ID |
Date |
Author |
Type |
Category |
Subject |
86
|
Thu Mar 28 03:37:07 2013 |
Zach | Optics | Configuration | Test setup input optics progress | [Lisa, Zach]
Last night (Tuesday), I finished setting up and aligning most of the input optics for the OMC characterization setup. See the diagram below, but the setup consists of:
- Faraday isolator/polarization definition
- HWP+PBS for power splitting into two paths:
- EOM path
- Resonant EOM for PDH sideband generation
- Broadband EOM for frequency scanning
- AOM path
- Double-passed ~200-MHz Isomet AOM for subcarrier generation. NOTE: in this case, I have chosen the m = -1 diffraction order due to the space constraints on the table.
- Recombination of paths on a 50/50 beam splitter---half of the power is lost through the unused port into a black glass dump
- Coupler for launching dual-field beam into a fiber (to OMC)

Today, we placed some lenses into the setup, in two places:
- In the roundabout section of the AOM path that leads to the recombination, to re-match the AOM-path beam to that of the EOM path
- After the recombination beam splitter, to match the combined beam mode into the fiber
We (Koji, Lisa, and myself) had significant trouble getting more than ~0.1% coupling through the fiber, and after a while we decided to go to the 40m to get the red-light fiber illuminator to help with the alignment.
Using the illuminator, we realigned the input to the coupler and eventually got much better---but still bad---coupling of ~1.2% (0.12 mW out / 10 mW in). Due to the multi-mode nature of the illuminator beam, the output cannot be used to judge the collimation of the IR beam; it can only be used to verify the alignment of the beam.
With 0.12 mW emerging from the other end of the fiber, we could see the output quite clearly on a card (see photo below). This can tell us about the required input mode. From the looks of it, our beam is actually focused too strongly. We should probably replace the 75mm lens again with a slightly longer one.
Lisa and I concurred that it felt like we had converged to the optimum alignment and polarization, which would mean that the lack of coupling is all from mode mismatch. Since the input mode is well collimated, it seems unlikely that we could be off enough to only get ~1% coupling. One possibility is that the collimator is not well attached to the fiber itself. Since the Rayleigh range within it is very small, any looseness here can be critical.

I think there are several people around here who have worked pretty extensively with fibers. So, I propose that we ask them to take a look at what we have done and see if we're doing something totally wrong. There is no reason to reinvent the wheel. |
87
|
Fri Mar 29 08:55:00 2013 |
Zach | Optics | Configuration | Beam launched into fiber |
Quote: |
Lisa and I concurred that it felt like we had converged to the optimum alignment and polarization, which would mean that the lack of coupling is all from mode mismatch. Since the input mode is well collimated, it seems unlikely that we could be off enough to only get ~1% coupling. One possibility is that the collimator is not well attached to the fiber itself. Since the Rayleigh range within it is very small, any looseness here can be critical.
|
My hypothesis about the input-side collimator turned out to be correct.
I removed the fiber from the collimator and mount at the input side, and then injected the illuminator beam from this side. Since we already saw a nice (but dim) IR beam emerging from the output side the other night, it followed that that collimator was correctly attached. With the illuminator injected from the input side, I also saw a nice, collimated red beam emerging from the output. So, the input collimator was not properly attached during our previous attempts, leading to the abysmal coupling.
The problem is that the mount does not allow you to remove and reattach the fiber while the collimator is already attached, and the dimensions make it hard to fit your fingers in to tighten the fiber to the collimator once the collimator is in the mount. I disassembled the mount and found a way to attach/reattach the fiber that preserves the tight collimator contact. I will upload a how-to shortly.
With this fix, I was able to align the input beam and get decent coupling:
EOM path: ~70%
AOM path: ~50% |
94
|
Thu Apr 4 00:35:42 2013 |
Zach | Optics | Configuration | MMT installed on breadboard, periscope built | [Koji, Zach]
We installed the MMT that matches the fiber output to the OMC on a 6"x12" breadboard. We did this so that we can switch from the "fauxMC" (OMC mirrors arranged with standard mounts for practice locking) to the real OMC without having to rebuild the MMT.
The solution that Koji found was:
z = 0: front face of the fiber output coupler mount
z = 4.8 cm: f = 35mm lens
z = 21.6 cm: f = 125mm lens
This should place the waist at z ~ 0.8 m. Koji has the exact solution, so I will let him post that.
The lenses are on ±0.5" single-axis OptoSigma stages borrowed from the TCS lab. Unfortunately, the spacing between the two lenses is very close to a half-integer number of inches, so I had to fix one of them using dog clamps instead of the screw holes to preserve the full range.
Koji also built the periscope (which raises the beam height by +1.5") using a vertical breadboard and some secret Japanese mounts. Part of it can be seen in the upper left corner of the photo below---sorry for not getting a shot of it by itself.

|
97
|
Thu Apr 4 23:44:52 2013 |
Koji | Optics | Configuration | Beam launched into fiber | We had to move our flipper mirror to share the beam between Peter's setup and ours as our flipper is at the place where the ISS PD array base is supposed to be!
There was no place to insert the flipper in the setup. We (Peter and Koji) decided to move the laser back for ~2".
This entirely changed the alignment of the setup. The fiber coupler was my reference of the alignment.
Once the beam is aligned, I check the coupling to the fiber. It was 50%.
I tweaked the lens and eventually the coupling is improved to 83%. (24.7mW incident, 20.4mW obtained.)
Then, I started to check the AOM path. I noticed that the 1st (or -1st) order beam is very weak.
The deflection efficiency is ~0.1%. Something is wrong.
I checked the driver. The driver's coupler output (1:10) show the amplitude ~1V. (good)
I check the main output by reducing the offset. When the coupler output is 100mV, the main output was 1V. (good)
So is the AOM itself broken??? |
99
|
Fri Apr 5 18:18:36 2013 |
Zach | Optics | Configuration | AOM probably broken |
Quote: |
Then, I started to check the AOM path. I noticed that the 1st (or -1st) order beam is very weak.
The deflection efficiency is ~0.1%. Something is wrong.
I checked the driver. The driver's coupler output (1:10) show the amplitude ~1V. (good)
I check the main output by reducing the offset. When the coupler output is 100mV, the main output was 1V. (good)
So is the AOM itself broken???
|
As Koji noticed that the AOM efficiency was very low, I figured I would try looking at it with a fresh set of eyes. The end result is that I have to agree that the AOM appears to be broken.
First, I measured the input impedance of the AOM using the AG4395A with the impedance test kit (after calibrating). The plot is below. The spec sheet says the center frequency is 200 MHz, at which Zin should be ~50 ohms. It crosses 50 ohms somewhere near 235 MHz, which may be reasonable given that the LC circuit can be tuned by hand. However, it does surprise me that the impedance varies so much over the specified RF range of ±50 MHz. Maybe this is an indication that something is bad.

