40m QIL Cryo_Lab CTN SUS_Lab TCS_Lab OMC_Lab CRIME_Lab FEA ENG_Labs OptContFac Mariner WBEEShop
  OMC elog, Page 4 of 9  Not logged in ELOG logo
IDdown Date Author Type Category Subject
  283   Sat Jul 1 15:29:57 2017 KojiOpticsGeneralBlack glass cleaning / Final bonding for the emergency repair for OMC #002

[Alena, Koji]

Report of the work on June 30.

1. Cleaning of the black glass beam dumps

As reported in the previous entry, the beam dumps on the OMC breadboard exhibited accumulation of dusts or contaminants on the black glass surfaces. We worried about transfer of the dusts over a period or of the contaminant during baking. It was already known that the contaminants are persistent and not easy to remove only by drag wiping with IPA. So Alena brought a set fo tools to try. Here is the procedure described.

- Inventory (Attachment 1): A small glass beaker, TX715 Alpha® Sampling Swab, plastic brushes, syringes with pure IPA, inspection flash light, Vectra IPA soaked wipes

- Apply clean IPA on a brush. Some IPA should be removed by the IPA soaked wipe so as not to splash IPA everywhere. Rub a glass surface with the brush while the surface is inspected by the flash light. The strokes migrate the contaminants to the direction of wiping. So the brush should be moved outward. This does some cleaning, but it is not enough to remove smudges on the surface. Occasionally clean the brush with IPA poured in the small beaker.

- Apply clean IPA on a swab. Rub the surface with the swab outward. This removes most of the visible smudges.

We decided not to apply FirstContact on the beam dumps at this occasion. In any case, we need to apply FC on all the optical surfaces after the baking. We judged that the current cleanliness level of the beam dump does not affect the over all contamination of the OMC considering the FC application after the baking.

2. Gluing of the reinforcement Al bars on the delaminated Invar mounting brackets
One of the mounting bracket (=invar shim) on the top side (= suspension I/F side) showed the sign of delamination (Attachment 3). This invar is the one at the beam entrance side (Attachment 2).

EP30-2 was mixed as usual: 6g of EP30-2 was mixed with 0.3g glass sphere. The glue was tested with a cooking oven and the result was perfect. The glue was applied to two Al bars and the bars were attached on the long sides of the invar shim with the beveled corner down (to avoid stepping on the existing original epoxy) (Attachments 4, 5). The photo quality by my phone was not great. I will take better photos with a better camera next week.


Glue condition was checked on Monday Jul 3rd. It was all good. New photos were taken. OMC #002 Repair - Gluing of reinforcement AL bars

Attachment 1: DSC_0347.jpg
DSC_0347.jpg
Attachment 2: DSC_0348.jpg
DSC_0348.jpg
Attachment 3: DSC_0350.jpg
DSC_0350.jpg
Attachment 4: DSC_0352.jpg
DSC_0352.jpg
Attachment 5: DSC_0354.jpg
DSC_0354.jpg
  282   Fri Jun 23 10:55:07 2017 KojiOpticsGeneralDust layer on black glass beam dumps?

I wondered why the black glass beam dumps looked not as shiny as before. It was in fact a layer of dusts (or contaminants) accumulated on the surface.
The top part of the internal surface of the black glass was touched by a piece of lens tissue with IPA. The outer surface was already cleaned. IPA did not work well i.e. Required multiple times of wiping. I tried FirstContact on one of the outer surface and it efficiently worked. So I think the internal surfaces need to be cleaned with FC.

Attachment 1: black_glass_dust.JPG
black_glass_dust.JPG
  281   Fri Jun 23 01:58:11 2017 KojiOpticsGeneralOMC #002 Repair - CM1 gluing

[Alena, Koji]

Jun 21: Alena and Koji worked on gluing of the CM1 mirror on the OMC breadboard #002. This is an irregular procedure. Usually, the PZT mirror subassembly is prepared before the mounting prism is glued on the breadboard. In this occasion, however, a PZT and a mirror are bonded on an existing prism because only the damaged mirror and still functional PZT were debonded from the mouting prism.

For this purpose, the mirror and the PZT were fixed on the mounting prism with the modified fixture set (D1600338). The original PZT was reused, and the new mirror #8 was used. The alignment of the mirror was checked OK using the cavity beam before any glue was applied. The arrow of the CM mirror is facing up.

We mixed 8g EP30-2 (it was almost like 3~4 pushes) and 0.4g glass sphere bond lining. Along with EP30-2 procedure, the bond was mixed in an Al pot and tested with 200degF (~93degC) preheated the oven for 15min. The cured bond showed perfect dryness and crispness. The bond was painted on the PZT and the PZT was placed on the fixture. Then more bond was painted on the other side of the PZT. The mirror was placed in the fixture. The spring-loaded front plate was fixed, and the breadboard was left for a day. (Attachment 1~3)

Jun 22: The fixture was removed without causing any visible delamination or void. The attachment 4~6 show how wet the joint is (before baking). There were some excess of EP30-2, which bonded the fixture and the mounting prism as usual. The fixture was detached by prying the front piece against the rear piece with a thin allen key. Some of the excess bond on the mounting prism was removed by scratching.

The alignment of the cavity was checked with the cavity beam and it is still fine.

More photos can be found here: Link to Google Photos Album "OMC #002 Repair - CM1 gluing"

Attachment 1: IMG_0857.JPG
IMG_0857.JPG
Attachment 2: IMG_0859.JPG
IMG_0859.JPG
Attachment 3: IMG_0860.JPG
IMG_0860.JPG
Attachment 4: IMG_0865.JPG
IMG_0865.JPG
Attachment 5: IMG_0868.JPG
IMG_0868.JPG
Attachment 6: IMG_0864.JPG
IMG_0864.JPG
  280   Tue Jun 6 22:00:36 2017 KojiGeneralConfigurationTrans RF PD setup

- Replaced the PZT with the one used from the beginning. This must be PZT #21. After the replacement, the spot positions look very good. I even went up. So I decided this is the configuration to proceed to the gluing. The CM1 mirror has the HR arrow at the top.

- The input beam was realigned w.r.t. the OMC.

- Tried to use the IR viewer with the new rechargable battery brought from the 40m. But the view still didn't work. The possibility is a) the viewer is broken b) the battery is empty.

- Tried to use the stainless clean regulartor for the UHP N2. The outlet has a short tube with a different diameter. The O.D. of the old tube is 6.3mm, while the new one is 9.5mm. If I insert the thinner tube in the new tube, it approximately fits. But I don't believe this is the way...

