40m QIL Cryo_Lab CTN SUS_Lab TCS_Lab OMC_Lab CRIME_Lab FEA ENG_Labs OptContFac Mariner WBEEShop
  OMC elog, Page 5 of 10  Not logged in ELOG logo
ID Date Author Type Category Subjectup
  412   Thu Jun 23 21:03:33 2022 KojiFacilityGeneralMoving the small optical table to CAML (TCS Lab)

I've cleared the small optical table and wondered how to move it out of the room. Fortunately, the north side of the big table had wide enough clearance and let the 36" wide table go through. This was easy without moving other heavy stuff.

From here to the door, a bit of work is required. A possibility is to roll the laser blocking wall to the south side of the big table. This will require moving the shelving in the entrance area but it's not a lot of work compared to disassembling a part of the wall.

If this does not work somehow, we will consider removing the last panel of the wall and it will definitely allow the table to get out from the door.

  353   Tue Apr 23 10:21:12 2019 JoeOpticsConfigurationMoving the spots to the centre of the curved mirrors

[Koji,Philip, Liyuan, Joe]


We moved the curved mirrors to these positions:

inner = 0.807mm

outer = 0.983 mm


inner = 0.92 mm

outer = 0.85 mm

To do this so that realignment was easier, we moved the screws in steps of 5um. We alternated which mirror we adjusted so that we could monitor with a wincam how well aligned the beam into the cavity was. We only moved the cavity mirrors a small amount so we could still see higher order mode flashes transmitted through the cavity (e.g.TM03 modes). We would then improve the input alignment, and then move the cavity mirrors some more. Once the mirrors were adjusted according to http://nodus.ligo.caltech.edu:8080/OMC_Lab/190422_195450/misalignment4.pdf the spot positions looked near the middle of the curved mirrors (using a beam card). We began beam walking but we ran  out of range of the bottom periscope screws in the yaw dof. We tried using the third screw to move the mirrror in both yaw and pitch, hopefully this will let move the mirror such that we can use the just the yaw screw. This screw also ran out of range, so we decided that the cavity needed a small adjustment.

The curved mirrors were moved slightly (>5um) and then we tried to get alignment. By using the fibre coupler translation stage, we move the beam side ways slightly, and then tried to get the periscope mirrors back to a position where the screws could move the mirrors. Once we had an ok alignment, we checked the beam. It looked like it was pretty close to the centre of the curved mirrors, which is where we wanted it to be.

We then tried locking the cavity, although the error signal was quite small. The adjusted the input offset and gain of the servo (there is apparently some problem to do with the input and output offsets). Once the cavity was locked we could make the final adjustments to aligning. We still ran out of range on the periscope. We decided to move the breadboard with the fibre coupler and mode matching lenses on it. Because we knew that the cavity was aligned such that the beam hits the centres of the curved mirrors, we could regain flashes quite quickly. We saw the error signal go down, but eventually this decrease was just to do with the beam clipping on the periscope mirrors. We moved the spot back to where we ok aligned, and slid the periscope so we were not clipping the mirror. This worked very well, and then optimised the alignment.

We then tried to improve the mode matching. 

We took photos of the spot positions (quite near the center) and made the detuned locking measurement. The fitting of the data (attachment 1) wsa 1.1318m (what error should we put here?).

I think the order we did things in was:

  • turning anti clockwise on the fibre coupler and misalign the diode, we measured the modespacing.
  • returned the alignment for the photodiode, and realign fibre couple.
  • miss align the photodiode horizontally, and then used fibre coupler to maximise the peak higher order mode peak height. We then used the PD again to make the peak height bigger.
  75   Sat Mar 23 02:32:23 2013 KojiFacilityGeneralN2 cylinder delivered

Preparation for ionized N2 blow

- 99.9998% N2 cylinder delivered (ALPHAGAZ 2 grade by AIR LIQUIDE) ALPHAGAZ 2 [PDF]

- Filter and Arcing module already in the lab

- A brass regulator to be installed (Done - March 24)

- 50 ft air line already in the lab / needs to be wiped/rinsed (Done - March 24)

- Air line and filter installed (Done - March 24)

  304   Tue Aug 7 15:43:12 2018 KojiElectronicsCharacterizationNew LLO EOM stuffed

[Rich, Dean, Koji]

Stuffed all inductors for the new LLO EOM. As the impedances were sensitive to the positions of the inductors in the housing, they were glued with a glue gun.
Also the lid of the housing significantly change the stray capacitance and lowers the resonant frequency (meaning lowers the Q too), we decided to tune the matching circuit without the lid.

The attached plots show the measured impedances. They all look well tuned and matched. We will prepare and perform the optical measurement at the 40m.

  71   Thu Mar 14 22:18:23 2013 KojiGeneralGeneralNew loans for the diode test

ALL returned

Loan from ATF:

2 blue banana cables returned on Jun 4, 2013

BNC cable returned on Mar 21, 2013

TENMA triple power supply returned on July 17, 2015

From 40m:

4x GPIB cables returned on Mar 21, 2013

From EE shop:

red banana cables returned on Jun 4, 2013

  301   Tue Jul 3 12:07:47 2018 Rich AbbottElectronicsCharacterizationNotes on 3rd IFO EOM

Attached please see my notes summarizing the models for the electrodes and inductors within the 3rd IFO EOM

  223   Wed Feb 18 21:51:23 2015 KojiGeneralGeneralNotes on OMC Transportation Fixtures & Pelican

LLO has one empty OMC transportation fixture.

LHO has one empty OMC transportation fixture.