I removed the cover of the modulator (which I think Koji did, as well) and all the connections looked as I imagine they should---i.e., there was nothing obviously broken, physically.
I then tried my hand at realigning the AOM from scratch by removing and replacing it. I was not able to get better than 0.15%, which is roughly what Koji got.
So, perhaps our best course of action is to decide what we expect the Zin spectrum to look like, and whether that agrees with the above measurement. |
103
|
Mon Apr 8 20:56:52 2013 |
Koji | Optics | Configuration | PZT & Curverd Mirror arrangement | Assembly #1:
Mounting Prism #16
PZT #26
Mirror C6
Assembly #2:
Mounting Prism #20
PZT #23
Mirror C5 |
105
|
Mon Apr 8 23:42:33 2013 |
Koji | Optics | Configuration | Fake OMC roughly aligned | Mode matching:
|
107
|
Wed Apr 10 00:40:30 2013 |
Zach | Optics | Configuration | fauxMC locked | [Koji, Zach]
Tonight, we locked the "fauxMC". We obtained a visibility of >99%.
Koji had aligned it roughly last night, but we wanted to have a couple steering mirrors in the path for this practice cavity (the periscope mirrors will serve this function in the real setup), so we marked the alignment with irises and installed two extra mirrors.
After obtaining flashes with the WinCam placed at the output coupler, we removed the WinCam and put a CCD camera at one of the curved mirror transmissions and used this to get a strong TEM00 flash. Then, we installed the REFL PD/CCD, swept the laser PZT and optimized the alignment by minimizing the REFL dips. Finally, we connected the RF electronics and locked the cavity with the LB box. We used whatever cables we had around to trim the RF phase, and then Koji made some nice SMA cables at the 40m.
One thing we noticed was that we don't have enough actuation range to keep the cavity locked for very long---even with the HV amp (100V). We are going to offload to the NPRO temperature using an SR560 or pomona box circuit. We may also make an enclosure for the cavity to protect it from the HEPA blasting.
Tomorrow, after we do the above things, we will practice measuring the transmission, length (FSR) and mode spectrum of the cavity before moving on to the real McCoy.

|
113
|
Tue Apr 16 09:43:58 2013 |
Koji | Optics | Configuration | Mirror list for L1OMC | L1 OMC
Cavity Mirrors
FM1 (input coupler): A8
FM2 (output coupler): A7
CM1 (curved mirror close to FM1): C6
CM2 (curved mirror close to FM2): C5
DCPD path
BS3 (BS for DCPDs): B5 B7
QPD path
BS1 (input steering): E10
SM1 (steering mirror next to BS1): E12
BS2 (BS for QPD path): B3
SM2 (steering mirror next to BS2): E4
SM3 (steering mirror next to SM2): E16

|
135
|
Mon Jun 3 18:58:08 2013 |
Koji | Optics | Configuration | OMC final tests | - QPD mount aligned, QPD output checked
The spots are with 100um from the center of the diodes. [ELOG Entry (2nd photo)]
- TMS/FSR dependence on the PZT V
Shows significant dependence on the PZT voltages
It seems that the curvartures get longer when the voltages are applied to the PZTs.
The effect on these two PZTs are very similar. The dependence is something like
(TMS/FSR) ~ 0.219 - 1e-5 V
May cause resonance of the higher-order modes (like 13th order of the 45MHz sidebands) at a specific range of the PZTs.
We can't change anything any more, but the impact needs to be assessed
- DC response of the PZTs [ELOG Entry]
PZT voltages were swept. Observed multiple fringes during the sweep.
The data to be analyzed.
- AC response of the PZTs [ELOG Entry]
PZT1 and PZT2 well matched. The first resonance at 10kHz.
- Open loop TF of the servo
The UGF more than ~30kHz.
- Cleaning of the main optics with First Contact
Done. Visible scattering seen with an IR was reduced, but still exist.
All four cavity mirrors have about the same level of scattering.
Each scattering is a group of large or small bright spots.
It's actually a bit difficult to resolve the bright spots with the IR viewer.
- Raw transmission: i.e. Ratio between the sum of the DCPD paths and the incident power
May 8th (before the baking): 0.918
May 8th (First Contact applied): 0.940 (improved)
Jun 2nd (after the baking): 0.927 (worse)
Jun 2nd (First Cotact applied): 0.964 (improved)
Date |
2013/6/2 |
2013/6/2 |
2013/6/2 |
Condition |
Before the cleaning |
After the FC cleaning |
After drag wiping |
Input Power [mW] |
39.8 |
38.4 |
38.4 |
REFLPD dark offset [V] |
-0.0080 |
-0.0080 |
-0.0080 |
REFLPD locked [V] |
0.048 |
0.0437 |
0.046 |
REFLPD unlocked [V] |
6.41 |
6.39 |
6.37 |
|
|
|
|
Transmitted Power to DCPD1 (T) [mW] |
18.8 |
18.8 |
18.8 |
Transmitted Power to DCPD2 (R) [mW] |
18.1 |
18.2 |
18.2 |
FM2 transmission [mW] |
- |
- |
- |
CM1 transmission [mW] |
0.200 |
0.193 |
0.198 |
CM2 transmission [mW] |
0.204 |
0.204 |
0.205 |
Input BS transmission [mW] |
0.260 |
0.228 |
0.245 |
|
|
|
|
Cavity Finesse |
396.9 |
403.79 |
403.79 |
|
|
|
|
Junk Light Power (Pjunk) [mW] |
0.303 |
0.302 |
0.317 |
Coupled beam power (Pcouple) [mW] |
39.50 |
38.10 |
38.08 |
Mode Matching (Pcouple/Pin) [mW] |
0.992 |
0.992 |
0.992 |
Cavity reflectivity in power |
0.00112 |
0.000211 |
0.000206 |
Loss per mirror [ppm] |
111 |
35.9 |
34.8 |
Cavity transmission for TEM00 carrier
|
0.934 |
0.971 |
0.972 |
- TMS/FSR/Finesse change before/after cleaning [ELOG Entry]
Just a small change from the parameters before the bake.
No quantitative difference.
Method:
BB EOM produces the AM sidebands together with the PM sidebands.
Ideally, the PM sidebands does not produce the signal at the transmission, the output is dominated by the AM component.
This is only true when there is no lock offset. In reality the curve is contaminated by the PM-AM conversion by the
static offset or dynamic deviation of the locking point. So I had to take the central part of the TF and check the
dependence of the fit region and the finesse.
Before the cleaning: Finesse 396.9
After the cleaning: Finesse 403.8
To Do
- Placement of the DCPD housings
- Through-put test with DCPDs
- Transmission dependence on the incident power
(although the max incident is limited to ~35mW)
- Application of the first contact for the surface protection |
151
|
Fri Aug 16 15:31:17 2013 |
Koji | Optics | Configuration | Mirror list for OMC(002) | OMC(002)
Cavity Mirrors
FM1 (input coupler): A9
FM2 (output coupler): A13
CM1 (curved mirror close to FM1): C9 (PZT ASSY #6 / M6 /PZT21/C9)
CM2 (curved mirror close to FM2): C4 (PZT ASSY #4 / M11/PZT25/C4)
DCPD path
BS3 (BS for DCPDs): B10
QPD path
BS1 (input steering): E3
SM1 (steering mirror next to BS1): E5
BS2 (BS for QPD path): B9
SM2 (steering mirror next to BS2): E1
SM3 (steering mirror next to SM2): E2

|
156
|
Thu Aug 22 15:40:15 2013 |
Koji | Electronics | Configuration | PZT endurance test | [Koji, Jeff]
Background
In response to the failure of one of the PZTs on L1OMC (LLO:8366), we have been taking place an endurance test of
the four PZT sub-assemblies in prior to their being glued on the glass breadboard.
According to the technical note by Noliac, the common mode of PZT failure is degradation of the impedance
due to cyclic actuation (like 10^7 times) with over voltage. Therefore our procedure of the test to actuate the PZTs
at least 10^7 times with half voltage of the nominal operating voltage (i.e. nominal 200V) and check the degradation
of the impedance.
Driving signal
For the driving of the PZT, a thorlabs HV amp is used. A source signal of 3.5Vpp with an offset of 1.7V is produced
by DS345 function generator. This signal turns to a sinusoidal signal between 0 and 100V in conjunction with the gain
of 15 at the HV amp.
The maximum driving frequency is determined by the current supply limit of the HV amp (60mA). The capacitance
of each PZT is 0.47uF. If we decide to cycle the signal for 4 PZTs in parallel, the maximum frequency achievable
without inducing voltage drop is 100Hz. This yields the test period of 28hours in order to achive 10^7 cycles.

