ID |
Date |
Author |
Type |
Category |
Subject |
106
|
Tue Apr 9 13:56:09 2013 |
Koji | Optics | General | PZT assembly post gluing / pre baking pictures |
|
108
|
Thu Apr 11 15:10:22 2013 |
Koji | General | General | OMC Progress |
[Zach, Jeff, Koji]
- Jeff configured the bottom side template to have a nominal value
obtained from the solid works model. Note that the thickness of the
curved mirrors are 6mm in the model. He added 0.3mmx2 to the dimensions.
- Jeff located the template on the breadboard such that each side has
the same amount of hanging out.
- Micrometer values
- The one closest to the input mirror (CM1) 0.07
- The other one on CM1 0.24
- The one closest to the output mirror (CM2) 0.17
- The other one on CM2 0.30
/------------\
0.17 0.07
\------------/
0.30 0.24
- Now the template is ready to accept the OMC optics.
- Zach and Koji finished a series of measurements for the test OMC.
Modulation depth:
- We scanned the laser PZT and recorded the data.
CH1: Reflection DC
CH2: PDH Error
CH3: Transmission (Magnified)
CH4: Transmission
- We should be able to obtain the estimation of the modulation depth and the finesse from this measurement.
- Rough calculation of the modulation depth is 0.19
Transmission:
- Incident 16.3mW
- Transmission 15.1mW
- This gave us the raw transmission of 92.6%ish.
- The modulation depth of 0.19 corresponds to 1.8% of the incident power
- The carrier reflection is almost dominated by the mode mismatch. (Note: We did not have a good resolution for the refl beam) =>3.2%
- In total:The incident useful carrier power was 15.4mW ==> Throughput 98%
- There is slight headroom to increase the transmission by cleaning the mirrors.
FSR/Finesse:
- As our AOM is not functioning now, phase modulation sidebands are injected with the BBEOM.
- In principle, we can't expect any signal at the transmission at around the FSR frequency.
- If we apply small locking offset, the split peaks appear at the FSR frequency. The frequency of the dip corresponds to the FSR.
- We probably can extract the finesse of the cavity from this measurement. Lisa is working on this.
HOM/Finesse:
- The same PM injection gives us the frequency of the HOMs.
- We found that our EOM can work until ~500MHz.
- We could characterize the cavity resonance structure more than a single FSR. |
110
|
Sat Apr 13 21:06:02 2013 |
Koji | Optics | General | OMC Bottom-side: cavity glued |
[Jeff, Zach, Lisa, Koji]
Gluing of the cavity mirrors went very well!!!
Preparation
- Checked if the cavity is still resonating. => Yes.
- Checked the FSR: 264.251MHz => 1.1345m
2.5mm too long => Move each micrometer by 0.625mm backward
- FSR&TMS (I)
Aligned the cavity again and checked the FSR: 264.8485MHz => 1.13194m
TMS(V): 58.0875MHz => gamma_V = 0.219324
TMS(H): 58.1413MHz => gamma_H = 0.219526
the 9th modes of the carrier is 9.7-10.4 line width (LW) away from the carrier resonance
the 13th modes of the lower f2 sideband are 9.2-10.2 LW away
the 19th modes of the upper f2 sideband are 0.3-1.8 LW away
We found that this coincidence of the resonance can be corrected by shortening the cavity round-trip by 0.5mm
- Spot positions (I)
The spots on the curved mirrors were ~1mm too much inside (FM side). In order to translate the cavity axis,
MM2 and MM4 were pushed by θ
θ/2.575 = 1mm ==> θ = 2.6 mrad
The separation of the micrometers are ~20mm
d/20mm = 2.6mrad ==> d = 52um
1div of the micrometer corresponds to 10um => 5div = 50um
- Move the micrometers and adjusted the input steering to recover the alignment.
- In any case we were confident to adjust the FSR/TMS/spot positions only with the micrometers
BS1/FM1/FM2 gluing
- Aligned the cavity
- Glued BS1/FM1/FM2 one by one while the cavity resonance was maintained.
FM2 was slipping as the table is not leveled well and the fixture was not supporting the optic.
- FSR&TMS (II)
FSR: 264.964875MHz => 1.13144m (Exactly 0.5mm shorter!)
TMS(V): 58.0225MHz => gamma_V = 0.218982
TMS(H): 58.1225MHz => gamma_H = 0.219359
the 9th modes of the carrier is 10.3~11.7 LW away
the 13th modes of the lower f2 sideband are 7.4~9.3 LW away
the 19th modes of the upper f2 sideband are 1.5~4.4 LW away
- Spot positions (II)
Looked OK.
CM2 gluing
- Glued CM2. The mirror was supported from the back with allen keys.
- FSR&TMS (III)
FSR: 264.9665625MHz => 1.13144m
TMS(V): 58.1275MHz => gamma_V = 0.219377
TMS(H): 58.0813MHz => gamma_H = 0.219202
the 9th modes of the carrier is 10.2~10.9 LW away
the 13th modes of the lower f2 sideband are 8.5~9.4 LW away
the 19th modes of the upper f2 sideband are 1.4~2.7 LW away
- Spot positions (III)
Looked slightly off at CM2. Pushed MM2 by 4um.
CM1 gluing
- Glued CM1.
- FSR&TMS (IV)
FSR: 264.964875MHz => 1.13144m
TMS(V): 58.06625MHz => gamma_V = 0.219145
TMS(H): 58.08625MHz => gamma_H = 0.219220
the 9th modes of the carrier is 10.8~11.1 LW away
the 13th modes of the lower f2 sideband are 8.2~8.6 LW away
the 19th modes of the upper f2 sideband are 2.6~3.2 LW away
- Spot positions (final confirmation)
Looked OK.
Final measurement
- After everything was finished, more detailed measurement has been done.