LHO has one OMC transportation fixture with 3IFO OMC in it.

LHO has the Pelican trunk for the OMC transportation. Last time it was in the lab next to the optics lab.

  431   Wed Jul 27 23:52:18 2022 KojiGeneralGeneralOMC #002 Cable bracket replacement (1)

Parts check

- D1300052-V3 SN001 is going to be used (Attachment 1)

- This is the PEEK version of the cable bracket (Attachment 2). The side thread holes have no Helicoils inserted. This needs to be done!

Connector arrangement check / cable routing check

Attachment 3: Connector Arrangement from the Northside

Attachment 4: Connector Arrangement from the South side

Attachment 5: Cable routing (Northside down)

At this point, the delamination of the V shape beam dumps was visible. This is the subject of bonding reinforcement.

  434   Wed Aug 10 18:42:27 2022 KojiGeneralGeneralOMC #002 Cable bracket replacement (4)

[Stephen Koji]

Now we got the C&Bed parts to continue to work on the cable bracket replacement.

1) Helicoil insertion

1/4-20 Helicoils were inserted into the 6 thread holes of D1300052. It went mostly okay. We witnessed that the Helicoil insertion tool delaminated the plating of the Helicoils upon insertion (Attachment 1). Stephen mentioned that this is not usual, but we didn't find anything further such as increased friction, more debris, etc. So we decided to go forward.

2) EP30-2 Kit

The EP30-2 kit was transferred from the 40m clean room to the OMC lab. The EP30-2 kit tracking was updated via C1900343

3) D1300052 reinstallation -> FAIL

Now resumed to the installation of D1300052 bracket. However, the hole size of the bracket is just a bit too small compared with the size of the mighty mouse connectors. It was already quite tight with the metal version. However, this PEEK version seems to have 0.1 mm further small diameter, and then the connectors do not penetrate the holes. The plan could be
1) Use a razor blade to shave the hole inner circle.
2) Use a cleaned drill bit to make the hole size 0.2mm bigger.

  435   Thu Aug 11 15:24:57 2022 KojiGeneralGeneralOMC #002 Cable bracket replacement (5)

- The hole size extension is going forwared now.

- Madeline and Chub are cleaning (sonicating) a drill (29/64=0.4531")
- The parts in a bag were brought to the 40m C&B lab.

- The hole is going to be 11mil=0.28mm larger than the recommendation (0.442").
  It's not a D-hole. The connector has a rounded-rectangular flange that fits into the PEEK parts.
  So I don't think it's an issue.

- Chub has a proper spanner to fasten the nuts. We want to use it here and LLO.


  436   Mon Aug 15 21:31:56 2022 KojiGeneralGeneralOMC #002 Cable bracket replacement (6)

The cable bracket was successfully replaced.

  • Looking from the QPD side (North side in Attachment 1), the connectors for the DCPDs and PZT are sticking out, and the ones for QPDs are sticking to the other side. So only two rectangular holes (for QPDs) are facing north.
    • Top left is DCPDT
    • Top right is DCPDR
    • Bottom center is PZT
    • Bottom left is QPD (far/long)
    • Bottom right is QPD (near/short)
  • First, the cable pegs for the short sides are fastened with the original screws (Vented BHCS 1/4-20).
  • Then, the cables are started to be inserted from the bottom so that the nuts can be rotated with the spanner. The spanner helped a bit but the nut only has two positions to hook the spanner and the clearance is not sufficient to insert the spanner when one of the hook positions is facing the bottom. The enlarged hole (29/64") perfectly worked . The flange of the connector can be held with a rectangular hole, so a bit bigger hole than the connector size was not an issue. Finally, all the cables were attached to the bracket.
  • The bracket has not yet been fixed on the OMC breadboard yet. This was done with the four screws from the top. Along with the assembly document E1300201, the fastening torque was limited to 2 in-lb using a digital torque wrench.
  • Attachment 2 shows the view from the "North" side. Attachment 3 shows the view from the "South" side. The cables were not yet tied on the cable pegs on the long side of the bracket.
  438   Mon Aug 15 22:43:35 2022 KojiGeneralGeneralOMC #002 Delamination repair Part1 (1)

[Stephen Koji]

Checked the delamination status:

  • The Invar bar on the cable bracket (DCPD side): Almost all delaminated (Attachment 1 left)
  • The invar bar on the cable bracket (QPD side): Rims still intact, center delaminated (Attachment 1 right)
  • The invar bar reinforced in 2016: One of the reinforcement bar half delaminated (Attachment 2)
  439   Mon Aug 15 22:49:03 2022 KojiGeneralGeneralOMC #002 Delamination repair Part1 (2)

EP30-2 preparation

  • Two Al foil cups + A sheet of Al foil (for test cure)
  • Set a tube on the glue gun
  • Attach an applicator tube
  • Push a couple of times, and dispense the glue for a single stroke on a waste Al cup
  • Pour the 6g of glue to the other cup.
  • Add 0.3g of silica beads powder to the cup
  • Steer. Pick a few drops to the test cure Al foil
  • Bake the test piece for 15min in 200F (95degC) ==> Very good

#1 The Invar bar on the cable bracket (DCPD side)

Added short (frosted) Al bars (Attachment 1) to the short sides of the invar bar. (Attachments 2/3). Some glue was sucked into the delamination gap by capillary action (=good) (Attachment 4)

#2 The Invar bar on the cable bracket (QPD side)

Added short (frosted) Al bars to the short sides of the invar bar. (Attachments 3/5). Maybe some glue was sucked into the delamination gap??? Not so clear. (Attachment 4)

#3 The Invar bar reinforced in 2016

Added a short (frosted) Al bars to a short side of the invar bar (Attachment 6). On both sides of the 2016 reinforcement, rectangular prisms are added (Attachment 6)
Some capillary action is visible beneath the invar bar (Attachment 7)

Leave it as it is for a day


  440   Wed Aug 24 02:51:23 2022 KojiGeneralGeneralOMC #002 Delamination repair Part1 (3)

Inspection of the bonding on the suspension interface side. All look good.