Initial impedance diagnosis
To check the initial state of the PZTs, a DC voltage of 100V was applied via 1kOhm output resistance.
(Note that this output resistance is used only for the impedance test.)
For each PZTs, both side of the resister showed 99.1V for all measurement by a digital multimeter.
Assuming the minimum resolution (0.1V) of the multimeter, the resistance of each PZT was more than 1MOhm before
the cycling test.
Failure detection
In order to detect any impedance drop of the PZTs, the driving signal is monitored on the oscilloscope via a 1:10 probe.
If there is any significant impedance drop, the driver can't provide the driving current correctly. This can be found
by the deviation of the driving voltage from the reference trace on the oscilloscope (below).

Temperature rise
Because of the loss angle of the PZT capacitance, heating of the PZTs is expected. In order to check the temperature rise,
an IR Viewer (FLIR) was used. We did not take care of careful calibration for the PZT emissibity as what we want was a
rough estimation of the temperature.
Before the driving (LEFT) and at the equilibrium (RIGHT)
 
The temperature change of the PZT was tracked for an hour (below). Fitting of the points indicated that the temperature rise is 2.3degC and the
time constant of 446 sec. This level of temperature rise is totally OK. (Note that the fitting function was T = 27.55 - 2.31 Exp[-t/446.])

Results
DAY1:
Start driving
20:27 25.2 degC, status OK
20:33 26.7 degC, status OK
20:41 26.9 degC, status OK
20:48 27.6 degC, status OK
20:54 27.4 degC, status OK
21:10 27.4 degC, status OK
21:37 status OK
Stop driving
70 minutes of driving (i.e. 4.2x10^5 cycles) => no sign of degradation
DAY2:
Start driving
14:15, 24.5 degC, status OK
14:17, 26.0 degC, status OK
14:24, 27.0 degC, status OK
14:40, 26.8 degC, status OK
14:50, 26.8 degC, status OK
15:30, 26.8 degC, status OK
15:55 status OK
17:40 status OK
21:00 status OK (2.43Mcycles + 0.42Mcycles = 2.85Mcycles)
1d+12:00 status OK (7.83Mcycles + 0.42Mcycles = 8.25Mcycles)
1d+15:00 status OK (8.91Mcycles + 0.42Mcycles = 9.33Mcycles)
1d+18:40 status OK (10.23Mcycles + 0.42Mcycles = 10.65Mcycles)
Stop Driving
After 10.65Mcycles no sign of degradationwas found.
|
157
|
Fri Aug 23 19:24:32 2013 |
Koji | Electronics | Configuration | PZT endurance test (II) | The PZT tests were finished with the conclusion that the PZT won't be damaged with our expected usage.
This is another test of the PZTs to make sure small (~10V) reverse voltage does not break the PZTs.
Background
At the site, we decided to use one of the PZT, which is still alive, for the HV and LV actuation.
The HV actuation is limited to 0 to 100V while the LV actuation is 10Vdc with 1Vpp fast dithering.
This means that a reverse voltage upto 10.5V will be applied to the PZT at the worst case.
From the technical note this level of reverse voltage does not induce polarization of the PZT.
The test is to ensure the PZT is not damaged or degraded by this small reverse voltage.
Method
HV drive: Thorlabs HV amp (G=15) driven with DS345 function generator (3.5Vpp+1.7Vdc, 0.1Hz)
=> 0-100V @0.1Hz
=> The hot side of the potential is connected to the positive side of the PZT
LV drive: Phillips function generator (1Vpp+9.5Vdc@1kHz)
The driving frequency is limited by the current output of the function generator.
=> The hot side of the potential is connected to the negative side of the PZT
These drives shares the common ground.
Tests
Testing with spare PZTs
Started @19:23 (Aug 23)
Stopped @20:15+2d (Aug 25, duration 48h52m)
17600cycles for the 0.1Hz drive.
176Mcycles for the 1kHz drive.
Checked the impedances of PZT1 and PZT2.
Apply 100Vdc via a 1kOhm resister, 0V detected across the 1kOhm resister
This is equivalent to the resistance of 1MOhm.
Testing with the PZT subassemblies
Started shaking of the four PZT assemblies @20:20 (Aug 25)
No impedance change observed @11:10+1d
No impedance change observed @15:30+1d
Stopped shaking of the four PZT assemblies @XXXX (Aug 26)
Wiring for the test