- FSR&TMS (final)
FSR: 264.963MHz => 1.13145m
TMS(V): 58.0177MHz => gamma_V = 0.218966
TMS(H): 58.0857MHz => gamma_H = 0.219221
the 9th modes of the carrier is 10.8~11.7 LW away
the 13th modes of the lower f2 sideband are 7.3~8.6 LW away
the 19th modes of the upper f2 sideband are 2.6~4.5 LW away
Final values for the micrometers
- MM1: The one closest to the input mirror (CM1) 0.78mm
- MM2: The other one on CM1 0.89
- MM3: The one closest to the output mirror (CM2) 0.90
- MM4: The other one on CM2 0.90
/------------\
0.90 0.78
\------------/
0.90 0.89
|
111
|
Tue Apr 16 00:40:45 2013 |
Koji | Optics | General | PD/QPD path gluing ~ preparation |
[Jeff Koji]
- Placed the optics on the PD/QPD path
- Checked the alignment of the beam on the dummy PD/QPD mounts
- There is a bit of (~0.5mm) shift of the spot position from the center. Mainly downward. This is well within a ball park of the PD mounts.
- The PD/QPD path gluing will take place tomorrow.
- Went to the 40m and received the DCPDs from Bob's lab.
- Took six ISC QPDs for the sake of the OMCs.
- They are now in the OMC lab.
- Measured the B mirror / E mirror R&Ts.
- Found anomalously high loss (3%) for the B mirrors (BSs)
- Went through the all mirrors. Some mirrors (3 or 4) seemed less lossy (<~1%). They will be used for the DCPD BS. |
115
|
Wed Apr 17 07:30:04 2013 |
Koji | Optics | General | QPD path glued |
Yesterday, all of the glass components for the QPD path were glued.
- Check the alignment of the beam with the cavity.
- Placed the prisms
- Placed the QPD mount for the gluing test. An alignment disk instead of a diode was placed on the mount.
- Checked the spot positions at the QPDs. A CCD camera with a lens was used to find the spot.
The spots were ~0.5mm lower on the QPD1, and ~1mm lower on the QPD2.
- Glued the first steering mirror while the spot position was continuously monitored.
- Glued the BS in the QPD path while the spot position was monitored.
- FInally a glass bracket was glued.
- The spot on QPD2 was too low to absorb by the QPD shim.
- Once the steering mirror was clamped by a cantilever spring (to prevent slipping), the spot moved up a bit.
(Or, we should say, the cantilever misaligned the optics a bit in pitch in a preferrable direction.)
- The other steering mirror is clamped by a cantilever spring (to prevent slipping), the spot moved up a bit.
Or, we should say, the cantilever misaligned the optics a bit in pitch in a preferrable direction.)
- The last steering mirrors was also glued in a same way. As a result the spot is 0.5mm below the center of the alignment disk.
- Once the PD mounting brackets were glued, we can't place the QPD mount on it as the PEEK bar can't be inserted without moving the gluing template.
- The QPD mount with out the glass bracket was used to check the alignment of the beam dumps.
As the beam dumps have a wide aperture and the yaw alignment of the QPD is big, we could accommodate the beams in the dumps easily.
- The dumps were glued. |
116
|
Thu Apr 18 11:43:59 2013 |
Koji | General | General | Mounting Glass Bracket Failure |
[Jeff, Koji]
- While we were working on the optics alignment, one of the mounting brackets made of glass god tore apart into two when a holding screw was removed.
The glass component had a crack at the very middle of the part.
- We borrowed a setup for photoelastisity measurement from Garilynn. This is a set of polarizer configured to have cross polarization. If there is no photoerastisity
the image is colored in blue (somehow). When the polarization is rotated, the color is changed in red, yellow, or white.
- The cross polarizer was tested with a polycarbonate face shield for the UV protection. It seems doing its job.
- We took a set of photos to see any residual stress in a block. The entire inside of the channel is frosted glass so the technique didn't yield much.
In one orientation we did see stress near the ends but the orientation didn't allow us to see exactly where.
- We had 30 brackets and one OMC requires ten of them. This means that there was no spare and now we don't have enough.
So we decided to spend more as test pieces.
- We tested three scenarios this afternoon. In all three cases both screws were snugged (estimate 0.5 in*lb) before torquing by a torque wrench with a dial meter.
The divisions on the dial of the wrench are 1 in*lb. We were not so confident in the exact measurement but we felt good about the repeatability of the values.
1. Duplicated the original mounting with the chamfers of the PEEK bar facing into the channel. Cracked as the torque wrench read 1 in*lb.
Crack initiation at the first screw, starting along the longitudinal centerline.
2. Turned the nut bar over so the flat side faced into the channel. Successfully torqued both screws to 1 in*lb and removed them.
3. With a razor blade, made fairly large reliefs (countersinks) around the holes in the PEEK. Successfully torqued both screws first to 1 in*lb then 1.5 in*lb.
The block did crack (again at the screw along the centerline) when the torque was ~1.9 in*lb.
It occurs to us that we need micro-compliance AND structural rigidity to distribute the load. The PEEK bars are small and particularly thin where the #4-40 helicoil holes are.
The load is probably concentrated way too much at the holes because it is too weak. Perhaps a good solution, among others, would be to use an aluminum nut plate
with a thin (.02") kapton or viton layer to give the micro-compliance. Additionally, a kapton layer could be used between the block and the aluminum shim,
though this one is probably to be avoided so as to ensure rigidity of the bolted assembly to the bench. Lastly, the nut bar should be shaped such that the area
around the holes and the end of the channel (pretty much the same area) are less stressed than the center portion.
After the discussion with Peter and Dennis, we decided to reinforce the bonded glass piece with invar shims.
Each shim will be threaded such that we don't need to stress the glass piece any more. EP30-2 will be used as the glue.
|
118
|
Thu Apr 18 11:59:02 2013 |
Koji | General | General | DCPD path gluing |
[Jeff, Koji]
DCPD path gluing
Usual preparation
- Locked the cavity.
- Aligned the input beam to the cavity
DCPD BS gluing
- Placed the DCPD BS on the breadboard
- Placed the dummy DCPD mount on the reflection side of the BS. Check the height and position of the spot.
- Placed the dummy DCPD mount on the transmission side of the BS. Check the height and position of the spot.
- The spot positions looked fine.
- Added a dub of UV glue on the BS. Placed it along the fixture.
- Checked the reflection spot again with the CCD. Kept monitored the spot position through out the gluing process
of the BS.
- Blasted the UV illumination
Reflection side beam dump gluing
- Replaced the alignment disk of the dummy DCPD with a photodiode with the cap removed.
- Put the dummy DCPD mount and the beam dump in place
- Checked the reflection spot from the diode on the beam dump. It looked fine.