  279   Tue Jun 6 00:49:48 2017 KojiGeneralConfigurationTrans RF PD setup

Last week, I further worked on the RF system to install 20dB coupler on the agilent unit and setup the R channel. This allowed me to make the FSR/TMS measurement of the OMC.

And today several optical improvement has been done.

- The input/output fiber couplers were adjusted to have the maximum transmission through the PBS right before the OMC.
- The HWP on the output side of the faraday was adjusted to have ~40mW input to the OMC.

Then, the OMC curved mirror is now held by the new in-situ gluing fixture instead of the conventional fixture attached upside down.
The OMC was ocked again and the input alignment was adjutsed. The fixture is blocking the QPD path, so it's not possible to confirm the proper alignment of the cavity (w.r.t. the QPD paths).

The precise positions of the spots could not be confirmed as the battery of the IR viewer was empty. Quick check of the spots by the card tells that the spot on the CM2 (PD side) is slightly too close to FM2 (output coupler). I wonder if this could be solved by rotating the curved mirror.

Otherwise everything look good. Let's try to glue the curved mirror tomorrow.

Note: Spot on CM2 is too close to the edge of the hole on the mounting prism. The meausrementof CM1 is telling that the curverture center is located 2.7mm upper side of the center of the mirror if the HR side arrow is up (and it is the case). If we move the arrow to the QPD path side (90deg CW viewed from the face side), this corresponds to ~1.1mrad CCW tilt in Yaw (viewed from the top of the prism). According to the matrix calculation (T1500060) this will induce ~1.5mm shift of the beam. This should be tried before gluing.

  278   Fri May 26 21:53:20 2017 KojiGeneralConfigurationTrans RF PD setup

Recent work

- DC output of the trans RF PD was connected to the BNC patch panel. => Now CH4 of the scope is monitoring this signal

- The RF sweep signal from the network analyzer is connected to the power combiner for the EOM drive via the SMA patch panel.

- The trans RF PD was aligned first to the leakage beam. It turned out that this signal is too weak. Then the PD was aligned to one of the main OMC transmission. For this purpose, the OMC DCPD (T) was removed from the OMC breadboard.

- It seems that there is a significant amount of RF AM from the EOM. I suspect it is associated with the residual S-pol and birefringence of the steering mirrors (45deg HR). But the HWP at the output of the Faraday is fixed on the Faraday body with a screw and cumbersome for fine adjustment. A PBS and an HWP are added right before the EOM. This made the fiber coupler slightly misaligned. I suppose this new setup still has S&P on the fiber too. Thus, readjustment of the fiber rotations at the input is necessary.

Next step

- Input power to the fiber should be determined before the EOM. Otherwise, touching the HWP before the EOM causes too much power change at the optics of the OMC side.

- Precise adjustment of the RFAM is still necessary.

- The OMC curved mirror should be held by the new fixture.

- Check the beam spots

- Measure cavity parameters. (transmission/FSR/HOM/etc)

==> Then the curved mirror and the PZT will be glued on the prism

  277   Tue May 16 19:05:18 2017 KojiOpticsConfigurationOMC SN002 fix - temporary optics

Working on the SN002 OMC fix. Checked the inventory. I think I am using C8 mirror as the new temporary CM1 and PZT24 as the new temporary CM2.

  276   Tue Mar 28 21:04:27 2017 KojiElectronicsCharacterizationPDH amp

Attachment 1: PDH amp RF part (before the preamp was installed)

Attachment 2: RF-AF transmission

Attachment 3: Attachment 3: LO dependence

Attachment 4: RF amp gain (saturation)

Attachment 5: Input/output noise level

Attachment 6: Attachment 6: Preamp/DCPD out buffer AF circuit

Attachment 1: DSC_0269.JPG
DSC_0269.JPG
Attachment 2: RF_to_AF_conversion.pdf
RF_to_AF_conversion.pdf
Attachment 3: LO_dependence.pdf
LO_dependence.pdf
Attachment 4: RFamp_gain.pdf
RFamp_gain.pdf
Attachment 5: PreampNoise.pdf
PreampNoise.pdf
Attachment 6: preamp.png
preamp.png
  275   Thu Feb 16 17:23:12 2017 KojiSupplyGeneralPurchase

 

  274   Thu Jan 19 20:57:53 2017 KojiSupplyGeneralPurchase

Ordered:

Office Depot
v AA battery Qty. 24
v 9V battery Qty. 4
v Floor cable cover (6ft)

Thorlabs
v HV PZT Driver
v Lenses

  273   Thu Dec 8 21:17:09 2016 KojiGeneralGeneralOMC placed on the table / the beam roughly aligned

The OMC cavity was locked. The alignment was precisely adjusted. The mode matching was optimized by the lens positions. The reflection during the lock is ~0.01 compared to the full reflection on non-resonance, meaning the mode matching is ~99%. The error signal was maximized (i.e. demod pahse was adjusted) by sweeping the modulation frequency. Note that the EOM is broad band. The modulation freq chosen today was 34.6MHz.

Some notes:

- The error signal has not been preamplified at all yet. Because of this, the reflection is very much sensitive to the input offset.

- The OMC needs wind shield to prevent from the noise caused by air turbulance.

- The laser PZT was actuated via the Thorlabs HV amp. Otherwise, the thermal path needs to be configured.

- One of the CCD monitor is dead. Needs more replacement.

- All the electronics should be moved to the rack. This required long BNC and SMA cables.

- The optical table needs cleaning.

  272   Wed Dec 7 21:18:35 2016 KojiGeneralGeneralOMC placed on the table / the beam roughly aligned

The OMC mode matching sled was fixed on the nominal part of the table. Then the OMC was located at the nominal position marked by three poles.

The input periscope was adjusted to have the input beam roughtly centered on the OMC QPDs. This made the beam from FM2 aligned to the missing CM1, and the beam just went through the hole of the mounting prism. Very promising!

I wanted to use the new (modified) mirror gluing fixture to hold a curved mirror on the mounting prism. It turned out that the fixture was neither cleaned nor assembled. I will ask Downs Team to help me to get the cleaned and assembled fixtures.

Meanwhile, I just reused the original gluing fixture upside down in order to proceed cavity alignment and locking. (Attachment 1)
In fact, once the mirror is placed on the mounting prism, the cavity started to flash without further alignment. I thank for the very precise (repeatable) alignment of the OMC optics and PD/QPDs.

The next steps are initial cavity locking, more alignment, and mode matching.

