 837mW at 2.1A injection.
They all showed some discrepancy. Thus we say that the max output of this laser is 1.03W at 2.1A injection based on the largest number I saw. |
Attachment 1: Mephisto800NE_1166A.pdf
|
|
396
|
Fri Oct 9 01:01:01 2020 |
Koji | General | General | TFT Monitor mounting |
To spare some room on the optical table, I wanted to mount the two TFT monitor units on the HEPA enclosure frame.
I found some Bosch Rexroth parts (# 3842539840) in the lab, so the bracket was taken for the mount. This swivel head works very well. It's rigid and still the angle is adjustable.
https://www.boschrexroth.com/ics/cat/?cat=Assembly-Technology-Catalog&p=p834858
BTW, this TFT display (Triplett HDCM2) is also very nice. It has HDMI/VGA/Video/BNC inputs (wow perfect) and the LCD is Full-HD LED TFT.
https://www.triplett.com/products/cctv-security-camera-test-monitor-hd-1080p-led-display-hdcm2
https://www.newegg.com/p/0AF-0035-00016
https://www.bhphotovideo.com/c/product/1350407-REG/triplett_hdcm2_ultra_compact_7_hd_monitor.html
The only issue is that one unit (I have two) shows the image horizontally flipped. I believe that I used the unit with out this problem before, I'm asking the company how to fix this.
|
Attachment 1: 20201008214515_IMG_0152.jpg
|
|
Attachment 2: 20201008214519_IMG_0153.jpg
|
|
Attachment 3: 20201008214536_IMG_0154.jpg
|
|
Attachment 4: 20201008220955_IMG_0155.jpg
|
|
Attachment 5: 20201008221019_IMG_0156_2.jpg
|
|
397
|
Fri Oct 16 00:53:29 2020 |
Koji | General | General | TFT Monitor mounting |
The image flipping of the display unit was fixed. The vendor told me how to fix it.
- Open the chassis by the four screws at the side.
- Look at the pass-through PCB board between the mother and display boards.
- Disconnect the flat flex cables from the pass-through PCB (both sides) and reconnect them (i.e. reseat the cables)
That's it and it actually fixed the image flipping issue.
|
398
|
Fri Oct 23 19:09:54 2020 |
Koji | General | General | Particle counter transfered to Radhika |
See this entry: https://nodus.ligo.caltech.edu:8081/40m/15642 |
399
|
Fri Nov 6 18:38:00 2020 |
Koji | General | General | Powermeter lent from OMC Lab to 2um ECDL |
Thorlabs' powermeter controler + S401C head was lent from OMC Lab. Returned to OMC Jul 15, 2022 KA
https://nodus.ligo.caltech.edu:8081/SUS_Lab/1856 |
400
|
Mon Nov 9 22:06:18 2020 |
Koji | Mechanics | General | 5th OMC Transport Fixture |
I helped to complete the 5th OMC Transport Fixture. It was built at the 40m clean room and brought to the OMC lab. The fixture hardware (~screws) were also brought there. |
Attachment 1: IMG_0211.jpg
|
|
Attachment 2: IMG_0221.jpg
|
|
401
|
Fri Nov 20 18:51:23 2020 |
Koji | General | General | Instrument loan |
FEMTO DLPCA200 low noise preamp (brand new)
Keithley Source Meter 2450 (brand new) => Returned 11/23/2020
were brought to the OMC lab for temporary use.
https://nodus.ligo.caltech.edu:8081/QIL/2522 |