- Applied 2~3 dubs of the glue on the beam dump. Slid in the dump to the fixture.
- Applied UV illumination. As the beam dump shadows the illumination 3 times of 10sec blasts were applied.
Transmission side beam dump gluing
- Put the dummy DCPD mount with the diode in place
- Put the beam dump in place. The template needed to be lifted up a bit to accomplish this action.
This should be fixed by the modification of the template.
- Checked the transmission spot on the diode and the spot reflected from the diode on the beam dump.
- Actually the spot was too much close to the vertex of the "V" on the beam dump. We determined that
this was mainly caused by the misalignment of the diode element, and can be compensated by the tilt of the diode mount.
- Removed the beam dump from the template once. Applied 2~3 dubs of the glue on the beam dump.
Slid in the dump to the fixture by lifting up the template again.
- Applied UV illumination. As the beam dump shadows the illumination 3 times of 10sec blasts were applied.
Mounting bracket gluing
- Glued the mounting brackets for the DCPD mounts based on the positions specified by the template.
Removing the templates
- Removed the connection bars between the two templates.
- Removed the template at the QPD side. The screws at all of the three sides were needed to be released in order to accomplish this action.
Once the screws are released, the template was slid on the breadboard so that the pads did not scratch the optical surface.
Keep one side of the template use as a pivot, lifted up another side until the pads clear the optic. Then lifted up the other side.
- Removed the other template. This time, the screws at the two DCPD sides are released. The template was slid and lifted in a same way.
Last beam dump gluing
- Once the QPD side template was removed, the last beam dump at the transmission side of the first steering mirror was glued.
- This has been done without any gluing fixture, we held the beam dump with clean Allen keys on the breadboard.
- The paths for the main and stray beams were confirmed by an IR sensor card, and blasted the UV.
Closing the transport fixture
- Removed the constraining pins for the breadboard.
- Made sure all of the constraining pins/screws are released for the other side of the transport fixture were released.
- Put the lid on.
- Fastened the constraining pins/screws of the transport fixture.
- Wrapped the fixture with sheets of the Al foil.
- Pack the fixture in anti-static bags.
|
119
|
Fri May 3 21:09:08 2013 |
Koji | General | General | OMC is back |
L1 OMC is back on the table for the action next week. |
122
|
Wed May 8 15:36:50 2013 |
Koji | General | General | Latest OMC schedule |
May
(done) Mon 6th: Invar plate arrival / Spot position measurement
(done) Tue 7th: Invar plate cleaning / Spot position measurement / EP30-2 arrival / Invar plate gluing to the test mounting brackets
(done) Wed 8th: Invar plate cleaning done / Baking of the test pieces (with Bob's oven)
Thu 9th: ***After bake torque/force test***
***If the invar plate passes the test***
Thu 9th Light side invar plate gluing
Fri 10th Cable side invar plate gluing
Mon 13th The OMC given to Bob (Air bake & Vac bake)
Mon 20th The OMC received from Bob
Apply First contact
Diode mount adjustment / Electronic tests
Tue 21st Diode mount adjustment / Electronic tests / Optical tests
Wed 22nd Final cabling (***Chub***)
Thu 23rd Final cabling / Packing
Fri 24th Packing / Shipping
Mon 27th? Arrival to LLO / Koji fly to LLO
Tue 28th Test on the optical bench
Wed 29th Test on the optical bench
Thu 30th Suspension test? (***Jeff B***)
June
Tue 4th Suspension test done? |
123
|
Fri May 10 09:33:22 2013 |
Koji | Supply | General | COMSOL simulation on the glass bracket stress |

|
125
|
Mon May 13 14:59:16 2013 |
Koji | Mechanics | General | Invar shim gluing |
The invar reinforcement shims were glued on the glass brackets on the breadboard.
We worked on the light side on May 10th and did on the dark side on May 13rd.
U-shaped holding pieces are used to prevent each invar shim to be slipped from the right place.
We are going to bring the OMC breadboard to the bake oven tomorrow to cure the epoxies and promote the outgasing.
|
126
|
Mon May 13 15:00:23 2013 |
Koji | General | General | Current most reliable OMC schedule |
May
Tue 14th The OMC given to Bob (Air bake & Vac bake)
Mon 20th The OMC received from Bob
Apply First contact
Diode mount adjustment / Electronic tests
Tue 21st Diode mount adjustment / Electronic tests / Optical tests
Wed 22nd Final cabling (***Chub***)
Thu 23rd Final cabling / Packing
Fri 24th Packing / Shipping
Mon 27th? Arrival to LLO / Koji fly to LLO
Tue 28th Test on the optical bench
Wed 29th Test on the optical bench
Thu 30th Suspension test? (***Jeff B***)
June
Tue 4th Suspension test done? |
127
|
Tue May 14 19:06:00 2013 |
Koji | Clean | General | OMC Baking |
The OMC is in the air bake oven now.
|
128
|
Mon May 20 14:59:21 2013 |
Koji | General | General | OMC is out from the oven |
The OMC came back to the table again.
No obvious change is visible: no crack, no delamination
The OMC was fixed on the table and the beam was aligned to the cavity |
129
|
Tue May 21 18:28:08 2013 |
Koji | General | General | Current most reliable OMC schedule |
- The wrong Mighty Mouse connectors for the PZT wires were prepared. The correct ones are in the vacuum oven till Tuesday morning.
- The thread holes for the cable pegs are 1/4-20 rather than 10-24. This requires re-machining of the cable pegs & the C&B.
- We are waiting for the fast shipment of the from LHO
May
Thu 23rd Diode mount adjustment / Optical tests
Fri 24th Optical tests
Tue 28th Mighty mouse connector available / Diode mounting finalization
Wed 29th final check
Thu 30th shipment
Fri 31th
June
Mon 3rd ? Arrival to LLO / Koji fly to LLO
Tue 4th Suspension test done? |
130
|
Thu May 23 23:41:48 2013 |
Koji | Mechanics | General | DCPD/QPD Mount |
DCPD mounts and QPD mounts were attached on the breadboard. They are not aligned yet and loosely fastened.