Attachment 1: DSC_0082.jpg
DSC_0082.jpg
Attachment 2: DSC_0084.jpg
DSC_0084.jpg
  271   Wed Dec 7 19:18:10 2016 KojiOpticsGeneralLWE NPRO Laser / Input Optics / Fiber Coupling

FIber Input Mount 132deg
Fiber output mount 275deg
-> 525mW P: 517mW S: 8mW extinction ratio: 0.016

  270   Mon Nov 21 21:19:20 2016 KojiOpticsGeneralLWE NPRO Laser / Input Optics / Fiber Coupling

- About 1.5 month ago, an 700mW LWE NPRO has been brought to OMC Lab.

- The SOP can be found here.

- The base was made for the beam elevation of 3" height. Four 1" pedestals were attached to rise the beam elevation to 4".

- The output from the laser is ~740mW

- After the faraday and the BB EOM, the output is ~660mW

- After the usual struggle, the beam was coupled to the SM fiber. The output is 540mW. The coupling efficiency is >80%.

- Will proceed to the OMC cavity alignment.

  269   Fri Sep 9 19:43:32 2016 KojiOpticsGeneralD1102211 OMC Diode Mount Glass Block went to Downs

D1102211 OMC Diode Mount Glass Block (11pcs) have been given to Calum@Downs

  268   Fri Sep 9 14:34:31 2016 KojiGeneralGeneralItem lending

To 40m

First Contact Kit by Calum

Class A Kapton sheets

 

  267   Thu Aug 25 02:17:09 2016 KojiOpticsCharacterizationInspection of the damaged CM1 (prev H1OMC)

Initial inspection results by Calum, et al.
https://dcc.ligo.org/LIGO-E1600268

  266   Tue Aug 23 23:36:54 2016 KojiOpticsCharacterizationInspection of the damaged CM1 (prev H1OMC)

1. Calum and GariLynn checking the CM1 defect from the front side.
2. Same as above
3. Close up of the defect
4. Using dino-lite microscope to get a close up view of the defect from the front surface.
5. Same as 4
6. Finished for the day and setting up a safefy clamp
7. Finally a tefron cover was attached.

Attachment 1: P8238983.jpg
P8238983.jpg
Attachment 2: P8238986.jpg
P8238986.jpg
Attachment 3: P8238987.jpg
P8238987.jpg
Attachment 4: P8238989.jpg
P8238989.jpg
Attachment 5: P8238990.jpg
P8238990.jpg
Attachment 6: P8238994.jpg
P8238994.jpg
Attachment 7: P8238996.jpg
P8238996.jpg
  265   Mon Aug 22 12:58:16 2016 KojiGeneralGeneralUV bond samples -> Garilynn

- FS base + Mounting Prism

- FS or SF2 1/2" piece + FS or SF2 1/2" piece

- FS? plate + FS or SF2 1/2" piece + FS or SF2 1/2" piece + FS? plate

  264   Mon Aug 15 10:09:10 2016 KojiGeneralGeneralPrev H1 OMC shipped to CIT

Previous H1 OMC shipped from LHO to CIT

https://ics-redux.ligo-la.caltech.edu/JIRA/browse/Shipment-8196

  263   Fri Aug 12 14:58:17 2016 KojiGeneralConfigurationH1 OMC DCPD replacement

Preparation of 3rd OMC for the use in H1

New DCPD(T) = B1-01
DCPD(T) = DCPDA: extracted and accomodated in CAGE-A SLOT1

New DCPD(R) = B1-16
DCPD(R) = DCPDB: extracted and accomodated in CAGE-A SLOT2

  262   Fri Jul 22 22:24:05 2016 KojiGeneralGeneralHQEPD inventory

As of Jul 22, 2016
As of Aug 11, 2016

As of Aug 16, 2016


A1-23 in Cage G https://ics-redux.ligo-la.caltech.edu/JIRA/browse/IHGQEX3000-0-00-A1-23
-> Shipped to LLO https://ics-redux.ligo-la.caltech.edu/JIRA/browse/Shipment-8181
-> Now in https://ics-redux.ligo-la.caltech.edu/JIRA/browse/ASSY-D1201439-1
= Replaced C30665 eLIGO PD (SN 01 in Cage G now) ICS: C30665GH-0-00-0001
-> Removed PD@LLO, Waiting for the shipment to CIT

A1-25 in Cage G https://ics-redux.ligo-la.caltech.edu/JIRA/browse/IHGQEX3000-0-00-A1-25
-> Shipped to LLO https://ics-redux.ligo-la.caltech.edu/JIRA/browse/Shipment-8181
-> Now in https://ics-redux.ligo-la.caltech.edu/JIRA/browse/ASSY-D1201439-1
= Replaced C30665 eLIGO PD (SN 02 in Cage G now) ICS: C30665GH-0-00-0002
-> Removed@LLO, Waiting for the shipment to CIT


B1-01 in Cage A https://ics-redux.ligo-la.caltech.edu/JIRA/browse/IHGQEX3000-0-00-B1-01
-> Shipped to LHO https://ics-redux.ligo-la.caltech.edu/JIRA/browse/Shipment-8182
-> Now in https://ics-redux.ligo-la.caltech.edu/JIRA/browse/ASSY-D1201439-3_2
= replaced C30665 eLIGO PD (SN 11 in Cage A now) ICS: C30665GH-0-00-0011
-> Removed PD@LHO
-> Shipped from LHO to CIT https://ics-redux.ligo-la.caltech.edu/JIRA/browse/Shipment-8187

B1-16 in Cage A https://ics-redux.ligo-la.caltech.edu/JIRA/browse/IHGQEX3000-0-00-B1-16
-> Shipped to LHO https://ics-redux.ligo-la.caltech.edu/JIRA/browse/Shipment-8182
-> Now in https://ics-redux.ligo-la.caltech.edu/JIRA/browse/ASSY-D1201439-3_2
= replaced C30665 eLIGO PD (SN 12 in Cage A now) ICS: C30665GH-0-00-0012
-> Removed PD@LHO
-> Shipped from LHO to CIT https://ics-redux.ligo-la.caltech.edu/JIRA/browse/Shipment-8187


C1-05 in Cage F https://ics-redux.ligo-la.caltech.edu/JIRA/browse/IHGQEX3000-0-00-C1-05
-> @CIT contamination test cavity

C1-07 in Cage F https://ics-redux.ligo-la.caltech.edu/JIRA/browse/IHGQEX3000-0-00-C1-07
-> @CIT contamination test cavity