  441   Wed Aug 24 02:53:46 2022 KojiGeneralGeneralOMC #002 Delamination repair Part2 (1)

Inspection of the delaminations in the optics side

  443   Wed Aug 24 03:20:59 2022 KojiGeneralGeneralOMC #002 Delamination repair Part2 (2)


  444   Wed Aug 24 03:26:43 2022 KojiGeneralGeneralOMC #002 Delamination repair Part2 (3)



  415   Mon Jul 18 14:20:09 2022 KojiGeneralGeneralOMC #002 Plan Portal

== Initial Preparation ==

  • [Done] OMC #002 placement
  • [Done] OMC #002 locking
  • Details OMC ELOG 414

== Measurements ==

  • [Done] Transmission / Power budget before FirstContact OMC ELOG 416
  • [Done] Transmission / Power budget after FirstContact OMC ELOG 417
  • [Done] Backscatter measurement with a new deflection optics
    • [Done] Optics bonding done waiting for cure OMC ELOG 420 -> Returned the bond to Madeline OMC ELOG 424
    • [Done] Backscatter measurement
      • Measurement: 0.6 ppm OMC ELOG 422
      • (Transmission is 10~60mW. If the backscatter is the order of 1ppm or less, we expect the light level is ~10nW. Can we really detect it? How? ... OK... last time the measurement has been done with the stick PD type powermeter with baffles and the room light turned off (OMC ELOG 209). So it's not totally crazy.)
  • [Done] High QE PD preparation / install / QE check
    • [Done] High QE PD inventory check
      • A1-23    LLO OMC#001
      • A1-25    LLO OMC#001
      • B1-01    LHO OMC#003
      • B1-16    LHO OMC#003
      • B1-22    @CIT Cage B1 Cleaned/Installed
      • B1-23    @CIT Cage B2 Cleaned/Installed
      • C1-03    @CIT Cage B3 Cleaned
      • C1-05    Dead / CIT contamination test cav
      • C1-07    Dead / CIT contamination test cav
      • C1-08    @CIT Cage C2
      • C1-09    @CIT Cage C3
      • C1-10    @CIT Cage C4
      • C1-11    @CIT Cage D1
      • C1-12    @CIT Cage D2
      • C1-14    @CIT Cage D3
      • C1-15    Dead / CIT Cage D4
      • C1-17    LHO Spare
      • C1-21    LHO Spare
      • D1-08    not @CIT, maybe LLO Spare?
      • D1-10    not @CIT, maybe LLO Spare?
    • [Done] Install & QE check
  • [Done] Fiber input beam characterization OMC ELOG 421

== Repair / Preparation ==

== Shipping ==

  • [Done] Tools to ship to LLO OMC ELOG 448
    • CLASS B special tool kit (Allens / Pliers / Mighty-Mouse spanner / Spatula / etc)
    • FC kit
    • Electronic kit (PD connector / trans-impedance amp)
    • Spare High QE PDs
    • Power meters
    • Glass Beamdumps (for optical testing)
    • Cable bracket replacement kit (PEEK cable bracket / cable pegs / fastners / spare fasteners / kapton sheet / cable ties)
    • Emergency EP30-2 kit (excluding the bond)
  • [Done] OMC Pelican Filling (Stephen) / OMC Outerbox/insulation (Stephen/Downs) / OMC Shipment Aug 29, 2022 OMC ELOG 445


  417   Thu Jul 21 02:55:06 2022 KojiGeneralGeneralOMC #002 Power Budget after mirror cleaning

o Power Budget after FirstContact cleaning (2022/07/20)
NPRO ADJ -50 (min)
Fiber incident --.-mW
Fiber output --.-mW
Matching to the fiber ??%

DCPD T =  8.62  +/- 0.01  mW
REFPD  =  3.549  +/- 0.001 V

DCPD R =  9.46  +/- 0.01  V
REFPD  =  3.562 +/- 0.001 V

CM1    =  74.5  +/- 0.1   uW
REFPD  =  3.585 +/- 0.001 V

CM2    =  81.7  +/- 0.1   uW
REFPD  =  3.585 +/- 0.001 V

vOFS    = -6.197 +/- 0.001 mV (beam blocked)
vOFS_REF= +4.58mV

LOCKED =  47.6  +/- 0.2   mV
REFPD  =  3.596 +/- 0.003 V

UNLOCK =  2.700 +/- 0.003 V
REFPD  =  3.590 +/- 0.001 V

P_Inc  =  19.36 +/- 0.001  mW
REFPD  =  3.594 +/- 0.001 V

Analysis Result

- Cavity coupling 0.980 (2.0% junk&sidebands)

- Cavity R&T: R=229ppm, T=0.970 (previous T=0.946, 2.4% UP!)
- OMC Throughput (Cavity T x First BS R): T=0.963
- Cavity loss per mirror 42.8 ppm / Round Trip Loss 238ppm