DCPD (mounting 4-40x5/16 BHCS Qty4)
Face plates fatsened by 4-40x5/16 BHCS (24 out of 40)
Housing Face plate Destination PD
002 002 L1OMC DCPD1 #10
003 003 L1OMC DCPD2 #11
004 004 H1OMC DCPD1
008
005 H1OMC DCPD2
009
006 I1OMC DCPD1
010
007 I1OMC DCPD2
QPD (mounting 4-40x5/16 BHCS Qty4)
Face plates fatsened by 4-40x1/4 BHCS (24 out of 80)
Housing Face plate Destination QPD
002 002 L1OMC QPD1 #38 #43 swapped on 29th May.
003 003 L1OMC QPD2 #43 #38
swapped on 29th May.
004
004
H1OMC QPD1
005
005
H1OMC QPD2
006
006
I1OMC QPD1
007
007 I1OMC QPD2
* 4-40x5/16 BHCS Qty 8 left
* 4-40x5/16 BHCS Qty 56 left
Cut the diode legs by 3mm
|
131
|
Thu May 30 14:38:42 2013 |
Koji | Electronics | General | Cable fitting |
Yesterday Jeff and Chub worked on the cabling of the OMC. It turned out that the gender of the cable connectors
going from the cavity side to the connector bracket on top of the OMC were opposite from what is needed.
This way, the connectors can't fixed on the cable harness, thus they are free during the shipping.
We considered several ideas to mitigate this issue and decided to swap the gender of the Mighty Mouse connectors.
In order to check this operation may cause the shortage of the cable length, we made the fitting of the cables.
They seem all long enough for Chub to replace the Mighty Mouse connectors with the proper gender.
We also checked the polarity of the PZT wires. We marked the positive side of the PZT by a knot at the wire end.
|
132
|
Thu May 30 15:00:28 2013 |
Koji | Optics | General | QPD alignment |
The QPD alignment was adjusted using the aligned beam to the cavity and the 4ch transimpedance amplifier.
As I have a test cable for the QPD, I attached a DB9 connector on it so that I can use the QPD transimpedance
amplifier to read the photocurrent. The transimpedance of the circuit is 1kV/A.
As this board (D1001974) does not have X/Y/SUM output, I quickly made the summing circuit on a universal
board I took from Japan a while ago.
The spot on the QPD1 (shorter arm side) seems too low by ~0.64mm. It seems that the QPD is linearly responding
to the input misalignment, so there is no optical or electrical problem.
As I wonder how much I can improve the situation by replacing the diodes, I swapped the diodes between QPD1 and QPD2.
Now QPD1 and QPD2 have the diode #43 and #38, respectively. It improved the situation a llitle (about 60um).
But the beam is still 0.58mm too low. 95% of the power is on the upper two elements.
Of course this is at the edge of the linear range.
I confirmed we still can observe the cavity is fringing even with the beam is aligned on this QPD. So this may be
sufficient for the initial alignment.
The QPD2 was in a better situation. The spot is about 100um too low but this is still well with in the linear range.
The incident powers on the diodes were also measured. The estimated responsivities and Q.E.s are listed below.
The reflection from the diode is adjusted to hit the beam dump properly.
Here are the raw numbers
QPD# QPD1 QPD2
Diode# #43 #38
-------------------------------------
Power Incident 118.8 uW 115.7uW
Sum Out 78.8 mV 84.6 mV
Vertical Out 69.1 mV 11.9 mV
Horizontal Out 9.8 mV -1.6 mV
SEG1 -1.90 mV -17.8 mV
SEG2 -2.18 mV -17.5 mV
SEG3 -32.0 mV -25.3 mV
SEG4 -42.0 mV -23.8 mV
-------------------------------------
Responsivity[A/W] 0.66 0.73
Q.E. 0.77 0.85
-------------------------------------
Arrangement of the segments
View from the beam
/ 2 | 1 X
|---+---|
\ 3 | 4 /
|
133
|
Fri May 31 05:46:54 2013 |
Koji | Optics | General | QPD alignment |
Peter F suggested to check the bottom surface of the PD housings if there is any protrusion/interference/whatever.
And that was true! It was found that the front side of QPD1 (Left) was lifted by a machining burr.
It seems that this burr consistently exists as the other one also have it (see QPD2 picture (right)) although it is not too terrible compared to the one in QPD1.

Once these burrs were removed, the spots were found on the right position of each diode.
From the measurement of the power on each segment, the positions of the spots were estimated. (listed in the table)
They indicate that the spots are within 0.1mm from the center. This is good enough.
The quantum efficiency was measured from the incident power and the sum output. It seems that there are
some difference between the diodes. The numbers are consistent with the measurement the other day.
QPD# QPD1 QPD2
Diode# #43 #38
-------------------------------------
Power Incident 84.7 uW 86.2 uW
Sum Out 56 mV 61 mV
Vertical Out -6.8 mV 10 mV
Horizontal Out 4.2 mV 8.8 mV
SEG1 -17 mV -15 mV
SEG2 -14.5 mV -11 mV
SEG3 -11 mV -15 mV
SEG4 -13 mV -20 mV
-------------------------------------
Spot position X +25 um +46 um (positive = more power on SEG1 and SEG4)
Spot position Y -42 um +46 um (positive = more power on SEG3 and SEG4)
-------------------------------------
Responsivity[A/W] 0.66 0.71
Q.E. 0.77 0.82
-------------------------------------
Arrangement of the segments
View from the beam
/ 2 | 1 X
|---+---|
\ 3 | 4 /
---------------
I(w,x,y) = Exp[-2 (x^2 + y^2)/w^2]/(Pi w^2/2)
(SEG_A+SEG_B-SEG_C-SEG_D)/(SEG_A+SEG_B+SEG_C+SEG_D) = Erf[sqrt(2) d/w]
d: distance of the spot from the center
w: beam width
|
136
|
Mon Jun 3 21:19:03 2013 |
Koji | General | General | Planning |
Monday - Evening
(Koji)
[done] - DCPD alignment
[done] - DCPD test & through-put measurement
[done] - Power dependence test
[done] - Apply Protective First Contact Layer on the optic surfaces
[done] - Wiping the OMC
Tuesday - Morning
(Chub)
[done] - Bring the cable from the oven
Tuesday - Afternoon
(Chub/Jeff)
[done] - Cabling of the OMC
Wednesday - Morning
(Jeff/Koji)
[done] - Cable tying down
[done] - Screw tightening for the PDs
[done] - Wrapping / Packing
[done] - Weighting? (65lb for everything)
(Jeff/George)
[done] - Shipping? (or Wednesday)
Items to be shipped together
v - OMC cables between the cable harness to the suspension
v - 1 PZT cable pin
v - DCPD preamp kit
v - toruqe driver & bits
v - kapton sheet/tube
v - Test PD cables
v - Spare diodes
v - QPD amp circuits (just in case)
v - 1GHz PD / Power supply banana-PD cable / 1GHz PD cables
[done] - Installation scheduling with Peter/Brian/(Mike?)