C1-17 in Cage E https://ics-redux.ligo-la.caltech.edu/JIRA/browse/IHGQEX3000-0-00-C1-17
-> Shipped to LHO https://ics-redux.ligo-la.caltech.edu/JIRA/browse/Shipment-8182
-> Left @LHO as a spare

C1-21 in Cage E https://ics-redux.ligo-la.caltech.edu/JIRA/browse/IHGQEX3000-0-00-C1-21
-> Shipped to LHO https://ics-redux.ligo-la.caltech.edu/JIRA/browse/Shipment-8182
-> Left @LHO as a spare


D1-08 in Cage E https://ics-redux.ligo-la.caltech.edu/JIRA/browse/IHGQEX3000-0-00-D1-08
-> Shipped to LHO https://ics-redux.ligo-la.caltech.edu/JIRA/browse/Shipment-8182
-> Moved to Cage A3
-> Shipped from LHO to CIT https://ics-redux.ligo-la.caltech.edu/JIRA/browse/Shipment-8186
-> Arrived at CIT (Aug 16)

D1-10 in Cage E https://ics-redux.ligo-la.caltech.edu/JIRA/browse/IHGQEX3000-0-00-D1-10
-> Shipped to LHO https://ics-redux.ligo-la.caltech.edu/JIRA/browse/Shipment-8182
-> Moved to Cage A4
-> Shipped from LHO to CIT https://ics-redux.ligo-la.caltech.edu/JIRA/browse/Shipment-8186
-> Arrived at CIT (Aug 16)

  261   Fri Jun 10 17:12:57 2016 KojiGeneralConfigurationL1 OMC DCPD replacement

New DCPD(T) = A1-23
DCPD(T) = DCPDB: extracted and accomodated in CAGE-G SLOT1

New DCPD(R) = A1-25
DCPD(R) = DCPDA: extracted and accomodated in CAGE-G SLOT2

  260   Tue Apr 5 21:20:15 2016 KojiElectronicsCharacterizationMore dark noise measurement

All survived PDs have been measured.

Attachment 1: PD_dark_current.pdf
PD_dark_current.pdf PD_dark_current.pdf PD_dark_current.pdf PD_dark_current.pdf PD_dark_current.pdf PD_dark_current.pdf PD_dark_current.pdf PD_dark_current.pdf
  259   Tue Apr 5 18:22:40 2016 KojiElectronicsCharacterizationBaking / Contamination tests of the PDs

Possible reduction of the QE was observed after air-bake at 75degC.


Yesterday I received Cage G from Bob for intermediate test of the PD performance after air bake but before vacuum bake.
This cage was prepared to be the production pair.

According to the ICS, https://ics-redux.ligo-la.caltech.edu/JIRA/browse/Bake-8047
the PDs were air baked at 75degC for 48 hours.

I took the PDs to my lab to check if there is any issue in terms of the performance.
- Dark current: No change observed
- Dark noise: No noise increase observed
- QE: Probably reduced by ~0.5%.

Here I attached the result of the QE measurement. I have measured the QEs of the baked ones (A1-23 and A1-25) and the reference. Since the reference PD has not been baked, this gives us the measure of the systematic effect. The reference showed the reduction of ~0.1%. Assuming this reduction came from the systematic effect of the measurement system, I observed at least 0.5% QE reduction (A1-23). Note that the previous measurement of 99.8% for A1-25 was too high and dubious. But both A1-23 and A1-25 showed ~0.4% lower QEs.

So I believe the air-baking process reduced the QE.

Another evidence was that now I could clearly see the beam spots on these air-baked-PDs with an IR viewer when the PDs were illuminated with a 1064nm beam. Usually it is difficult to see the spot on the PD. The spot on the reference PD was still dark. So this difference was very obvious. I was afraid that something has been deposited on the surface of the photosensitive element. The surface of the diodes looked still very clean when they were checked with a green LED flash light.

Attachment 1: QE_after_air_bake.pdf
QE_after_air_bake.pdf
  258   Tue Apr 5 18:14:55 2016 KojiGeneralLoan / LendingQPD Lending Crackle

Xiaoyue

QPD head
X-Z stage
Mounting brackets
DB15 cable
QPD matrix circuit
+/-18V power supply cable

  257   Sat Mar 26 18:22:24 2016 KojiElectronicsCharacterizationBaking / Contamination tests of the PDs

For the production of the aLIGO PDs, the following transfer of the PDs were carried out
A1-23 Cage A1 -> G1
A1-25 Cage A2 -> G2

The cage A will be baked at 75degC to see if this improves AMU=64 emission.

At the same time, we will put C1-05 (F1) and C1-07 (F2) into the contamination test cavity.

  256   Sat Mar 26 17:39:50 2016 KojiElectronicsCharacterizationHQEPD dark noise

Dark noise measurement for 6 HQEPDs and 1 C30665. All of these showed sufficiently low dark current noise levels compared with the noise level of the DCPD preamp. The measurement was limited by the input noise (ADC) noise of the FFT analyzer as the line noises were too big.

The measurement has been done with the transimpedance of 1e7. The bandwidth of the measurement was 50kHz.

Attachment 1: PD_dark_current.pdf
PD_dark_current.pdf PD_dark_current.pdf PD_dark_current.pdf PD_dark_current.pdf PD_dark_current.pdf PD_dark_current.pdf PD_dark_current.pdf
  255   Sat Mar 26 01:49:48 2016 KojiOpticsCharacterizationHQEPD QE

Calibration of the transimpedance

Use KEITHLEY 2450 as a calibrated current source. Model 2450 has the current source accuracy of 0.020%+1.5uA at 10mA range. For 6mA current output, the error is 3uA (0.05%).

The output of the current amp at 103 Ohm setting was 6.0023V when -6.000mA current was applied. i.e R_trans = 1000.4 +/- 0.5 Ohm. This is a negligible level.

QE of the diodes (As of 07/30/2016)

Refer E1800372

Attachment 1: QE1.png
QE1.png
Attachment 2: QE2.png
QE2.png
  254   Sun Mar 13 22:02:09 2016 KojiOpticsCharacterizationHQEPD QE measurement (direct comaprison)

Direct comparison of the PD responsibities

We can expect 5% increase of the QE with the new PD.


P-pol 10deg incident

Power meter Ophir RM9C (Systematic error +/-5%)
Vbias = 6V

C30665GH (#07)
Incident: 7.12mW
Reflection: 0.413mW (=> R=5.8%)
PD output: 5.690+/-0.006V
=> Responsibity 0.799+/-0.001 A/W
=> QE = 0.931+/-0.001

HQE PD (A1-23)
Incident: 7.15mW
Reflection: 0.020+/-0.1mW (=> R=0.28%)
PD output: 6.017+/-0.007V
=> Responsibity 0.842+/-0.001 A/W
=> QE = 0.981+/-0.001

Note that there is a 5% systematic error with the power meter.