  416   Tue Jul 19 03:17:56 2022 KojiGeneralGeneralOMC #002 Power Budget before mirror cleaning

o Power Budget (2022/07/18)
NPRO ADJ -50 (min)
Fiber incident 62.8mW
Fiber output 45.1mW
Matching to the fiber 72%

DCPD T =  8.90  +/- 0.01  mW
REFPD  =  3.760  +/- 0.001 V

DCPD R =  8.82  +/- 0.01  V
REFPD  =  3.760 +/- 0.001 V

CM1    =  81.4  +/- 0.1   uW
REFPD  =  3.767 +/- 0.001 V

CM2    =  86.6  +/- 0.1   uW
REFPD  =  3.767 +/- 0.001 V

OFS    = -6.214 +/- 0.001 mV (beam blocked)
OFS_REF= +4.587mV

LOCKED =  57.5  +/- 0.5   mV
REFPD  =  3.970 +/- 0.003 V

UNLOCK =  2.816 +/- 0.003 V
REFPD  =  3.943 +/- 0.001 V

P_Inc  =  20.04 +/- 0.01  mW
REFPD  =  3.946 +/- 0.001 V

Analysis Result

- Cavity coupling 0.989 (1.1% junk&sidebands)

- Cavity R&T: R=756ppm, T=0.946
- OMC Throughput (Cavity T x First BS R): T=0.939
- Cavity loss per mirror 90 ppm / Round Trip Loss 432ppm


  430   Wed Jul 27 10:34:30 2022 KojiGeneralGeneralOMC #002 Protective FirstContact Paint

The optical surfaces were coated with FirstContact to keep them clean / somewhat protected during the transportation.
The PD aperture was sealed with FirstContact "caps" (made by Kate in 2016?).

  281   Fri Jun 23 01:58:11 2017 KojiOpticsGeneralOMC #002 Repair - CM1 gluing

[Alena, Koji]

Jun 21: Alena and Koji worked on gluing of the CM1 mirror on the OMC breadboard #002. This is an irregular procedure. Usually, the PZT mirror subassembly is prepared before the mounting prism is glued on the breadboard. In this occasion, however, a PZT and a mirror are bonded on an existing prism because only the damaged mirror and still functional PZT were debonded from the mouting prism.

For this purpose, the mirror and the PZT were fixed on the mounting prism with the modified fixture set (D1600338). The original PZT was reused, and the new mirror #8 was used. The alignment of the mirror was checked OK using the cavity beam before any glue was applied. The arrow of the CM mirror is facing up.

We mixed 8g EP30-2 (it was almost like 3~4 pushes) and 0.4g glass sphere bond lining. Along with EP30-2 procedure, the bond was mixed in an Al pot and tested with 200degF (~93degC) preheated the oven for 15min. The cured bond showed perfect dryness and crispness. The bond was painted on the PZT and the PZT was placed on the fixture. Then more bond was painted on the other side of the PZT. The mirror was placed in the fixture. The spring-loaded front plate was fixed, and the breadboard was left for a day. (Attachment 1~3)

Jun 22: The fixture was removed without causing any visible delamination or void. The attachment 4~6 show how wet the joint is (before baking). There were some excess of EP30-2, which bonded the fixture and the mounting prism as usual. The fixture was detached by prying the front piece against the rear piece with a thin allen key. Some of the excess bond on the mounting prism was removed by scratching.

The alignment of the cavity was checked with the cavity beam and it is still fine.

More photos can be found here: Link to Google Photos Album "OMC #002 Repair - CM1 gluing"

  422   Fri Jul 22 00:31:17 2022 KojiGeneralGeneralOMC #002 backscatter measurement

Measure the power ratio between the forward-propagating and reverse-propagating beams.

  1. Place a small deflecting mirror at the transmission.
  2. Place a flat mirror at the deflected transmission. When the alignment of this mirror is adjusted to retroreflect this beam, the DC of the cavity reflection PD increases, and also the CCD shows spurious fringes.
  3. This condition allows us to locate the power meter at the reverse-propagating spot of the transmission (Attachment 1)
  4. Place a black glass beam dump for the main (bright) transmission (Attachment 2)
  5. Now the power meter is receiving the counter-propagating beam. Turn off the room light and place an anodized Al baffle as shown in Attachment 2. Move the baffle to block only the counter-propagating. Move the baffle out. => Record the power meter reading with/without the baffle in the counter-propagating path. The difference is the power of the reverse-propagating beam.
  6. Now measure the power of the reflected main transmission. This tells us the power ratio between the foward- and back-propagating beams.
  7. Remove the small deflecting mirror and measure the power of the main transmission.
  8. Now the back-propagating power can be estimated from 6 and 7. The same amount is going back to the IFO path.
  9. The reflectivity can be calculated from the 7 and the transmission

- To increase the incident laser power, NPRO Current ADJ was set to be 0 (increased from -50)

- 1st:  Without the baffle 0.373 +/- 0.001 uW / With the baffle 0.318 +/- 0.001 uW
- 2nd: Without the baffle 0.370 +/- 0.001 uW / With the baffle 0.318 +/- 0.001 uW
- 3rd: Without the baffle 0.370 +/- 0.001 uW / With the baffle 0.317 +/- 0.001 uW

==> 53.3 +/- 0.6 nW

- The main transmission was 84.0mW
==> Backpropagation ratio was 0.634+/-0.007 ppm

- Direct measurement of the OMC was  after BS 96.6mW
==> Backpropagation power from the cavity: 61.3 +/- 0.7 nW

- Cavity transmission for the matched beam is Tcav RinputBS = 0.963
==> Incident resonant TEM00 power 100.3mW