- Travel plan
[done] Koji goes LLO immediately (possible?) 6/6-6/22
Jeff goes LLO next week?
(Koji)
[done] - Room cleaning
--------------------------
Optical testing plan
Day 0
- Freight and Koji moving
Day 1 Arrival (Thursday or Friday)
- Inspect the shock detector
- Unpacking
- Check the condition of the breadboard
- Place the transportation fixture on the table
- Removing the First Contact layers
- Locking
- Mode matching
Day 2
- Transmission measurement
- Power dependence test
- PD installation / (diode can opening, optional)
- (PD realign, optional)
- diode test
Day 3
- Power dependence test
---------------------------
OMC installation plan
TBD
---------------------------
OMCS installation plan
TBD
---------------------------
Documents
- OMC Hazard analysis (done)
- OMCS Hazard analysis (done)
- OMC instllation procedure
- OMCS instllation procedure
- Work permits
cf. previous documents: E080024, E1300201
---------------------------
---------------------------
Misc
- LIGO access card
controls@lloisc0-work:~$ 2.23-5mW T
2.23-5mW: command not found
controls@lloisc0-work:~$ 2.17 \pm 0.01 R
2.17: command not found
controls@lloisc0-work:~$ 67-68mV inlock
67-68mV: command not found
controls@lloisc0-work:~$ 973mV unlock
973mV: command not found
controls@lloisc0-work:~$ Pin 5.47+-0.014.4
No command 'Pin' found, did you mean:
|
138
|
Wed Jun 5 18:19:51 2013 |
Koji | General | General | Some recent photos from the OMC final test at CIT |
Applying First Contact for the optics cleaning
PD alignment / scattering photos
Cabling
Cabling (final)
|
139
|
Wed Jun 5 18:51:31 2013 |
Koji | General | General | L1 OMC shipped out |
[Koji, Jeff]
The L1 OMC finally sent out from Caltech!
 |
140
|
Fri Jun 7 16:04:44 2013 |
Koji | General | General | [LLO] OMC arrived |
[Koji Zach Suresh]
The OMC arrived at LLO without any destruction!
- We found that one shock sensor on the box turned red, the other stayed white.
- We brought the Perican case to the changing room and the wrapping was opened in the optics lab.
- The OMC was discovered without any obvious damage. Successful shipment!
- The inspection with a halogen light indicated some amount of particules on the breadboard.
The both sides of the breadboard were wiped with the cleanroom cloth.
- The First Contact layers on the optics were removed while the ionized nitrogen gas was brew.
|
141
|
Mon Jun 10 10:04:37 2013 |
Koji | General | General | [LLO] OMC Test |
[Koji Zach]
We worked on the OMC test over the weekend.
- At the beginning, the measured OMC transmission was ~85% even after subtracting the junk light and sidebands from the calculation.
- A pretty visible (by eye) dust were on CM1. Also a small residue of First Contact was found on the same mirror.
- We applied FC only on CM1 to remove these.
- The measued transmission went up to the level of 96%.
- We swept the incident power from 0.3mW to 30mW in order to see the dependence of the transmission against the incident power.
- The variation of the transmission ~10% was observed (attached figure 1, Red). This was compared with the similar dependence measured at Caltech (Magenta)
- So, the reduction of the transmission was observed as in eLIGO, although the measurements at Caltech and LLO are not consistent.
- Can this be attributed to the dependence of the PD efficiency? We measured the incident power on the PDs together with the preamp DC output. (Figure.2)
This gives us how the responsivity changes with the incident power.
- Nevertheless, the dependence remains. We'll make more accurate measurement today. |
142
|
Thu Jun 13 12:04:57 2013 |
Koji | General | General | [LLO] OMC Optical Test - completed |
https://alog.ligo-la.caltech.edu/aLOG/index.php?callRep=7373 |
143
|
Thu Jun 13 12:12:20 2013 |
Zach | General | General | [LLO] OMC and OMCS in LVEA |
https://alog.ligo-la.caltech.edu/aLOG/index.php?callRep=7395
|
144
|
Fri Jun 14 06:35:21 2013 |
Jeff | General | General | [LLO] L1 OMC status |
https://alog.ligo-la.caltech.edu/aLOG/index.php?callRep=7410
Weights:
Suspension cage and transportation box: 250.8lb
Suspension cage and transportation box: 150.2lb ==> 100.6lb ==> 45,630 g
Metal Breadboard: 7261 g
Glass Breadboard and transportation fixture: 16382 g
Transportation fixture only: 9432 g ==> 6950 g
Added mass (up to now): 300 g ==> 7250 g
Preamp arrangement
|
146
|
Tue Jun 18 15:45:38 2013 |
Koji | General | General | [LLO] OMC installation in HAM6 |
OMC installed in HAM6!
https://alog.ligo-la.caltech.edu/aLOG/index.php?callRep=7486
|
147
|
Fri Jun 28 12:20:49 2013 |
Koji | General | General | Dmass's loan of Thorlabs HV amp |
http://nodus.ligo.caltech.edu:8080/Cryo_Lab/799
(KA: Returned upon H1OMC building) |
149
|
Fri Aug 9 10:09:56 2013 |
Koji | General | General | PZT Assembly #3/#4 |
Yesterday, Jeff and I bonded the PZT assemblies (#3/#4).
The attached is the arrangement of the components |
150
|
Mon Aug 12 20:22:19 2013 |
Koji | General | General | PZT Assembly #5/#6 |
PZT Assembly #5/#6 were glued on Fri Aug 9th
They are removed from the fixture on Mon Aug 12th.