  253   Sun Mar 13 21:22:27 2016 KojiElectronicsCharacterizationDark current measurement of the HQE PD and other PDs

Transfered for RGA scan

B4 (C1-05) -> F1
C1 (C1-07) -> F2

 

  252   Sun Mar 6 02:13:28 2016 KojiOpticsCharacterizationPD glass reflections

On friday, I removed a glass cover of a G30655 with a PD can cutter.

When a beam shoots a Perkin Elmer/Excelitas PD, we usually observe three reflections.
We always wonder what these are.

When the glass window is illuminated by a beam, I could see two reflections. So they are the front and rear reflection from the glass windows.

Attachment 1: P3048124.JPG
P3048124.JPG
Attachment 2: P3048125.JPG
P3048125.JPG
  251   Sat Feb 20 19:11:22 2016 KojiElectronicsCharacterizationDark current measurement of the HQE PD and other PDs

Dark current of the HQE PD and other PDs were measured.

- The HQE PDs were loaded on the new PD transportation cages (Attachment 1)
The PDs are always shorted by a clean PD plugs. The PD element is still capped with Kapton seals.

- The assignment of the container/slot and the PDs are as follows

Slot \ Container A B C D E
1 A1-23 B1-22 C1-07 C1-11 C1-17
2 A1-25 B1-23 C1-08 C1-12 C1-21
3 B1-01 C1-03 C1-09 C1-14 D1-08
4 B1-16 C1-05 C1-10 C1-15 D1-10

- The measurement has been done with KEITHLEY sourcemeter SMU2450.

- The result is shown in Attachment 2. Most of the PDs show the dark current of ~3nA at 15V bias. C1-05 and C1-07 showed higher dark current at high V region. We should avoid using them for the aLIGO purpose. I hope they are still OK at low bias V if there is no noise issue (TBC). You can not read the PD names on the plot for the nominal ones, but that's OK as they are almost equivalent.

- As a comparison, the dark current of a C30655 (serial #10) was measured. Considering a DC current due to an anbient light (although the PD was covered), the dark current of the HQE PD seems double of C30655.

- Taking an advantage of having the setup, I took the same measurement for the Laser Comp. PDs in ATF. I gave the identification as #1 and #2. #1 has full-length legs while #2 has trancated legs. As Zach reported before, they showed significantly high dark current. (Attachment 3)

Attachment 1: P2197992.jpg
P2197992.jpg
Attachment 2: PD_dark_current.pdf
PD_dark_current.pdf
Attachment 3: PD_dark_current_others.pdf
PD_dark_current_others.pdf
  250   Thu Feb 18 21:08:32 2016 KojiGeneralLoan / Lending(all returned) Antonio loan

Antonio borrowed: Rich's PD cutter (returned), Ohir power meter(returned), Thorlabs power meter head, Chopper

  249   Tue Dec 29 12:15:46 2015 KojiGeneralGeneralGlasgow polarizer passed to Kate

The Glasgow polarizer was passed to Kate on Dec 17, 2015.

  248   Fri Dec 18 15:33:24 2015 KojiGeneralLoan / LendingLoan from Rich

Loan Record: I borrowed a PD can opener from Rich => Antonio Returned Sep 9, 2016

Tungsten Carbide Engraver (permanently given to the OMC lab)

KEITHLEY SOURCE METER + Laptop

  247   Tue Dec 15 13:42:37 2015 KojiOpticsCharacterizationDimensions / packaging of HQE PDs

The dimensions of a high QE PDs was measured as well as the ones for C30665. (Attachment 4, Unit in mm)
They seemed to be very much compatible.


The PDs came with the designated case (Attachment 1). The bottom of the case has a spongy (presumably conductive) material.

Diodes have no window. Each came with an adhesive seal on it. (Attachment 2)
There is a marking of a serial at the side.

I opened one (Attachment 3). The sensitive area looks just beautiful. The seal was reapplied to avoid possible contamination.

Attachment 1: PC147842.jpg
PC147842.jpg
Attachment 2: PC147846.jpg
PC147846.jpg
Attachment 3: PC147848.jpg
PC147848.jpg
Attachment 4: HQEPD_dimension.pdf
HQEPD_dimension.pdf
  246   Tue Dec 15 13:39:13 2015 KojiElectronicsCharacterizationPhase noise measurement of aLIGO EOM drivers

This measurement has been done on Dec 1st, 2015.


The phase noise added by the EOM driver was tested.

The test setup is depicted in the attached PDF. The phase of the RF detector was set so that the output is close to zero crossing as much as possible with the precision of 0.5ns using a switchable delay line box. The phase to voltage conversion was checked by changing the delayline by 1ns. This gave me somewhat larger conversion factor compared to the sine wave test using an independent signal generator. This was due to the saturation of the phase detector as the LO and RF both have similar high RF level for the frequency mixer used.

The measurement has done with 1) no EOM driver involved, 2) one EOM driver inserted in the RF path, and 3) EOM drivers inserted in both the LO and RF paths.

I could not understand why the measurement limit is so high. Also the case 2 seems too low comsidering the noise level for 1) and 3).

At least we could see clear increase of the noise between the case 1) and 3). Therefore, we can infer the phase noise added by the EOM driver from the measurements.

Note: The additional phase noise could be associated with the original amplitude noise of the oscillator and the amplitude-to-phase conversion by the variable attenuator. This means that the noise could be corellated between two EOM drivers. The true test could be done using a PLL with a quiet VCO. Unfortuantely I don't have a good oscillator sufficient for this measurement.

Attachment 1: phase_noise.pdf
phase_noise.pdf phase_noise.pdf phase_noise.pdf
Attachment 2: phase_noise_9MHz.pdf
phase_noise_9MHz.pdf
  245   Tue Dec 15 13:38:34 2015 KojiElectronicsCharacterizationEOM Driver linearity check

Linearity of the EOM driver was tested. This test has been done on Nov 10, 2015.

- Attachment 1: Output power vs requested power. The output start to deviate from the request above 22dBm request.

- Attachment 2: Ctrl and Bias voltages vs requested power. This bias was measured with the out-of-loop channel.
The variable attenuator has the voltage range of 0~15V for 50dB~2dB attenuation.