|
261
|
Fri Jun 10 17:12:57 2016 |
Koji | General | Configuration | L1 OMC DCPD replacement | New DCPD(T) = A1-23
DCPD(T) = DCPDB: extracted and accomodated in CAGE-G SLOT1
New DCPD(R) = A1-25
DCPD(R) = DCPDA: extracted and accomodated in CAGE-G SLOT2 |
263
|
Fri Aug 12 14:58:17 2016 |
Koji | General | Configuration | H1 OMC DCPD replacement | Preparation of 3rd OMC for the use in H1
New DCPD(T) = B1-01
DCPD(T) = DCPDA: extracted and accomodated in CAGE-A SLOT1
New DCPD(R) = B1-16
DCPD(R) = DCPDB: extracted and accomodated in CAGE-A SLOT2 |
277
|
Tue May 16 19:05:18 2017 |
Koji | Optics | Configuration | OMC SN002 fix - temporary optics | Working on the SN002 OMC fix. Checked the inventory. I think I am using C8 mirror as the new temporary CM1 and PZT24 as the new temporary CM2. |
278
|
Fri May 26 21:53:20 2017 |
Koji | General | Configuration | Trans RF PD setup | Recent work
- DC output of the trans RF PD was connected to the BNC patch panel. => Now CH4 of the scope is monitoring this signal
- The RF sweep signal from the network analyzer is connected to the power combiner for the EOM drive via the SMA patch panel.
- The trans RF PD was aligned first to the leakage beam. It turned out that this signal is too weak. Then the PD was aligned to one of the main OMC transmission. For this purpose, the OMC DCPD (T) was removed from the OMC breadboard.
- It seems that there is a significant amount of RF AM from the EOM. I suspect it is associated with the residual S-pol and birefringence of the steering mirrors (45deg HR). But the HWP at the output of the Faraday is fixed on the Faraday body with a screw and cumbersome for fine adjustment. A PBS and an HWP are added right before the EOM. This made the fiber coupler slightly misaligned. I suppose this new setup still has S&P on the fiber too. Thus, readjustment of the fiber rotations at the input is necessary.
Next step
- Input power to the fiber should be determined before the EOM. Otherwise, touching the HWP before the EOM causes too much power change at the optics of the OMC side.
- Precise adjustment of the RFAM is still necessary.
- The OMC curved mirror should be held by the new fixture.
- Check the beam spots
- Measure cavity parameters. (transmission/FSR/HOM/etc)
==> Then the curved mirror and the PZT will be glued on the prism |
279
|
Tue Jun 6 00:49:48 2017 |
Koji | General | Configuration | Trans RF PD setup | Last week, I further worked on the RF system to install 20dB coupler on the agilent unit and setup the R channel. This allowed me to make the FSR/TMS measurement of the OMC.
And today several optical improvement has been done.
- The input/output fiber couplers were adjusted to have the maximum transmission through the PBS right before the OMC.
- The HWP on the output side of the faraday was adjusted to have ~40mW input to the OMC.
Then, the OMC curved mirror is now held by the new in-situ gluing fixture instead of the conventional fixture attached upside down.
The OMC was ocked again and the input alignment was adjutsed. The fixture is blocking the QPD path, so it's not possible to confirm the proper alignment of the cavity (w.r.t. the QPD paths).
The precise positions of the spots could not be confirmed as the battery of the IR viewer was empty. Quick check of the spots by the card tells that the spot on the CM2 (PD side) is slightly too close to FM2 (output coupler). I wonder if this could be solved by rotating the curved mirror.
Otherwise everything look good. Let's try to glue the curved mirror tomorrow.
Note: Spot on CM2 is too close to the edge of the hole on the mounting prism. The meausrementof CM1 is telling that the curverture center is located 2.7mm upper side of the center of the mirror if the HR side arrow is up (and it is the case). If we move the arrow to the QPD path side (90deg CW viewed from the face side), this corresponds to ~1.1mrad CCW tilt in Yaw (viewed from the top of the prism). According to the matrix calculation (T1500060) this will induce ~1.5mm shift of the beam. This should be tried before gluing. |
280
|
Tue Jun 6 22:00:36 2017 |
Koji | General | Configuration | Trans RF PD setup | - Replaced the PZT with the one used from the beginning. This must be PZT #21. After the replacement, the spot positions look very good. I even went up. So I decided this is the configuration to proceed to the gluing. The CM1 mirror has the HR arrow at the top.
- The input beam was realigned w.r.t. the OMC.
- Tried to use the IR viewer with the new rechargable battery brought from the 40m. But the view still didn't work. The possibility is a) the viewer is broken b) the battery is empty.
- Tried to use the stainless clean regulartor for the UHP N2. The outlet has a short tube with a different diameter. The O.D. of the old tube is 6.3mm, while the new one is 9.5mm. If I insert the thinner tube in the new tube, it approximately fits. But I don't believe this is the way... |
328
|
Thu Apr 11 12:15:31 2019 |
Koji | Mechanics | Configuration | PZT sub assy mirror orientations | |
338
|
Tue Apr 16 16:35:09 2019 |
Koji | Optics | Configuration | OMC(004): Glass breadboard selection | D1200105 SN006 was selected as the breadboard for OMC(004).
The reason is the best parallelism among the unused ones.
The attached is the excerpt from T1500060 with the #006 highlighted. |
339
|
Tue Apr 16 16:40:26 2019 |
Koji | General | Configuration | OMC(004): A Mirror selection | We are going to use A5 and A14 for FM1 and FM2. (The role of these two can be swapped)
The reason for the selection is the better perpendicularity among the available prisms.
A11 has the best perpendicularity among them. However, the T didn't match with the others. The pair of A5 and A14 has a good matching with small compromise of the perpend.
The attachment is the excerpt from T1500060. |
340
|
Tue Apr 16 16:52:36 2019 |
Koji | Optics | Configuration | OMC(004): B Mirror selection | We are going to use B6 for the DCPD BS (BS2), and B1 for the QPD BS (BS3). Their role can not be swapped.
B6 has the best loss among the available ones, while the perpendicularity is not so critical due to the short arm.
B1 has the OK perpendicularity, while the loss is also moderately good.
The attachment is the excerpt from T1500060 with some highlighting. |
341
|
Tue Apr 16 17:24:56 2019 |
Koji | Optics | Configuration | OMC(004): E Mirror selection | We are going to use E6, E9, E11, and E14 for BS1, SM1, SM2, and SM3. They (and E18) are all very similar.
The attachment is the excerpt from T1500060 with some highlighting |
353
|
Tue Apr 23 10:21:12 2019 |
Joe | Optics | Configuration | Moving the spots to the centre of the curved mirrors | [Koji,Philip, Liyuan, Joe]
CM1:
We moved the curved mirrors to these positions:
inner = 0.807mm
outer = 0.983 mm
CM2:
inner = 0.92 mm
outer = 0.85 mm
To do this so that realignment was easier, we moved the screws in steps of 5um. We alternated which mirror we adjusted so that we could monitor with a wincam how well aligned the beam into the cavity was. We only moved the cavity mirrors a small amount so we could still see higher order mode flashes transmitted through the cavity (e.g.TM03 modes). We would then improve the input alignment, and then move the cavity mirrors some more. Once the mirrors were adjusted according to http://nodus.ligo.caltech.edu:8080/OMC_Lab/190422_195450/misalignment4.pdf the spot positions looked near the middle of the curved mirrors (using a beam card). We began beam walking but we ran out of range of the bottom periscope screws in the yaw dof. We tried using the third screw to move the mirrror in both yaw and pitch, hopefully this will let move the mirror such that we can use the just the yaw screw. This screw also ran out of range, so we decided that the cavity needed a small adjustment.
The curved mirrors were moved slightly (>5um) and then we tried to get alignment. By using the fibre coupler translation stage, we move the beam side ways slightly, and then tried to get the periscope mirrors back to a position where the screws could move the mirrors. Once we had an ok alignment, we checked the beam. It looked like it was pretty close to the centre of the curved mirrors, which is where we wanted it to be.
We then tried locking the cavity, although the error signal was quite small. The adjusted the input offset and gain of the servo (there is apparently some problem to do with the input and output offsets). Once the cavity was locked we could make the final adjustments to aligning. We still ran out of range on the periscope. We decided to move the breadboard with the fibre coupler and mode matching lenses on it. Because we knew that the cavity was aligned such that the beam hits the centres of the curved mirrors, we could regain flashes quite quickly. We saw the error signal go down, but eventually this decrease was just to do with the beam clipping on the periscope mirrors. We moved the spot back to where we ok aligned, and slid the periscope so we were not clipping the mirror. This worked very well, and then optimised the alignment.
We then tried to improve the mode matching.
We took photos of the spot positions (quite near the center) and made the detuned locking measurement. The fitting of the data (attachment 1) wsa 1.1318m (what error should we put here?).
I think the order we did things in was:
- turning anti clockwise on the fibre coupler and misalign the diode, we measured the modespacing.
- returned the alignment for the photodiode, and realign fibre couple.
- miss align the photodiode horizontally, and then used fibre coupler to maximise the peak higher order mode peak height. We then used the PD again to make the peak height bigger.
-
|
363
|
Mon May 20 19:53:17 2019 |
Koji | Optics | Configuration | DCPD high power test | We want to perform a damage test of OMC DCPDs with high power beam. The OMC DCPD is the 3mm InGaAs photodiodes with high quantum efficiency, delivered by Laser Components.
The sites want to know the allowed input power during the OMC scan for beam mode analysis. The nominal bias voltage of the PDs is +12V. Therefore, 30mA of photocurrent with the transimpedance of 400 Ohm is already enough to saturate the circuit. This means that the test is intended to check the damage of the photodiode mainly by the optical power.
The test procedure is as follows:
1. Illuminate the diode with certain optical power.
2. Measure the dark current and dark noise of the PD with no light on it.
3. Check the condition of the PD surface with a digital camera.
4. Repeat 1~3 with larger optical power.
The beam from an NPRO laser is delivered to the photodiode. The maximum power available is 300~400mW. The beam shape was regulated to have the beam radius of ~500um.
- When the PD is exposed to the high power beam, the circuit setup A) is used. This setup is intended to mimic the bias and transimpedance configuration used in the DCPD amp at the site.
- When the dark noise is measured, the circuit setup B) is used. This setup is low noise enough to measure the dark noise (and current) of the PD.
- The test procedure is going to be tested with an Excelitas 3mm InGaAs PD (C30665), and then tested with the high QE PD. |
364
|
Wed May 22 07:31:37 2019 |
Koji | Optics | Configuration | Camera test (DCPD high power test) | C30665 (3mm) camera test. The camera was Canon PowerShot G7X MkII. Exposure 1/15s, F 5.6, ISO 125, MF (~the closest), no zoom.
This image was taken before the beam illumination. Will tune the green lighting to have some gradient on the surface so that we can see any deformation of the surface.
|
374
|
Thu Sep 5 15:40:42 2019 |
shruti | Optics | Configuration | PZT Sub-Assembly | Aim: To find the combinations of mounting prism+PZT+curved mirror to build two PZT sub-assemblies that best minimises the total vertical beam deviation.
(In short, attachment 1 shows the two chosen sets of components and the configuration according which they must be bonded to minimize the total vertical angular deviation.)
The specfic components and configuration were chosen as follows, closely following Section 2.3.3 of T1500060:
Available components:
Mounting prisms: 1,2,12,14,15 (Even though there is mention of M17 in the attachments, it can not be used because it was chipped earlier.)
PZTs: 12,13
Curved mirrors: 10,13
Method:
For a given choice of prism, PZT and mirror, the PZT can be placed either at 0deg or 180deg, and the mirror can rotated. This allows us to choose an optimal mirror rotation and PZT orientation which minimises the vertical deviation.
Total vertical angle 
was measured by Koji as described in elog 369.
, are the wedge angle and orientation respectively and were measured earlier and shown in elog 373 .
, The measurement of the location of the curvature bottom (d, ) of the mirrors is shown in elog 372 . The optimal is to be found.
These steps were followed:
- For every combination of prism, PZT, and mirror, the total vertical deviation was minimized with respect to the angle of rotation of the curved mirror computationally (SciPy.optimize.minimize). The results of this computation can be found in Attachment 2: where Tables 1.1 and 2.1 show the minimum achievable deviations for mirrors C10 and C13 respectively, and Tables 1.2 and 2.2 show the corresponding angle of rotation of the mirrors
.
- From the combinations that show low total deviations (highlighted in red in Attachment 2), the tolerances for 5 arcsec and 10 arcsec deviations with mirror rotation were calculated, and is shown in Tables 1.3, 1.4, 2.3, 2.4 of Attachment 2.
- While calculating the tolerances, the dependence of the vertical deviations with rotation were also plotted (refer Attachment 3).
- Two sets from available components with low total deviation and high tolerance were chosen.
Result:
These are the ones that were chosen:
- M14 + PZT13 at 0deg + C13 rotated by 169deg anticlockwise (tot vertical dev ~ -3 arcsec)
- M12 + PZT12 at 0deg + C10 rotated by 88deg clockwise (tot vertical dev ~0 arcsec)
The method of attaching them is depicted in Attachment 1.
|
418
|
Thu Jul 21 13:21:27 2022 |
Koji | General | Configuration | Windows laptop for WincamD Beam'R2 recovery | The Windows laptop for WincamD/Beam'R2 (DELL Vostro3300) was not functional.
- Windows 7 got stuck in the starting up process (Google "startup repair loop")
- The battery can't charge and the adapter connection is flaky
I decided to newly install Win10.
I made a new bootable Win10 DVD from the ISO downloaded from IMSS. The ISO file was converted to CDR using Disk Utility on Mac.
This deleted the past disk partitions. The installation process has no trouble and Win10 ran successfully. The machine is slow but still acceptable for our purpose.
Dataray Version 7.1H25Bk was downloaded from the vendor website https://dataray.com/blogs/software/downloads and installed successfully.
The devices ran as expected by connecting the heads and selecting the proper device in the software.
Then, the Win10 fell into "Hibernation Loop" and "Shutdown loop" (after disabling hibernation in the safe mode).
This is probably the combination of extremely slow windows update (feature update i.e. beta OS update) and the occasional shutdown due to the flakiness of the AC connection
Win10 was reinstalled and automatic Win update was disabled via windows policy manager or something like that. Still, it tries to download and update some of the updates (what's happening there!?
Here are my strong recommendations on how to use this laptop
- Do not use any network connection. It will enable Windows Update kicks in and destroy the machine.
- Use a USB stick for data transportation if necessary
- The laptop should always be connected to the power supply at a stable location. (The adapter connection is flaky and the battery is dead)
- Buy a replacement battery (maybe a 3rd-party cheap one
- The Win10 DVD should always be inserted into the laptop's drive so that we can reinstall the windows anytime.
|
451
|
Mon Nov 7 21:16:16 2022 |
Camille | Optics | Configuration | Setting up the fiber couplers | [Camille, Koji]
Began setting up fiber assembly for OMC testing:
-Aligned fiber mount to maximize transmission through fiber
-Adjusted polarization at output of fiber to minimize s-polarized output.
Power measurements:
fiber input: 56.7 mW
fiber output:43.2 mW
s-polarized output: 700 uW |
452
|
Mon Nov 7 22:00:33 2022 |
Koji | Optics | Configuration | Setting up the fiber couplers | Fiber matching: 43.2/56.7 = 76%
S/P-pol ratio 0.7/43.2 = 1.6%
|
463
|
Tue Nov 29 15:54:47 2022 |
Koji | General | Configuration | Windows laptop for WincamD Beam'R2 recovery | Aaron took the set to Cryo lab
|
476
|
Thu Jan 26 23:16:35 2023 |
Koji | Optics | Configuration | OMC #4: Top side bonding. | [Camille, Koji]
1. Flipping the OMC
It turned out that the transport fixture for this OMC could not be closed. The locks are too short, and the knobs could not be turned. We temporarily fastened the long 1/4-20 screws to secure the box and flipped it to make the top side face up.
2. Setting up the top-side template
The top side template was attached to the breadboard. We took care that the lock nuts on the positioning screws were not touched. The margins between the template and the glass edges were checked with a caliper. The long sides seemed very much parallel and symmetric, while the short sides were not symmetric. The lock nut on the short side was loosened, and the template was shifted to be symmetric w.r.t. the breadboard.
3. UV epoxy work
The cylindrical glass pieces were wiped, and the bonding surfaces were cleaned so that the visible fringes were <5 fringes. We confirmed the hooking side is properly facing up. The UV epoxy and UV curing were applied without any trouble. (Attachment 1)
4. EP30-2 bonding of the invar mounting blocks
Six invar blocks were bonded. This time the Allen key weights were properly arranged, so they didn't raise the blocks. The bond properly wetted the mating surfaces.
---
The final step of the bonding is to remove the template.
And replace the locks of the transport fixture.
|
547
|
Thu Jun 15 13:13:57 2023 |
Koji | Electronics | Configuration | OMC (004) DCPD/QPD preparation | Work log for June 14, 2023
- Selected QPDs from the stock: QPD#62 for QPD1 and QPD#70 for QPD2 were selected from the QPD stock T1200063.
- The legs of the QPDs were trimmed so that the cable could completely flush with the mount.
- A test PD (Excelitas) was mounted on a DCPD housing.
- They are ready for installation and testing.
|
548
|
Wed Jun 21 02:07:24 2023 |
Koji | Electronics | Configuration | OMC(004) QPD adjustment | QPD# QPD1 QPD2
Housing# #008 #009
Diode# #62 #70
Shim 2.50mm 05 0.75mm 08 (see D1201467)
-------------------------------------
Power Incident 76.5 uW 71.5 uW
Sum Out 49.0 mV 50.2 mV
Vertical Out -16.0 mV 8.2 mV
Horizontal Out - 2.4 mV -3.6 mV
SEG1 - 8.2 mV -16.2 mV
SEG2 - 8.0 mV -13.0 mV
SEG3 -15.1 mV - 9.5 mV
SEG4 -17.4 mV -11.5 mV
-------------------------------------
Spot position X + 8 um +33 um (positive = more power on SEG1 and SEG4)
Spot position Y +81 um -52 um (positive = more power on SEG3 and SEG4)
-------------------------------------
Responsivity[A/W] 0.64 0.70
Q.E. 0.75 0.82
-------------------------------------
Arrangement of the segments
View from the beam
/ 2 | 1 X
|---+---|
\ 3 | 4 /
---------------
I(w,x,y) = Exp[-2 (x^2 + y^2)/w^2]/(Pi w^2/2)
(SEG_A+SEG_B-SEG_C-SEG_D)/(SEG_A+SEG_B+SEG_C+SEG_D) = Erf[sqrt(2) d/w]
d: distance of the spot from the center
w: beam width
|
579
|
Wed Jul 26 12:14:53 2023 |
Camille Makarem | Optics | Configuration | Swapping Subassemblies | While using mirror SN14 and mirror SN30 for CM1 and CM2 respectively, we monitored the two beam spots on FM2 and continued to see ~5mm of vertical displacement between the two spots. We swapped the subassembly containing SN30 for the one containing SN02 and we see that the pitch misalignment is resolved. We will proceed to lock the cavity using the following mirrors:
FM1 --> SN11
FM2 --> SN17
CM1 --> SN14
CM2 --> SN02 |
6
|
Fri Jun 29 11:26:04 2012 |
Zach | Optics | Characterization | RoC measurement setup | Here is the proposed RoC measurement setup. Koji tells me that this is referred to as "Anderson's method".
We would like to use a linear cavity to measure the RoC of the curved mirrors independently (before forming the ring cavity), since the degeneracy of HOMs will make the fitting easier.
- An NPRO is PDH locked to a linear cavity formed of a high-quality flat mirror on one end, and the OMC curved optic on the other.
- A second, broadband EOM is placed after the first one, and its frequency is swept with a VCO to generate symmetric sidebands about the carrier
- A TRANS RFPD's signal is demodulated at the secondary EOM frequency, to give a DC signal proportional to HOM transmission
- This HOM scan is fit to a model, with RoC the free parameter. Since there are two sidebands, the HOM spectrum of the model must be folded about the carrier frequency.
- To get a good signal, we should slightly misalign the input beam, allowing for higher overlap with HOMs.
If we decided that the symmetric sidebands are too unwieldy, or that we have issues from sidebands on sidebands, we can accomplish the same style measurement using an AOM-shifted pickoff of the pre-PDH EOM beam. The advantage of the former method is that we don't have to use any polarization tricks.