All of the four PZT assemblies were moved to the OMC lab. |
152
|
Fri Aug 16 16:36:19 2013 |
Koji | Optics | General | Optics List |
Link to the "Mirror/PZT Characterization links"
Breadboard
BB1 OMC(001) OMC
BB2 OMC(002) OMC
BB3 -
BB4 OMC(003) OMC
BB5 -
BB6 -
Mounting Prisms:
M01
M02
M06 OMC(002) CM1 (PZT ASSY #6)
M07
M10 OMC(003) CM1 (PZT ASSY #5)
M11 OMC(002) CM2 (PZT ASSY #4)
M12
M13 OMC(003) CM2 (PZT ASSY #3)
M14
M15
M16 OMC(001) CM1 (PZT ASSY #1)
M17
M20 OMC(001) CM2 (PZT ASSY #2)
M21
M22
Mirror A:
A1 fOMC FM1
A2 Fullerton for the scattering measurement
A3 fOMC FM2
A4
A5
A6 OMC(003) FM2
A7 OMC(001) FM2
A8 OMC(001) FM1
A9 OMC(002) FM1
A10
A11
A12 OMC(003) FM1
A13 OMC(002) FM2
A14
Mirror B:
B1
B2
B3 OMC(001) BS2 (QPD)
B4
B5 OMC(003) BS2 (QPD)
B6
B7 OMC(001) BS3 (DCPD)
B8
B9 OMC(002) BS2 (QPD)
B10 OMC(002) BS3 (DCPD)
B11
B12 OMC(003) BS3 (DCPD)
Mirror C:
C1 OMC(003) CM1 (PZT ASSY #5)
C2 Fullerton for the scattering measurement
C3 OMC(003) CM2 (PZT ASSY #3)
C4 OMC(002) CM2 (PZT ASSY #4)
C5 OMC(001) CM2 (PZT ASSY #2)
C6 OMC(001)
CM1 (PZT ASSY #1)
C7 fOMC CM1
C8 fOMC CM2 -> OMC(002) CM1 (PZT ASSY #6)
C9 OMC(002) CM1 (PZT ASSY #6) -> BURNT
C10 (Liyuan tested)
C11 (Liyuan tested)
C12 curvature untested, faux OMC CM2
C13 curvature untested
Mirror E:
E1 OMC(002) SM2
E2 OMC(002) SM3
E3 OMC(002) BS1
E4 OMC(001) SM2
E5 OMC(002) SM1
E6
E7 OMC(003) BS1
E8 OMC(003) SM1
E9
E10 OMC(001) BS1
E11
E12 OMC(001) SM1
E13 OMC(003) SM2
E14
E15
E16 OMC(001) SM3
E17 OMC(003) SM3
E18
PZT:
PZT11
PZT12
PZT13
PZT14 OMC(003) CM1 (PZT ASSY #5)
PZT15 OMC(003) CM2 (PZT ASSY #3)
PZT21 OMC(002) CM1 (PZT ASSY #6)
PZT22
PZT23 OMC(001) CM2 (PZT ASSY #2)
PZT24
PZT25 OMC(002) CM2 (PZT ASSY #4)
PZT26 OMC(001) CM1 (PZT ASSY #1)
|
153
|
Fri Aug 16 17:21:38 2013 |
Koji | General | General | [OMC002] Build started |
[Jeff Koji]
The breadboard (SN2) was loaded on the transportation fixture.
The laser side template was installed and the cavity mirrors were placed.
The laser beam will be resonated in the cavity next week. |
155
|
Thu Aug 22 15:34:03 2013 |
Koji | Optics | General | OMC Cavity side gluing |
[Koji Jeff]
o BS1, FM1, FM2 prisms were glued
=> This fixed the unstability of the OMC locking
o Checked the spot position on the curved mirrors.
The height of the template was measured to be 6.16mm.
Using a sensor card, the heights of the spots on the curved mirrors were measured to be 7.4mm (CM1) and 7.9mm (CM2).
This means that the beam is ~1.5mm too low.
When the post clamps were applied to the PZT assemblies, the spot positions moved up a little bit (7.9mm - CM1, 8.2mm - CM2).
This is still ~1mm too low.
We can accommodate this level of shift by the curved mirror and the prisms.
We'll try other PZT assemblies to see if we can raise the beam height. |
160
|
Thu Aug 29 18:55:36 2013 |
Koji | Mechanics | General | I1 OMC top side gluing (UV) |
The glass components for the I1 OMC top side were glued by the UV glue.
Breadboard SN#4
Wire bracket SN#5/6/7/8 |
161
|
Fri Aug 30 12:14:50 2013 |
Koji | Optics | General | H1 OMC Cavity length adjustment |
Short conclusion:
The roundtrip cavity length for the H1 OMC was adjusted to be 1.145m
instead of 1.132m such that the 19th HOMs of the lower sideband do not get resonant together with the carrier.
Background:
The purpose of the OMC is to transmit the carrier TEM00 mode while anything else is rejected.
As the optical cavity has infinite numbers of resonant modes, what we practically do is to select
the roundtrip accumulated gouy phase so that low order higher order modes for the carrier
as well as the sidebands (including the TEM00 modes).
The nominal round trip length of the OMC is 1.132m. The curvature of the mirror is 2.575m.
The nominal ratio between the TMS and FSR is 0.218791 and 0.219385 (TMS_V/TMS_H= 0.9973)
for the vertical and horizontal modes. This split comes from the non-zero angle (~4deg) of incidence on the curved mirrors.
In reality, the TMS/FSR ratio depends on the true curvature of the mirror. More importantly, astigmatism
of the mirror changes the difference of the ratios for the vertical and horizontal modes.
The mirror astigmatism can either reduce or increase the split. between the TMSs. For example,
the L1 OMC showed the TMS/FSR ratio of (0.218822, 0.219218) for the vertical and horizontal modes.
TMS_V/TMS_H is 0.9982 which is 0.18% from the unity. This suggests, roughly to say, that 0.27% of the
astigmatism coming from the AOI of 4deg was partially compensated by the mirror astigmatism. This was lucky.
Something unlucky happened to the case for the first choice of the H1OMC curved mirrors.
TMS_V/TMS_H is 0.990 which is indeed 1% away from the unity. This actually caused some problem:
As the modes spreads too wide, the 19th modes became unavoidable. (see the picture below)

Red - carrier, Blue - upper sideband (+45MHz), Green - lower sideband
After the replacing one of the PZT assembly with another one, 1-TMS_V/TMS_H went down to 6%.