Therefore this means that:

- The power setting gives a voltage logarithmically increased as the requested power increases. And the two power detectors are watching similar voltages.

- And the servo is properly working. The control is with in the range.

- Even when the given RF power is low, the power detectors are reporting high value. Is there any mechanism to realize such a condition???

Attachment 1: Output_linearity.pdf
Output_linearity.pdf
Attachment 2: Ctrl_Bias.pdf
Ctrl_Bias.pdf
  244   Wed Sep 23 17:49:50 2015 KojiOpticsCharacterizationMore polarizer optics measurement (Summary)

For the Glasgow PBS, the measurement has been repeated with different size of beams.
In each case, the PBS crystal was located at around the waist of the beam.
Otherwise, the measurement has been done with the same way as the previous entries.

Beam radius [um]  Loss [ppm]
 160              5000 +/-  500
 390              2700 +/-  240
1100              5300 +/-  700
1400              2500 +/-  600 (from the previous entry)
2000              4000 +/-  350

Attachment 1: Glasgow_PBS_spotsize.pdf
Glasgow_PBS_spotsize.pdf
  243   Thu Sep 10 04:03:42 2015 KojiOpticsCharacterizationMore polarizer optics measurement (Summary)

Brewster calcite PBS (eLIGO Squeezer OFI)

Loss L = 3600 +/- 200ppm
Angular dependence: Attachment 1

In the first run, a sudden rise of the loss by 1% was observed for certain angles. This is a repeatable real loss.
Then the spot position was moved for the second run. This rise seemed disappeared. Is there a defect or a stria in the crystal?

Wave plate (eLIGO Squeezer OFI?)

Loss L = 820 +/- 160ppm
Angular dependence: Attachment 2

Initially I had the similar issue to the one for the brewster calcite PBS. At the 0 angle, the loss was higher than the final number
and high asymmetric loss (~2%) was observed in the negative angle side. I checked the wave plate and found there is some stain
on the coating. By shifting the spot, the loss numbers were significantly improved. I did not try cleaning of the optics.

The number is significantly larger than the one described in T1400274 (100ppm).

Thin Film Polarlizer (aLIGO TFP)

Loss L = 3680 +/- 140ppm @59.75 deg
Angular dependence: Attachment 3

0deg was adjusted by looking at the reflection from the TFP. The optics has marking saying the nominal incident angle is 56deg.
The measurement says the best performance is at 59.75deg, but it has similar loss level between 56~61deg.

Glasgow PBS

It is said by Kate that this PBS was sent from Glasgow.

Loss L = 2500 +/- 600ppm
Angular dependence: Attachment 4

 

Attachment 1: eLIGO_PBS.pdf
eLIGO_PBS.pdf
Attachment 2: HWP.pdf
HWP.pdf
Attachment 3: TFP.pdf
TFP.pdf
Attachment 4: Glasgow_PBS.pdf
Glasgow_PBS.pdf
  242   Wed Sep 9 01:58:34 2015 KojiOpticsCharacterizationPBS Transmission measurement

Calcite Brewster PBS Continued

The transmission loss of the Calcite brewster PBS (eLIGO squeezer OFI) was measured with different conditions.
The measured loss was 3600+/-200ppm.
(i.e. 900+/-50 ppm per surface)
The measurement error was limited by the systematic error, probably due to the dependence of the PD response on the spot position.


I wonder if it is better to attenuate the beam by a ND filter instead of HWP+PBS.

o First PBS power adjustment -> full power transmission, OD1.0 ATTN Full Power
   PDA20CS Gain 10dB
   Thru 0.746711, PBS 0.744155 => Loss L = 3423 +/- 5ppm

o Same as above, PDA20CS Gain 0dB (smaller amplitude = slew rate less effective?)
   Thru 0.748721, PBS 0.746220 => L = 3340 +/- 5ppm

o Same as above but OD1.4 ATTN
   Thru 0.744853, PBS 0.742111 => L = 3681 +/- 5ppm

o More alignment, more statistics
(PDA20CS 0dB gain =  0.6A/W, 1.51kV/A)
PD(REF, 0dB) 0.426V = 0.47W
PD(MEAS, 0dB) Thru 0.320V, PBS 0.318V = 0.35W, L = 6000+/-3000ppm

Chopping 234Hz, TF 1.6kHz AVG10
Thru 0.745152, PBS 0.742474 => 3594 +/- 5 ppm
Thru 0.745141, PBS 0.742467 => 3589 +/- 5ppm
Thru 0.745150, PBS 0.742459 => 3611 +/- 5ppm
Thru 0.745120, PBS 0.742452 => 3581 +/- 5ppm
Thru 0.745153, PBS 0.742438 => 3644 +/- 5ppm
=> 3604ppm +/-25ppm

o More power

Attenuation OD 1.0
PD(REF, 0dB) 0.875V = 0.97W
PD(MEAS, 0dB) Thru 0.651V, PBS 0.649V = 0.72W, L = 3100+/-1600ppm

Chopping 234Hz, TF 1.6kHz AVG10
Thru 0.746689, PBS 0.743789 => 3884 +/- 5ppm
Thru 0.746660, PBS 0.743724 => 3932 +/- 5ppm
Thru 0.746689, PBS 0.743786 => 3888 +/- 5ppm
Thru 0.746663, PBS 0.743780 => 3861 +/- 5ppm
Thru 0.746684, PBS 0.743783 => 3885 +/- 5ppm
=> 3890ppm +/- 26ppm

o Much less power

Attenuation OD 2.4
PD(REF, 0dB) 67.1mV = 74.0mW
PD(MEAS, 0dB) Thru 53.7V, PBS 53.5V = 59mW, L = 3700+/-1900ppm

Thru 0.745142, PBS 0.742430 => 3640 +/- 5ppm
Thru 0.745011, PBS 0.742557 => 3294 +/- 5ppm
Thru 0.744992, PBS 0.742537 => 3295 +/- 5ppm
Thru 0.745052, PBS 0.742602 => 3288 +/- 5ppm
Thru 0.745089, PBS 0.742602 => 3338 +/- 5ppm
=> 3371ppm +/- 151ppm

o Much less power, but different gain

Attenuation OD 2.4
PD(REF, 20dB) 662mV = 73.1mW
PD(MEAS, 20dB) Thru 501V, PBS 500V = 55.3mW, L = 2000+/-2000ppm

Thru 0.744343, PBS 0.741753 => 3480 +/- 5ppm
Thru 0.744304, PBS 0.741739 => 3446 +/- 5ppm
Thru 0.744358, PBS 0.741713 => 3553 +/- 5ppm
Thru 0.744341, PBS 0.741719 => 3523 +/- 5ppm
Thru 0.744339, PBS 0.741666 => 3591 +/- 5ppm
=> 3519ppm +/- 58ppm


Using the last 4 measurements, mean loss is 3596, and the std is 218. => Loss = 3600+/-200ppm

  241   Tue Sep 8 11:18:10 2015 KojiOpticsCharacterizationPBS Transmission measurement

Motivation: Characterize the loss of the Calcite Brewster PBS.