- Reflection 61.3+/-0.7 nW x RinputBS = 60.8+/-0.7 nW
-> The effective reflectivity for the mode-matched resonant TEM00 beam incident on the OMC (1st steering mirror) is 0.606+/-0.007 ppm

  426   Tue Jul 26 00:01:59 2022 KojiGeneralGeneralOMC #002 delamination check 2

More epoxy delamination check:

DCPD R (Attachment 1): Found half delaminated

DCPD T (Attachment 2): Found half delaminated

QPD1/QPD2 (Attachment 3): Looks fine


In total we need to fix bonding of three invar bases (including the one for the cable bracket)

  437   Mon Aug 15 22:06:18 2022 KojiGeneralGeneralOMC #002 new cable tie installed

[Stephen Koji]

New cable ties were installed on the cable pegs attached to the long sides of the cable bracket.


  445   Wed Aug 24 11:29:47 2022 KojiGeneralGeneralOMC #002 ready for shipment

[Stephen Koji]

The OMC #002 is ready for shipment.

Attachment 1: Work done on Sept 19, 2022

Other attachments: Putting the OMC in the pelican case.

  464   Fri Dec 2 11:42:03 2022 KojiOpticsCharacterizationOMC #1 cleaning for water soluble contaminants
[Camille, Koji] Log of the work on Nov 30, 2022
The following is the notes from GariLynn

Cleaning for water-soluble contaminants:
It uses deionized water instead of acetone.
  • The first contact must go on the mirror before the water can dry,  so you will need a bigger brush. We have some that are 1cm, I think they are in the back wall cabinet of B119.
  • For the bigger brush, you will need a beaker and perhaps a bigger bottle of First Contact.  There is one in the mini-fridge in the back corner of B110
  • You use an alpha swab instead of a cotton bud
  • For this effort, I encourage you to get a bottle of DI water from stores.
  • I also encourage you to rehearse the motions beforehand - timing is critical, and your mirrors are in a tight spacing

(Attachment 1)
We obtained Regent grade DI water. It was poured into a smaller cup.
FC liquid was also poured into a small beaker.
Wash the mirror with a swab. We should have used a smaller swab that GariLynn has in her lab.

As soon as the mirror was wiped with the water, the FC was applied with a large brush. Don't let the water away!
Then more layer of the FC was added as usual.

The quick painting of FC made a mess around the mirrors due to excess liquid (Attachment 2). So, we decided to remove the FC remnants (on non-optic surfaces) with cotton swabs and then applied FC as usual.

This made the mess removed, however, we found the OMC loss was increased to >10%(!) (Attachment 3). We decided to continue tomorrow (Thu) with more weapons loaded consulting with GariLynn.


  465   Fri Dec 2 12:38:15 2022 KojiOpticsCharacterizationOMC #1 cleaning for water soluble contaminants

Another set of FC cleaning was applied to FM1/FM2/CM1/CM2 and SM2. Some FC strings are visible on SM2. So I decided to clean SM2 as well as the cavity mirrors close to SM2 (i.e. FM2 and CM2)

As a result, the bright scattering spot on CM1 is now very dim. And the loss was reduced to 4.0%. This is 0.4% better than the value before the water cleaning.

It'd be interesting to repeat the water cleaning, at least on FM1. FM1 is the closest cavity mirror to the beam dump damaged by the high-power laser pulse.
Maybe we should also clean the AR side of FM1 and BS1, as they were right next to the damaged beam dump. It is not for the loss but for reducing the scattering.

  466   Fri Dec 2 23:58:33 2022 KojiOpticsCharacterizationOMC #1 cleaning for water soluble contaminants

The second trial of the water scrub

A bright scatter is visible on FM1, so I tried water scrub on FM1. This time, both surfaces of FM1 and both surfaces of BS1 were cleaned.

Smaller Vectra swabs were used for the scrub. Then the water was purged by IPA splashed from a syringe. Right after that FC was applied.
This was a bit messy process as the mixture of water/IPA/FC was splattered on the breadboard.
Nevertheless, all the mess was cleaned by FC in the end.

The transmission measurements are shown in Attachment 1, and the analyzed result is shown together with the past results.

The 2nd water scrub didn't improve the transmission and it is equivalent to the one after the two times of deep cleaning.
I concluded that the water scrub didn't change the transmission much (or at all). We reached the cleaning limit.

  457   Tue Nov 15 10:58:53 2022 KojiOpticsGeneralOMC #1 damaged black glass removal

[Camille, Koji]

The damaged black glass was removed from the OMC breadboard leaving the glass base.
The black glass pieces were bonded very tightly on the FS base with EP30-2. The apparent amount of the bond was not so much but it was such hard that removal by hand was not possible.
We decided to give drips of Acetone on the base hoping the gradual dissolving of EP30-2. Using a knife edge, the "filets" of the bonds were removed, but the BD was still tight.

By wedging the black glass-black glass bonding with the nife edge, the left side (the directly damaged one) was taken off from the structure leaving a tiny fragment of the glass on the base.

The remaining one was even stronger. We patiently kept dripping Acetone on the base and finally, the black glass piece was knocked off and removed from the base.

Attachment 1: The base right after the black glass removal.

Attachment 2: The black glass pieces were stored in a container with Al foil + clean cloth bed. The damaged and fogged surfaces faced up.

Attachment 3: The zoom-in shot of the black glass pieces.

Attachment 4: The base was wiped with Acetone and cleaned with FC. We will bond another BD assembly on the base, presumably using the UV epoxy.