But still the 19th mode is on resonance. In order to shift the 19th mode from the resonance, the cavity length
had to be changed more than the range of the micrometer.
Simple simulation:
Attached Mathematica file calculates expected mode structure when the curved mirror position is
moved by DL (then the total roudtrip length changes 4*DL). This tells us that the 19th mode is
moved from the resonance by giving DL=-0.003 or DL=0.0025.
It was impossible to make the cavity short enough as the gluing fixture interferes with the curved mirror.
In fact, it was also impossible to make the cavity long enough as it was. Therefore PEEK shims with
the thickness of 1.5mm was inserted.

Result:
The FSR and TMS were measured with the longer cavity. 50V was applied to PZT1.
FSR: 261.775MHz
TMS_V: 57.575MHz
TMS_H: 57.880MHz
=> Cavity round trip length of 1.1452m
=> TMS/FSR = {0.219941, 0.221106}
The 19th modes for the lower sidebands are successfully moved from the carrier resonance.
The first accidental resonance is the lower sideband at the 28th order modes.

|
162
|
Fri Aug 30 12:22:56 2013 |
Koji | Optics | General | H1 OMC Cavity side UV gluing |
H1 OMC Cavity side optics was glued on the breadboard
Curved mirror gluing
- Applied the UV glues to CM1/CM2 prisms.
- Checked the spot positions on the curved mirrors
- Apply 50V to CM1
- Measure the FSR and TMS while the cavity was locked.
FSR: 261.70925MHz
TMS_V: 57.60500MHz
TMS_H: 57.94125MHz
=> Cavity round trip length of 1.1455m
=> TMS/FSR = {0.220111, 0.221395}
First accidental resonance is the lower sideband at 28th order modes.

Carrier 9th-order HOM: 2.9~7.6 line width away
Upper Sideband 13th-order HOM: 14.1-20.7 LW away
Lower Sideband 19th-order HOM: 3.3-13.1 LW away
- As this result was satisfactory, the UV illumination was zapped. It did not change the alignment. The cavity was kept locked during the illumination.
Peripheral optics gluing
- QPD path BS/Steering Mirrors were glued
- DCPD path BS was glued
The UV glue was applied to the optics.
Then the optics were placed on the breadboard along with the fixture.
Placed the dummy QPD/DCPD mount with the alignment disks.
The horizontal positions of the spots were well with in the horizontal range of the mounts.
The UV illumination was zapped. Checked the alignment again and no problem was found. |
164
|
Fri Aug 30 12:25:29 2013 |
Koji | General | General | H1 OMC Invar mount gluing |
The Invar Mounting Blocks were glued on the breadboard.
Serial number #1/2/5/6/7/8 -> I1 OMC cable side
Serial number #9/10/11/12 -> H1 OMC cavity side |
165
|
Tue Sep 3 17:03:25 2013 |
Koji | General | General | H1 OMC gluing completed |
[Koji Jeff]
H1 OMC All Gluing completed
5 Glue H1 beam dumps (UV)
4 glass wire brackets glued on the H1 topside (UV) SN: #9/10/11/12
6 Invar blocks glued on the H1 topside (EP30) SN: #13/14/15/16/18/19 |
166
|
Wed Sep 4 22:22:54 2013 |
Koji | General | General | H1 OMC wrapped and moved to the bake lab. |
[Koji, Jeff]
We moved the H1OMC to the bake lab.
Chub set up the vacuum bake oven (Oven F) and running without the actual OMC.
We use low temperature (55degC) for the baking.
The actual OMC will be baked from tomorrow afternooon. |
167
|
Sat Sep 7 17:20:56 2013 |
Koji | General | General | OMC/PD lab optical table wrapping |
[Koji Jeff]
In order to prepare for the splinkler installation on the HEPA enclosure, the table with the optics was wrapped with Ameristat sheets. |
168
|
Fri Sep 13 15:09:20 2013 |
Koji | General | General | Sprinkler installation: done |
A sprinkler head was installed on the HEPA enclosure. The head is covered with a plastic cap. |
173
|
Tue Oct 22 17:17:59 2013 |
Koji | General | General | H1OMC cabling |
[Chub, Jeff, Koji]
We worked on the wiring and routing of the cables.
- The cables for the PZT was installed first.
- Pins for the mighty mouse connector were crimped on the PZT wires
- Checked the wiring diagram (D1300589) to find the pinouts.
Pin1 of the mighty mouse is connected to PZT2+, Pin2 to PZT2-, PIn3 to PZT1+, and Pin4 to PZT1-
- Then QPD and PD cables are fixed on the cable harness.
- The QPD/PD cables are attached on the diode housings.
During this process one of the DCPD mounts moved. The fixing screws were not torqued enough.
This means that all of the FC layers need to be removed and the DCPD housing should be aligned again.
- We continued on the cabling. The cables were routed on the top (cable) side.
- Some of the cable pegs were tightened by PEEK cable ties.
- We found that Pin1 and Pin2 of the PZT cables were not intact anymore.
- We ask Chub to work on the PZT pins tomorrow. The PD alignment will be taken tonight or tomorrow. |
174
|
Wed Oct 23 02:45:07 2013 |
Koji | General | General | PD realignment |
DCPD2 got misaligned during the cable installation. The PD alignment procedure have been gone through again.
Cavity locking
- Removed the FC layers for the cavity related mirrors.
- Aligned and locked the cavity.
PD alignment
- Loosen DCPD2. Checked the reflection with a IR card. Checked the spot on the PD with an IR viewer.
- Finger-tight the screws. Check the reflection with the card again. Check the pot on the PD with a CCD.
- If the spot positions are not satisfactory repeat the process.
- If the spot positions are satisfactory, take pictures of the CCD image.
- Fixing screws for all of the PDs/QPDs were tighten by the torque driver with a torque od 1.75 inch lb.
PD QE measurements
- Measure the power incident on the PDs.
- Set up the transimpedance amp to check the photo current.
- PD1 (T side) 9.10+/-0.03 V 13.02 +/- 0.01W -> QE ~80%
- PD2 (R side) 8.70+/-0.01 V 12.53 +/- 0.01W -> QE ~80%
- These are not strange values considering the presence of the glass caps.
PZT polarity check
- The connections between the PZT electrodes and the pins were checked.