Setup: (Attachment 1)

- The beam polarization is rotated by an HWP
- The first PBS filters out most of the S pol
- The second PBS further filters the S and also confirms how good the polarization is.

- The resulting beam is modulated by a chopper disk. The chopping freq can be 20~1kHz.

- The 50:50 BS splits the P-pol beam into two. One beam goes to the reference PD. The other beam goes to the measurement PD.

- Compare the transfer functions between RefPD and MeasPD at the chopping frequency with and without the DUT inserted to the measurement pass.

- The PBS shift the beam significantly. The beam can't keep the alignment on the Meas PD when the crystal is removed.
  Therefore the "On" and "Off" states are swicthed by moving the PBS and the steering mirror at the same time.
  The positions and angles of the mounts are defined by the bases on the table. The bases are adjusted to have the same spot position for these states as much as possible.

Device Under Test:

Brewster polarizer https://dcc.ligo.org/LIGO-T1300346

The prisms are aligned as shown in Attachment 2

Between the prisms, a kapton sheet (2MIL thickness) is inserted to keep the thin air gap between them.

Result:

Set1: (~max power without hard saturation)
PD1(REF) 10dB Gain (4.75kV/A) 6.39V
PD2(PBS) 10dB Gain (4.75kV/A) Thru 4.77V, PBS 4.75
Chopping frequency 234Hz, FFT 1.6kHz span AVG 20 (1s*20 = 20s)

Thru 0.748307, PBS 0.745476 => 3783 +/- 5 ppm loss
Thru 0.748227, PBS 0.745552 => 3575 +/- 5 ppm
Thru 0.748461, PBS 0.745557 => 3879 +/- 5 ppm
Thru 0.748401, PBS 0.745552 => 3806 +/- 5 ppm
Thru 0.748671, PBS 0.745557 => 4159 +/- 5 ppm
=> Loss 3841 +/- 2 ppm

Set2: (half power)
PD1(REF) 10dB Gain (4.75kV/A) 3.20V
PD2(PBS) 10dB Gain (4.75kV/A) Thru 2.38V, PBS 2.37
Chopping frequency 234Hz, FFT 1.6kHz span AVG 20 (1s*20 = 20s)

Thru 0.747618, PBS 0.744704 => 3898 +/- 5 ppm loss
Thru 0.747591, PBS 0.744690 => 3880 +/- 5 ppm
Thru 0.747875, PBS 0.744685 => 4265 +/- 5 ppm
Thru 0.747524, PBS 0.744655 => 3838 +/- 5 ppm
Thru 0.747745, PBS 0.744591 => 4218 +/- 5 ppm
=> Loss 4020 +/- 2 ppm

Set3: (1/4 power)
PD1(REF) 10dB Gain (4.75kV/A) 1.34V
PD2(PBS) 10dB Gain (4.75kV/A) Thru 1.00V, PBS 0.999
Chopping frequency 234Hz, FFT 1.6kHz span AVG 20 (1s*20 = 20s)

Thru 0.745140, PBS 0.741949 => 4282 +/- 5ppm loss
Thru 0.745227, PBS 0.741938 => 4413 +/- 5ppm
Thru 0.745584, PBS 0.741983 => 4830 +/- 5ppm
Thru 0.745504, PBS 0.741933 => 4790 +/- 5ppm
Thru 0.745497, PBS 0.741920 => 4798 +/- 5ppm
Thru 0.745405, PBS 0.741895 => 4709 +/- 5ppm
=> Loss 4637 +/- 2ppm


Possible improvement:

- Further smaller power
- Use the smaller gain as much as possible
- Compare the number for the same measurmeent with the gain changed

- Use a ND Filter instead of HWP/PBS power adjustment to reduce incident S pol
- Use a double pass configuration to correct the beam shift by the PBS

To be measured

- Angular dependence
- aLIGO Thin Film Polarizer
- HWP
- Glasgow PBS

Attachment 1: setup.JPG
setup.JPG
Attachment 2: CaF2Prism.jpg
CaF2Prism.jpg
Attachment 3: CaF2Prism2.JPG
CaF2Prism2.JPG
  240   Tue Sep 8 10:55:31 2015 KojiElectronicsAM Stabilized EOM DriverRF AM Measurement Unit E1500151 ~ 37MHz OCXO AM measurement

Test sheet: https://dcc.ligo.org/LIGO-E1400445

Test Result (S1500114): https://dcc.ligo.org/S1500114

  239   Sun Sep 6 16:50:51 2015 KojiElectronicsGeneralUnit test of the EOM/AOM Driver S1500118

TEST Result: S1500118

Additional notes

- Checked the power supply. All voltages look quiet and stationary.

- Checked the internal RF cables too see if there is any missing shield soldering => Looked fine

- Noticed that the RFAM detector board has +/-21V for the +/-24V lines => It seems that this is nominal according to the schematic

- Noticed that the RFAM detector sensitivity were doubled fomr the other unit.
  => This is reated to the modification (E1500353) of  "Controller Board D0900761-B Change 1" (doubling the monitor output gain)

- Noticed that the transfer function of the CTRL signal on the BNC and the DAQ output.
  => This is reated to the modification (E1500353) of  "Servo Board D0900847-B Change 1"  (servo transfer function chage)
  => The measured transfer function did not agree with the prediction from the circuit constants in this document
  => From the observation of the servo board it was found that R69 was not 200Ohm but 66.5 Ohm (See attachment 1).
       This explained the measured transfer function. The actuator TF has: P 2.36, Z 120., K -1@DC (0.020@HF)

- Similarly, the TF between the CTRL port on the unit and the CTRL port on the test rig was also modified.

Noise level

Attachment 2

- The amplitude noise in dBc (SSB) was measured at the output of 27dBm. From the test sheet, the noise level with 13dBm output was also referred. From the coherence of the MON1 and MON2, the noise level was inferred. It suggests that the floor level is better than 180dBc/Hz. However, there is a 1/f like noise below 1k and is dominating the actual noise level of the RF output. Daniel suggested that we should check nonlinear downconversion from the high frequency noise due to the noise attenuator. This will be check with the coming units.