  458   Tue Nov 15 11:12:24 2022 KojiOpticsGeneralOMC #1 fogging on the AR side of BS1 cleaned

[Camille, Koji]

Photo of the BS1 AR cleaning process

Attachment 1: Before cleaning. Foggy surface is visible.

Attachment 2: After FC cleaning. The structure of the deposited material is still quite visible.

Attachment 3: Acetone scrubbing. Cotton Q-tip was used so that the stick does not melt with acetone.

Attachment 4: After acetone scrubbing. Nicely clean!

Acetone scrubbing was applied to HR/AR of BS1, FM1, FM2, BS2, and HR of CM1 and CM2. (total 10 surfaces)
Then final FC paint was applied to these 10 surfaces.

We'll come back to the setup on Thu for FC peeling and loss measurement.

  319   Tue Mar 19 17:30:25 2019 KojiGeneralCharacterizationOMC (002) Test items

OMC #002 Optical tests

  • FSR measurement (done, 2019/1/8-9, 2019/4/1)
  • TMS measurement (done, 2019/1/9)
  • TMS measurement (with DC voltage on PZTs) (done, 2019/1/10)
  • Cleaning (done, 2019/3/19)
  • Power Budget (done, 2019/3/19, 2019/4/1)
  • PZT DC response (done, 2019/3/27)
  • PZT AC response (done, 2019/3/27)
  • QPD alignment (done, 2019/4/5)
  • DCPD alignment (done, 2019/4/4)
  • Beam quality check (done, 2019/4/4)

(Backscattering test)

(Cabling / Wiring)

  • (Attaching cable/mass platforms)
  • (PZT cabling)
  • (DCPD cabling)
  • (QPD cabling)

(First Contact)
(Packing / Shipping)

  325   Fri Apr 5 23:30:20 2019 KojiGeneralGeneralOMC (002) repair completed

OMC(002) repair completed

When the cable harness of OMC(004) is going to be assembled, the cable harness of OMC(002) will be replaced with the PEEK one. Otherwise, the work has been done.

Note that there are no DCPDs installed to the unit. (Each site has two in the OMC and two more as the spares)

More photos: https://photos.app.goo.gl/XdU1NPcmaXhATMXw6

  127   Tue May 14 19:06:00 2013 KojiCleanGeneralOMC Baking

The OMC is in the air bake oven now.


  387   Fri Dec 13 14:59:18 2019 StephenGeneralGeneralOMC Beam Dump Production Cure Bake

[Koji, Jordan, Stephen]

The beam dumps, bonded on Fri 06 Dec 2019, were placed in the newly tuned and configured small dirty ABO at the Bake Lab on Fri 13 Dec 2019.

Images are shared and references are linked below

Bonding log entry - https://nodus.ligo.caltech.edu:8081/OMC_Lab/386

Bake ticket - https://services.ligo-wa.caltech.edu/clean_and_bake/request/992/

OMC Beam Dump - https://dcc.ligo.org/LIGO-D1201285

  388   Wed Dec 18 21:54:53 2019 KojiGeneralGeneralOMC Beam Dump Production Cure Bake

The beamdumps were taken out from the oven and packed in bags.

The bottom of the V are completely "wet" for 17 BDs among 20 (Attachment 1/2).

3 BDs showed insufficient glue or delamination although there is no sign of lack of rigidity. They were separated from the others in the pack.

  393   Mon Sep 28 16:03:13 2020 ranaGeneralGeneralOMC Beam Dump Production Cure Bake
are there any measurements of the BRDF of these things? I'm curious how much light is backscattered into the incoming beam and how much goes out into the world.

Maybe we can take some camera images of the cleaned ones or send 1-2 samples to Josh. No urgency, just curiosity.

I saw that ANU and also some labs in India use this kind of blue/green glass for beam dumps. I don't know much about it, but I am curious about its micro-roughness and how it compares to our usual black glass. For the BRDF, I think the roughnesss matters more for the blackness than the absorption.

  394   Mon Sep 28 16:13:08 2020 KojiGeneralGeneralOMC Beam Dump Production Cure Bake

According to the past backscatter test of the OMC (and the black glass beamdump: not V type but triangular type on a hexagonal-mount), the upper limit of the back reflection was 0.13ppm. https://nodus.ligo.caltech.edu:8081/OMC_Lab/209

I don't have a BRDF measurement. We can send a few black glass pieces to Josh.

  110   Sat Apr 13 21:06:02 2013 KojiOpticsGeneralOMC Bottom-side: cavity glued

[Jeff, Zach, Lisa, Koji]

Gluing of the cavity mirrors went very well!!!


- Checked if the cavity is still resonating. => Yes.

- Checked the FSR: 264.251MHz => 1.1345m
  2.5mm too long => Move each micrometer by 0.625mm backward

  Aligned the cavity again and checked the FSR: 264.8485MHz => 1.13194m
  TMS(V): 58.0875MHz => gamma_V = 0.219324
  TMS(H): 58.1413MHz => gamma_H = 0.219526
  the 9th modes of the carrier is 9.7-10.4 line width (LW) away from the carrier resonance
  the 13th modes of the lower f2 sideband are 9.2-10.2 LW away
  the 19th modes of the upper f2 sideband are 0.3-1.8 LW away
  We found that this coincidence of the resonance can be corrected by shortening the cavity round-trip by 0.5mm

- Spot positions (I)
The spots on the curved mirrors were ~1mm too much inside (FM side). In order to translate the cavity axis,
  MM2 and MM4 were pushed by θ
  θ/2.575 = 1mm ==> θ = 2.6 mrad
  The separation of the micrometers are ~20mm
  d/20mm = 2.6mrad ==> d = 52um

  1div of the micrometer corresponds to 10um => 5div = 50um

- Move the micrometers and adjusted the input steering to recover the alignment.