- The positive side is marked by a knot on the wire.
FC painting
- The new FC bottle was brought from Downs, thanks to Margot.
|
175
|
Mon Nov 4 19:43:56 2013 |
Koji | General | General | H1OMC Packed |
H1OMC PZT connector was replaced with the correct one. This was the final step for H1OMC.
Jeff and I packed the OMC and put it in the perikan case. It will be shipped tomorrow.
The other tools are also packed in the other box. Here is the list of the items
- Spare PD/QPDs (2 cages)
- Test PD/QPD cables
- Torque driver / bits
- Low noise transimpedance amp
- Kapton sheets
- First Contact kit
- 1/4-20 Screws for the balance weights
- OMC-Structure cables
- Preamp adapter plate
- Screws for the cable mounts
- Clean tools
(scissors, tweezers, forceps, Diagonal pliers, long nose prier)
- Spare Peek cable ties
|
176
|
Thu Nov 21 00:05:35 2013 |
Koji | General | General | H1OMC electronics arrangement |
Checked the PZT arrangement: Mighty Mouse Pin1&2 -> PZT2 (DCPD side), Mighty Mouse Pin3&4 -> PZT1 (QPD side)
DCPD response:
Illuminate DCPD1 (T) -> DCPD B responded in MEDM
Illuminate DCPD2 (R) -> DCPD A responded in MEDM
QPD response:
Illuminate QPD1 -> QPD A responded in MEDM
Illuminate QPD2 -> QPD B responded in MEDM
--------
DCPD1 (T) is marked as "A". This PD is SN"0288"
DCPD2 (R) is marked as "B". This PD is SN"0721"
Corresponding iLOG for the performance
|
177
|
Tue Dec 10 16:41:51 2013 |
Koji | General | General | To Buy |
Masks / Wipes => done |
178
|
Tue Feb 18 18:58:38 2014 |
Koji | General | General | LHO H1 OMC installation photos |
LHO OMC installation photos
|
179
|
Fri Feb 28 19:50:11 2014 |
Koji | General | General | Misalignment ABCD matrix for the aLIGO OMC |
Relationship between mirror misalignment and cavity mode shift was calculated.
The technique described in T0900647 by Sam Waldman was used.
The angles and displacement of the mirrors and beams are defined in the attached figure.
x1 = 0.893134 α + 1.10676 β + 1.32252 γ + 1.24619 δ
𝛳1 = 0.75864 α - 0.75864 β - 0.271075 γ + 0.271075 δ
x2 = 1.10676 α + 0.893134 β + 1.24619 γ + 1.32252 δ
𝛳2 = 0.75864 α + 1.24136 β - 0.271075 γ + 0.271075 δ
x3 = 1.32252 α + 1.24619 β + 1.1691 γ + 1.39962 δ
𝛳3 = -0.271075 α + 0.271075 β + 0.818668 γ - 0.818668 δ
x4 = 1.24619 α + 1.32252 β + 1.39962 γ + 1.1691 δ
𝛳4 = -1.24136 α - 0.75864 β - 0.271075 γ + 0.271075 δ
Assuming the flat mirrors are fixed:
If I want to move the x3 mirror up by 1mm without moving x4, the solution is
γ = -0.00197 mrad
δ = +0.00236 mrad
This yields:
x1 = +0.33mm, x2=+0.66mm, x3 = +1mm, x4 = 0mm |
182
|
Thu Apr 17 21:39:25 2014 |
Koji | Optics | General | More alignment |
STORY:
- The cavity mirrors have scattering spots. The cavity alignment should have been scanned to find a cavity mode to have lowest loss possible.
BTW, We only have horizontal dof for the alignment scan.
- After some struggle nice cavity mode was found. The cavity transmission was 96% for the ideally matched TEM00 carrier.
- It turned out that this imposed too much beam shift in the input beam (~2mm).
- This big shift induces a lot of trouble for the peripheral optics (PDs, QPDs, sterring mirrors).
- What should we do???
Analysis:
- The beam needed to go up between CM1 and CM2 to have the right spots on them. ("UP" is the input side of the OMC).
- This imposed the beam between FM1 and FM2 moved up. In other word, for the given alignment of the FMs by the template,
We needed to hit the upper part of the FMs to have the spots on the CMs up.
Solution:
- The above argument suggets that the nominal beam will give us the right spots on the CMs if we rotate the FMs.
Of course this induces the spot move on the FMs. But this should not be the issue as the most of the loss seems to come from the CMs.
- How much misalignment show we give to the FMs? We want to shift the beam by 2mm on the CMs.
The length of the optical lever is ~0.25m. Therefore the mialignment angle should be
theta = 2e-3/2/0.25 = 4e-3 rad = 4mrad.
The template pad has ~20mm separation. The thickness of the shim should be 20mm*4mrad = 80um
- Our aluminum foil seems to have the thickness of 30-40um. We can't have this minimum thickness on the template pad as there is not enough compression pressure
=> Just use a single layer of Al piece to shim the FMs.
Attempt:
- The shims were inserted at the upper pads of the FMs.
- Aligned the input beam and the CMs so that the spots on the CMs are approximately recovered.
- Measure the cavity power budget
Pin: 34.7mW
Refl PD: offset = -7.5mV, unlock = 6.07V, inlock = 89.7mV
Ptrans = 32.5mW
Ptrans(CM2) = 0.181mW
Ptrans(CM2) = 0.184mW
Assume finesse of 400
==>
Pin: 34.7mW
Pjunk: 0.534mW
Pcoupled: 34.1mW
Mode matching: 98.5%
Cavity reflectivity in power: 0.00061
Cavity transmission in power: 0.951 (This is not a best number but acceptable.)
Loss per mirror: 75.4ppm
FM power refl/trans: 0.9923 / 7630ppm
CM1 power refl/trans: 0.999882 / 42.8ppm
CM2 power refl/trans: 0.999881 / 43.5ppm
Total roundtrip loss of the cavity (Loss + CM leakage): 388ppm
Result:
How much the input beam is away from the left wall of the OMC breadboard?
40.88mm from the template edge
8.36mm between the template edge and the bread board
=> 32.52mm
How much should this number be? 32.94mm from the solidworks model => With in 0.5mm! Nice!
Next:
- Just in case plce all of the optics and check if the beam is delivered within the alignment range of the optics
|