|
8
|
Wed Jul 18 23:20:13 2012 |
Koji | Optics | Characterization | Mode scan results of ELIGO | Nic Smith sent me a bunch of elog lists where the results of the mode scan can be found.
From Nic:
There have been many mode scan analyses done at LLO:
http://ilog.ligo-la.caltech.edu/ilog/pub/ilog.cgi?group=detector&date_to_view=06/07/2008&anchor_to_scroll_to=2008:06:07:20:55:41-jrsmith
http://ilog.ligo-la.caltech.edu/ilog/pub/ilog.cgi?group=detector&date_to_view=06/16/2008&anchor_to_scroll_to=2008:06:16:17:47:11-waldman
http://ilog.ligo-la.caltech.edu/ilog/pub/ilog.cgi?group=detector&date_to_view=08/06/2009&anchor_to_scroll_to=2009:08:06:12:23:16-kissel
http://ilog.ligo-la.caltech.edu/ilog/pub/ilog.cgi?group=detector&date_to_view=09/25/2009&anchor_to_scroll_to=2009:09:25:20:57:47-kate
We didn't do as much of this at LHO. At some point we were trying to figure out how the arm cavity mode was different from the carrier mode:
http://ilog.ligo-wa.caltech.edu/ilog/pub/ilog.cgi?group=detector&date_to_view=04/17/2009&anchor_to_scroll_to=2009:04:17:23:15:05-kawabe
http://ilog.ligo-wa.caltech.edu/ilog/pub/ilog.cgi?group=detector&date_to_view=03/27/2009&anchor_to_scroll_to=2009:03:27:21:38:14-kawabe
http://ilog.ligo-wa.caltech.edu/ilog/pub/ilog.cgi?group=detector&date_to_view=02/18/2009&anchor_to_scroll_to=2009:02:18:20:15:00-kawabe
Here's a long mode scan that was done, and the data is attached to the elog, but none of the amplitudes are analyzed.
http://ilog.ligo-wa.caltech.edu/ilog/pub/ilog.cgi?group=detector&date_to_view=07/08/2009&anchor_to_scroll_to=2009:07:08:17:02:19-nicolas |
9
|
Sun Jul 22 15:56:53 2012 |
Zach | Optics | Characterization | RoC measurement setup | Here is a more detailed version of the setup, so that we can gather the parts we will need.