- In any case we were confident to adjust the FSR/TMS/spot positions only with the micrometers

BS1/FM1/FM2 gluing

- Aligned the cavity

- Glued BS1/FM1/FM2 one by one while the cavity resonance was maintained.
  FM2 was slipping as the table is not leveled well and the fixture was not supporting the optic.

  FSR: 264.964875MHz => 1.13144m (Exactly 0.5mm shorter!)
  TMS(V): 58.0225MHz => gamma_V = 0.218982
  TMS(H): 58.1225MHz => gamma_H = 0.219359
  the 9th modes of the carrier is 10.3~11.7 LW away
  the 13th modes of the lower f2 sideband are 7.4~9.3 LW away
  the 19th modes of the upper f2 sideband are 1.5~4.4 LW away

- Spot positions (II)
  Looked OK.

CM2 gluing

- Glued CM2. The mirror was supported from the back with allen keys.

FSR: 264.9665625MHz => 1.13144m
  TMS(V): 58.1275MHz => gamma_V = 0.219377
  TMS(H): 58.0813MHz => gamma_H = 0.219202
  the 9th modes of the carrier is 10.2~10.9 LW away
  the 13th modes of the lower f2 sideband are 8.5~9.4 LW away
  the 19th modes of the upper f2 sideband are 1.4~2.7 LW away

- Spot positions (III)
  Looked slightly off at CM2. Pushed MM2 by 4um.

CM1 gluing

- Glued CM1.

FSR: 264.964875MHz => 1.13144m
  TMS(V): 58.06625MHz => gamma_V = 0.219145
  TMS(H): 58.08625MHz => gamma_H = 0.219220
  the 9th modes of the carrier is 10.8~11.1 LW away
  the 13th modes of the lower f2 sideband are 8.2~8.6 LW away
  the 19th modes of the upper f2 sideband are 2.6~3.2 LW away

- Spot positions (final confirmation)
  Looked OK. 

Final measurement

- After everything was finished, more detailed measurement has been done.

- FSR&TMS (final)
FSR: 264.963MHz => 1.13145m
  TMS(V): 58.0177MHz => gamma_V = 0.218966
  TMS(H): 58.0857MHz => gamma_H = 0.219221
  the 9th modes of the carrier is 10.8~11.7 LW away
  the 13th modes of the lower f2 sideband are 7.3~8.6 LW away
  the 19th modes of the upper f2 sideband are 2.6~4.5 LW away

Final values for the micrometers

  • MM1: The one closest to the input mirror (CM1) 0.78mm
  • MM2: The other one on CM1 0.89
  • MM3: The one closest to the output mirror (CM2) 0.90
  • MM4: The other one on CM2 0.90

0.90         0.78
0.90         0.89


  155   Thu Aug 22 15:34:03 2013 KojiOpticsGeneralOMC Cavity side gluing

[Koji Jeff]

o BS1, FM1, FM2 prisms were glued
=> This fixed the unstability of the OMC locking

o Checked the spot position on the curved mirrors.

The height of the template was measured to be 6.16mm.
Using a sensor card, the heights of the spots on the curved mirrors were measured to be 7.4mm (CM1) and 7.9mm (CM2).
This means that the beam is ~1.5mm too low.

When the post clamps were applied to the PZT assemblies, the spot positions moved up a little bit (7.9mm - CM1, 8.2mm - CM2).
This is still ~1mm too low.

We can accommodate this level of shift by the curved mirror and the prisms.
We'll try other PZT assemblies to see if we can raise the beam height.

  235   Thu Aug 20 01:35:01 2015 KojiElectronicsGeneralOMC DCPD in-vacuum electronics chain test

We wanted to know the  transimpedance of the OMC DCPD at high frequency (1M~10M).
For this purpose, the OMC DCPD chain was built at the 40m. The measurement setup is shown in Attachment 1.

- As the preamp box has the differential output (pin1 and pin6 of the last DB9), pomona clips were used to measure the transfer functions for the pos and neg outputs individually.

- In order to calibrate the measurements into transimpedances, New Focus 1611 is used. The output of this PD is AC coupled below 30kHz.
This cutoff was calibrated using another broadband PD (Thorlabs PDA255 ~50MHz).

Result: Attachment 2
- Up to 1MHz, the transimpedance matched well with the expected AF transfer function. At 1MHz the transimpedance is 400.

- Above 1MHz, sharp cut off at 3MHz was found. This is consistent with the openloop TF of LT1128.


  236   Wed Aug 26 11:31:33 2015 KojiElectronicsGeneralOMC DCPD in-vacuum electronics chain test

The noise levels of the output pins (pin1/pin6) are measured. Note that the measurement is done with SE. i.e. There was no common mode noise rejection.

  414   Fri Jul 15 22:14:14 2022 KojiGeneralGeneralOMC Lab recovery for the OMC #002 test

- The lab is chilly (18degC)

- Cleaned the lab and the optical table a bit so that the delicate work can be done. The diode test rig (borrowed from Downs - see OMC ELOG 408 and OMC ELOG 409) was removed from the table and brought to the office (to return on Monday)

- The rack electronics were energized.

- The OMC mirrors in use were returned to the cases and stored in the plastic box.