Parts list:
- Optics, etc.:
- 1 NPRO
- 2 QWP
- 3 HWP
- 2 PBS
- 2 EOM (at least one broadband)
- 2 RFPD (at least one very-high-bandwidth for TRANS, e.g., 1611)
- 1 CCD camera
- OMC curved mirrors to be tested
- 1 low-loss flat reference mirror with appropriate transmission (e.g., G&H, ATF, etc.)
- ~3 long-ish lenses for MMT, EOM focusing
- ~2 short lenses for PD focusing
- 1 R ~ 80% power splitter for TRANS (can be more or less)
- ~7 steering mirrors
- ~3 beam dumps
- Mounts, bases, clamps, hardware
- Electronics:
- 1 fixed RF oscillator (e.g., DS345, etc.)
- 1 VCO (e.g., Marconi, Tektronix, etc.)
- 2 Minicircuits RF mixers
- 2 Minicircuits RF splitters
- 2 SMA inline LPFs
- Locking servo (SR560? uPDH? PDH2?)
- Some digital acquisition/FG system
- Power supplies, wiring and cabling.
Quote: |
Here is the proposed RoC measurement setup. Koji tells me that this is referred to as "Anderson's method".
We would like to use a linear cavity to measure the RoC of the curved mirrors independently (before forming the ring cavity), since the degeneracy of HOMs will make the fitting easier.
- An NPRO is PDH locked to a linear cavity formed of a high-quality flat mirror on one end, and the OMC curved optic on the other.
- A second, broadband EOM is placed after the first one, and its frequency is swept with a VCO to generate symmetric sidebands about the carrier
- A TRANS RFPD's signal is demodulated at the secondary EOM frequency, to give a DC signal proportional to HOM transmission
- This HOM scan is fit to a model, with RoC the free parameter. Since there are two sidebands, the HOM spectrum of the model must be folded about the carrier frequency.
- To get a good signal, we should slightly misalign the input beam, allowing for higher overlap with HOMs.
|
|
31
|
Thu Oct 18 20:23:33 2012 |
Koji | Optics | Characterization | Improved measurement | Significant improvement has been achieved in the RoC measurement.
- The trans PD has much more power as the BS at the cavity trans was replaced by a 50% BS. This covers the disadvantage of using the a Si PD.
- The BB EOM has a 50Ohm terminator to ensure the 50Ohm termination at Low freq.
- The length of the cavity was changed from 1.2m to 1.8m in order to see the effect on the RoC measurement.
By these changes, dramatic increase of the signal to noise ratio was seen.
Now both of the peaks corresponds to the 1st-order higher-order modes are clearly seen.
The peak at around 26MHz are produced by the beat between the carrier TEM00 and the upper-sideband TEM01 (or 10).
The other peak at around 57MHz are produced by the lower-sideband TEM01 (or 10).
Peak fitting
From the peak fitting we can extract the following numbers:
- Cavity FSR (hence the cavity length)
- Cavity g-factor
- Approximate measure of the cavity bandwidth
Note that the cavity itself has not been touched during the measurement.
Only the laser frequency and the incident beam alignment were adjusted.
The results are calculated by the combination of MATLAB and Mathemaica. The fit results are listed in the PDF files.
In deed the fitting quality was not satisfactory if the single Lorentzian peak was assumed.
There for two peaks closely lining up with different height. This explained slight asymmetry of the side tails
This suggests that there is slight astigmatism on the mirrors (why not.)
The key points of the results:
- FSR and the cavity length: 83.28~83.31MHz / L=1.799~1.800 [m] (surprisingly good orecision of my optics placement!)
- Cavity g-factor: Considering the flatness of the flat mirror from the phase map, the measured g-factors were converted to the curvature of the curved mirror.
RoC = 2.583~4 [m] and 2.564~7 [m]. (Note: This fluctuation can not be explained by the statistical error.)
The mode split is an order of 10kHz. This number also agrees with the measurement taken yesterday.
If the curved mirror had the nominal curvature of 2.5m, the flat mirror should have the curvature of ~20m. This is very unlikely.
- Approximate cavity line width: FWHM = 70~80kHz. This corresponds to the finesse of ~500. The design value is ~780.
This means that the locking offset is not enough to explain the RoC discrepancy between the design and the measurement.
|
32
|
Wed Nov 7 01:28:20 2012 |
Koji | Optics | Characterization | Wedge angle test (A1) | Wedge angle test
Result: Wedge angle of Prism A1: 0.497 deg +/- 0.004 deg
Principle:
o Attach a rail on the optical table. This is the reference of the beam.
o A CCD camera (Wincam D) is used for reading out spot positions along the rail.
o Align a beam path along the rail using the CCD.
o Measure the residual slope of the beam path. (Measurement A)
o Insert an optic under the test. Direct the first surface retroreflectively. (This means the first surface should be the HR side.)
o Measure the slope of the transmitted beam. (Measurement B)
o Deflection angle is derived from the difference between these two measurements.
Setup:

o An Al plate of 10" width was clamped on the table. Four other clamps are located along the rail to make the CCD positions reproducible.
o A prism (Coating A, SN: A1) is mounted on a prism mount. The first surface is aligned so that the reflected beam matches with the incident beam
with precision of +/-1mm at 1660mm away from the prism surface. ==> precision of +/- 0.6mrad
o In fact, the deflection angle of the transmission is not very sensitive to the alignment of the prism.
The effect of the misalignment on the measurement is negligible.
o Refractive index of Corning 7980 at 1064nm is 1.4496
Result:
Without Prism
Z (inch / mm), X (horiz [um] +/-4.7um), Y (vert [um] +/-4.7um)
0” / 0, -481.3, -165.1
1.375" / 34.925, -474.3, -162.8
3" / 76.2, -451.0, -186.0
4.375" / 111.125, -432.5, -181.4
6" / 152.4, -432.5, -181.4
7.375" / 187.325, -330.2, -204.6
9" / 228.6, -376.7, -209.3
With Prism / SN of the optic: A1
Z (inch / mm), X (horiz [um] +/-4.7um), Y (vert [um] +/-4.7um)
0” / 0, -658.3, -156.8
1.375" / 34.925, -744.0, -158.1
3" / 76.2, -930.0, -187.4
4.375" / 111.125, -962.6, -181.4
6" / 152.4, -1190.4, -218.6
7.375" / 187.325, -1250.9, -232.5
9" / 228.6, -1418.3, -232.5
Analysis:
Wedge angle of Prism A1: 0.497 deg +/- 0.004 deg
[Click for a sharper image]
|
35
|
Thu Nov 8 13:24:53 2012 |
Koji | Optics | Characterization | More wedge measurement | A1
Horiz Wedge 0.497 +/- 0.004 deg
Vert Wedge 0.024 +/- 0.004 deg
A2
Horiz Wedge 0.549 +/- 0.004 deg
Vert Wedge 0.051 +/- 0.004 deg
A3
Horiz Wedge 0.463 +/- 0.004 deg
Vert Wedge 0.009 +/- 0.004 deg
A4
Horiz Wedge 0.471 +/- 0.004 deg
Vert Wedge 0.019 +/- 0.004 deg
A5
Horiz Wedge 0.458 +/- 0.004 deg
Vert Wedge 0.006 +/- 0.004 deg |
39
|
Fri Nov 9 00:43:32 2012 |
Koji | Optics | Characterization | Further more wedge measurement | Now it's enough for the first OMC (or even second one too).
Today's measurements all distributed in theta>0.5deg. Is this some systematic effect???
I should check some of the compeled mirrors again to see the reproducibility...
A1 Horiz Wedge 0.497039 +/- 0.00420005 deg / Vert Wedge 0.02405210 +/- 0.00420061 deg
A2 Horiz Wedge 0.548849 +/- 0.00419993 deg / Vert Wedge 0.05087730 +/- 0.00420061 deg
A3 Horiz Wedge 0.463261 +/- 0.00420013 deg / Vert Wedge 0.00874441 +/- 0.00420061 deg
A4 Horiz Wedge 0.471536 +/- 0.00420011 deg / Vert Wedge 0.01900840 +/- 0.00420061 deg
A5 Horiz Wedge 0.458305 +/- 0.00420014 deg / Vert Wedge 0.00628961 +/- 0.00420062 deg
B1 Horiz Wedge 0.568260 +/- 0.00419988 deg / Vert Wedge -0.00442885 +/- 0.00420062 deg
B2 Horiz Wedge 0.556195 +/- 0.00419991 deg / Vert Wedge -0.00136749 +/- 0.00420062 deg
B3 Horiz Wedge 0.571045 +/- 0.00419987 deg / Vert Wedge 0.00897185 +/- 0.00420061 deg
B4 Horiz Wedge 0.563724 +/- 0.00419989 deg / Vert Wedge -0.01139000 +/- 0.00420061 deg
B5 Horiz Wedge 0.574745 +/- 0.00419986 deg / Vert Wedge 0.01718030 +/- 0.00420061 deg
E1 Horiz Wedge 0.600147 +/- 0.00419980 deg / Vert Wedge 0.00317778 +/- 0.00420062 deg
E2 Horiz Wedge 0.582597 +/- 0.00419984 deg / Vert Wedge -0.00537131 +/- 0.00420062 deg
E3 Horiz Wedge 0.592933 +/- 0.00419982 deg / Vert Wedge -0.01082830 +/- 0.00420061 deg
-------
To check the systematic effect, A1 and B1 were tested with different alignment setup.
A1 Horiz Wedge 0.547056 +/- 0.00419994 deg / Vert Wedge 0.0517442 +/- 0.00420061 deg
A1 Horiz Wedge 0.546993 +/- 0.00419994 deg / Vert Wedge 0.0469938 +/- 0.00420061 deg
A1 Horiz Wedge 0.509079 +/- 0.00420003 deg / Vert Wedge 0.0240255 +/- 0.00420061 deg
B1 Horiz Wedge 0.547139 +/- 0.00419994 deg / Vert Wedge 0.0191204 +/- 0.00420061 deg
|
40
|
Sat Nov 17 02:31:34 2012 |
Koji | Optics | Characterization | Mirror T test | Mirror T test
The mirror was misaligned to have ~2deg incident (mistakenly...) angle.
C1: Ptrans = 7.58uW, Pinc = 135.0mW => 56.1ppm
C1 (take2): Ptrans = 7.30uW, Pinc = 134.4mW => 54.3ppm
C2: Ptrans = 6.91uW, Pinc = 137.3mW => 50.3ppm
C3: Ptrans = 6.27uW, Pinc = 139.7mW => 44.9ppm
C4: Ptrans = 7.62uW, Pinc = 139.3mW => 54.7ppm
C5: Ptrans = 6.20uW, Pinc = 137.5mW => 45.1ppm
A1: Ptrans = 1.094mW, Pinc = 133.6mW => 8189ppm |
41
|
Mon Nov 19 13:33:14 2012 |
Koji | Optics | Characterization | Resuming testing mirror RoCs | In order to resume testing the curvatures of the mirrors, the same mirror as the previous one was tested.
The result looks consistent with the previous measurement.
It seems that there has been some locking offset. Actually, the split peaks in the TF@83MHz indicates
the existence of the offset. Next time, it should be adjusted at the beginning.
Curved mirror SN: C1
RoC: 2.5785 +/- 0.000042 [m]
Previous measurements
=> 2.5830, 2.5638 => sqrt(RoC1*RoC2) = 2.5734 m
=> 2.5844, 2.5666 => sqrt(RoC1*RoC2) = 2.5755 m |
42
|
Mon Nov 26 01:40:00 2012 |
Koji | Optics | Characterization | More RoC measurement | C1: RoC: 2.57845 +/− 4.2e−05m
C2: RoC: 2.54363 +/− 4.9e−05m
C3: RoC: 2.57130 +/− 6.3e−05m
C4: RoC: 2.58176 +/− 6.8e−05m
C5: RoC 2.57369 +/− 9.1e−05m
==> 2.576 +/- 0.005 [m] (C2 excluded) |
44
|
Tue Dec 18 20:04:40 2012 |
Koji | Optics | Characterization | Prism Thickness Measurement | The thicknesses of the prism mirrors (A1-A5) were measured with micrometer thickness gauge.
Since the thickness of the thinner side (side1) depends on the depth used for the measurement,
it is not accurate. Unit in mm.
A1: Side1: 9.916, Side2: 10.066 => derived wedge angle: 0.43deg
A2: Side1: 9.883, Side2: 10.065 => 0.52
A3: Side1: 9.932, Side2: 10.062 => 0.38
A4: Side1: 9.919, Side2: 10.060 => 0.40
A5: Side1: 9.917, Side2: 10.058 => 0.40