- The optical table was also cleaned. Removed the old Al foils. The table was wiped with IPA

- The OMC #4 was moved to the other part of the table, and then OMC #2 was placed in the nominal place (Attachment 1). Note that the "legs" were migrated from #4 to #2. There are three poles that defines the location of the OMC Transportation

- The lid was removed and the OMC was inspected (Attachment 2). Immediately found some more delamination of the epoxy beneath the cable bracket (Attachment 3). This needs to be taken care of before shipment.

- The cavity was already flashing as usual, and a bit of alignment made the TEM00 flashing.

- The locking was a little tricky because the LB unit seemed to have a gain-dependent offset. After some adjustment, robust locks were achieved. The cavity was then finely adjusted. Attachment 4 shows the CCD image of the reflection. The core of the spot is more or less axisymmetric as usual. There is also a large helo around the spot. I was not aware of this before. I may need to wipe some of the mirrors of the input path.

- As the satisfactory lock was achieved, I called a day by taking a picture of the table (Attachment 5).

  43   Thu Nov 29 21:18:23 2012 KojiOpticsGeneralOMC Mounting Prisms have come



  382   Tue Oct 22 10:25:01 2019 StephenGeneralGeneralOMC PZT Assy #9 and #10 Production Cure Bake

OMC PZT Assy Production Cure Bake (ref. OMC elog 381) for PZT Assy #9 and #10 started 27 September 2019 and completed 28 September 2019. Captured in the below figure (purple trace). Raw data has been posted as an attachment as well.

We have monitored the temperature in two ways:

1) Datalogger thermocouple data (purple trace).
2) Checking in on temperature of datalogger thermocouple (lavender circles) and drive thermocouple (lavender diamonds), only during initial ramp up.

Comments on bake:

  • No changes were made to the tuning or instrumentation of the oven between the successful qualifying bake obtained on 26 September (ref. OMC elog 380). However, the profile seems to have been more similar to prior qualifying bake attempts that were less successful (ref. OMC elog 379), particularly as the oven seems to have ramped to an overtemperature state. I am a bit mystified, and I would like to see the oven tuning characterized to a greater extent than I have had time and bandwith to complete within this effort.
  • The maximum datalogger temperature was 104 °C, and the duration of the soak (94 °C or higher) was 68 minutes. This was in contrast to a programmed soak of 2.5 hours and a programmed setpoint of 84 °C.
  • The drive thermocouple did appear to be under-reporting temperature relative to the datalogger thermocouple, but this was not confirmed during the soak period. Neither thermocouple was calibrated as part of this effort.


  1   Fri Jun 15 15:45:49 2012 KojiGeneralGeneralOMC Plan

LIGO Document G1200683-v1:
aLIGO OMC fabrication and testing plan

aLIGO OMC wiki

  108   Thu Apr 11 15:10:22 2013 KojiGeneralGeneralOMC Progress

[Zach, Jeff, Koji]

- Jeff configured the bottom side template to have a nominal value
obtained from the solid works model. Note that the thickness of the
curved mirrors are 6mm in the model. He added 0.3mmx2 to the dimensions.

- Jeff located the template on the breadboard such that each side has
the same amount of hanging out.

- Micrometer values

  • The one closest to the input mirror (CM1) 0.07
  • The other one on CM1 0.24
  • The one closest to the output mirror (CM2) 0.17
  • The other one on CM2 0.30

0.17         0.07
0.30         0.24

- Now the template is ready to accept the OMC optics.


- Zach and Koji finished a series of measurements for the test OMC.

Modulation depth:

- We scanned the laser PZT and recorded the data.
CH1: Reflection DC
CH2: PDH Error
CH3: Transmission (Magnified)
CH4: Transmission

- We should be able to obtain the estimation of the modulation depth and the finesse from this measurement.

- Rough calculation of the modulation depth is 0.19


- Incident 16.3mW
- Transmission 15.1mW
- This gave us the raw transmission of 92.6%ish.
- The modulation depth of 0.19 corresponds to 1.8% of the incident power
- The carrier reflection is almost dominated by the mode mismatch. (Note: We did not have a good resolution for the refl beam)  =>3.2%

- In total:The incident useful carrier power was 15.4mW ==> Throughput 98%
- There is slight headroom to increase the transmission by cleaning the mirrors.


- As our AOM is not functioning now, phase modulation sidebands are injected with the BBEOM.
- In principle, we can't expect any signal at the transmission at around the FSR frequency.
- If we apply small locking offset, the split peaks appear at the FSR frequency. The frequency of the dip corresponds to the FSR.
- We probably can extract the finesse of the cavity from this measurement. Lisa is working on this.


- The same PM injection gives us the frequency of the HOMs.
- We found that our EOM can work until ~500MHz.
- We could characterize the cavity resonance structure more than a single FSR.

  277   Tue May 16 19:05:18 2017 KojiOpticsConfigurationOMC SN002 fix - temporary optics

Working on the SN002 OMC fix. Checked the inventory. I think I am using C8 mirror as the new temporary CM1 and PZT24 as the new temporary CM2.

  70   Thu Mar 14 17:06:21 2013 KojiMechanicsGeneralOMC SUS work @LLO

EDIT (ZK): All photos on Picasa. Also, I discovered that since Picasa was migrated to Google+ only,
you no longer have the option to embed a slideshow like you used to. Lame, Google.

Photos sent from Zach



  25   Tue Oct 9 05:03:15 2012 KojiElectronicsGeneralOMC Test Electronics Setup


ELOG V3.1.3-