|
49
|
Mon Dec 31 03:11:45 2012 |
Koji | Optics | Characterization | Further more RoC measurement | Total (excluding C2, C7, C8): 2.575 +/- 0.005 [m]
New results
C6: RoC: 2.57321 +/− 4.2e-05m
C7: RoC: 2.56244 +/− 4.0e−05m ==> Polaris mount
C8: RoC: 2.56291 +/− 4.7e-05m ==> Ultima mount
C9: RoC: 2.57051 +/− 6.7e-05m
Previous results
C1: RoC: 2.57845 +/− 4.2e−05m
C2: RoC: 2.54363 +/− 4.9e−05m ==> Josh Smith @Fullerton for scattering measurement
C3: RoC: 2.57130 +/− 6.3e−05m
C4: RoC: 2.58176 +/− 6.8e−05m
C5: RoC 2.57369 +/− 9.1e−05m |
50
|
Wed Jan 2 07:35:55 2013 |
Koji | Optics | Characterization | Thickness of a curved mirror | Measured the thickness of a curved mirror:
Took three points separated by 120 degree.
S/N: C2, (0.2478, 0.2477, 0.2477) in inch => (6.294, 6.292, 6.292) in mm |
51
|
Wed Jan 2 07:45:39 2013 |
Koji | Optics | Characterization | First Contact test | Conclusion: Good. First contact did not damage the coating surface, and reduced the loss
- Construct a cavity with A1 and C2
- Measure the transmission and FWHM (of TEM10 mode)
- Apply First Contact on both mirrors
- Measure the values again
Transmission:
2.66 +/- 0.01 V -> 2.83 +/- 0.01 V
==> 6.3% +/- 0.5 % increase
FWHM of TEM10:
Before: (66.1067, 65.4257, 66.1746) +/- (0.40178, 0.38366, 0.47213) [kHz]
After: (60.846, 63.4461, 63.7906) +/- (0.43905, 0.56538, 0.51756) [kHz]
==> 5.1% +/- 2.7% decrease
Question: What is the best way to measure the finesse of the cavity? |
|