Attachment 1: P9037810.JPG
P9037810.JPG
Attachment 2: RF_AM_spectra.pdf
RF_AM_spectra.pdf
  238   Fri Aug 28 02:14:53 2015 KojiElectronicsAM Stabilized EOM DriverRF AM Measurement Unit E1500151 ~ 37MHz OCXO AM measurement

In order to check the noise level of the RFAM detector, the power and cross spectra for the same signal source
were simultaneously measured with the two RFAM detectors.


As a signal source, 37MHz OCXO using a wenzel oscillator was used. The output from the signal source
was equaly splitted by a power splitter and fed to the RFAM detector CHB(Mon1) and CHA(Mon2).

The error signal for CHB (Mon1) were monitored by an oscilloscope to find an appropriate bias value.
The bias for CHA are adjusted automatically by the slow bias servo.

The spectra were measured with two different power settings:

Low Power setting: The signal source with 6+5dB attenuation was used. This yielded 10.3dBm at the each unit input.
The calibration of the low power setting is dBc = 20*log10(Vrms/108). (See previous elog entry)

High Power setting: The signal source was used without any attenuation. This yielded 22.4dBm at the each unit input.
The calibration for the high power setting was measured upon the measurement.
SR785 was set to have 1kHz sinusoidal output with the amplitude of 10mVpk and the offset of 4.1V.
This modulation signal was fed to DS345 at 30.2MHz with 24.00dBm
The network analyzer measured the carrier and sideband power levels
30.2MHz 21.865dBm
USB    -37.047dBm
LSB    -37.080dBm  ==> -58.9285 dBc (= 0.0011313)

The RF signal was fed to the input and the signal amplitude at Mon1 and Mon2 were measured
MON1 => 505   mVrms => 446.392 Vrms/ratio
MON2 => 505.7 mVrms => 447.011 Vrms/ratio
dBc = 20*log10(Vrms/446.5).


Using the cross specrum (or coherence)of the two signals, we can infer the noise level of the detector.

Suppose there are two time-series x(t) and y(t) that contain the same signal s(t) and independent but same size of noise n(t) and m(t)

x(t) = n(t) + s(t)
y(t) = m(t) + s(t)

Since n, m, s are not correlated, PSDs of x and y are

Pxx = Pnn + Pss
Pyy = Pmm+Pss = Pnn+Pss

The coherence between x(t) and y(t) is defined by

Cxy = |Pxy|^2/Pxx/Pyy = |Pxy|^2/Pxx^2

In fact |Pxy| = Pss. Therefore

sqrt(Cxy) = Pss/Pxx

What we want to know is Pnn

Pnn = Pxx - Pss = Pxx[1 - sqrt(Cxy)]
=> Snn = sqrt(Pnn) = Sxx * sqrt[1 - sqrt(Cxy)]

This is slightly different from the case where you don't have the noise in one of the time series (e.g. feedforward cancellation or bruco)


Measurement results

 

Power spectra:
Mon1 and Mon2 for both input power levels exhibited the same PSD between 10Hz to 1kHz. This basically supports that the calibration for the 22dBm input (at least relative to the calibration for 10dBm input) was corrected. Abobe 1kHz and below 10Hz, some reduction of the noise by the increase of the input power was observed. From the coherence analysis, the floor level for the 10dBm input was -178, -175, -155dBc/Hz at 1kHz, 100Hz, and 10Hz, respectively. For the 22dBm input, they are improved down to -188, -182, and -167dBc/Hz at 1kHz, 100Hz, and 10Hz, respectively.

 

Attachment 1: OCXO_AM_noise.pdf
OCXO_AM_noise.pdf
  237   Fri Aug 28 01:08:14 2015 KojiElectronicsAM Stabilized EOM DriverRF AM Measurement Unit E1500151 ~ Calibration

Worked on the calibration of the RF AM Measurement Unit.

The calibration concept is as follows:

  • Generate AM modulated RF output
  • Measure sideband amplitude using a network anayzer (HP4395A). This gives us the SSB carrier-sideband ratio in dBc.
  • Measure the output of the RF AM measurement unit with the same RF signal
  • Determine the relationship between dBc(SSB) and the output Vrms.

The AM modulated signal is produced using DS345 function generator. This FG allows us to modulate
the output by giving an external modulation signal from the rear panel. In the calibration, a 1kHz signal with
the DC offset of 3V was given as the external modulation source. The output frequency and output power of
DS345 was set to be 30.2MHz (maximum of the unit) and 14.6dBm. This actually imposed the output
power of 10.346dBm. Here is the result with the modulation amplitude varied

                 RF Power measured             Monitor output
Modulation       with HP4395A (dBm)           Measure with SR785 (mVrms)
1kHz (mVpk)   Carrier    USB      LSB          MON1       MON2
   0.5        9.841    -72.621  -73.325          8.832      8.800
   1          9.99     -65.89   -65.975         17.59      17.52
   2          9.948    -60.056  -59.747         35.26      35.07
   3          9.90     -56.278  -56.33          53.04      52.9
   5          9.906    -51.798  -51.797         88.83      88.57
  10          9.892    -45.823  -45.831        177.6      177.1
  20          9.870    -39.814  -39.823        355.3      354.4
  30          9.8574   -36.294  -36.307        532.1      531.1
  50          9.8698   -31.86   -31.867        886.8      885.2
 100          9.8735   -25.843  -25.847       1772       1769
 150          9.8734   -22.316  -22.32        2656       2652
 200          9.8665   -19.819  -19.826       3542       3539
 300          9.8744   -16.295  -16.301       5313       5308

The SSB carrier sideband ratio is derived by SSB[dBc] = (USB[dBm]+LSB[dBm])/2 - Carrier[dBm]

This measurement suggests that 10^(dBc/20) and Vrms has a linear relationship. (Attachment 1)
The data points were fitted by the function y= a x.

=> 10^dBc(SSB)/20 = 108*Vrms (@10.346dBm input)


Now we want to confirm this calibration.

DS345 @30.2MHz was modulated with the DC offset + random noise. The resulting AM modulated RF was checked with the network analyzer and the RFAM detector
in order to compare the calibrated dBc/Hz curves.

A) SR785 was set to produce random noise
B) Brought 2nd DS345 just to produce the DC offset of -2.52V (Offset display -1.26V)
Those two are added (A-B) by an SR560 (DC coupling, G=+1, 50 Ohm out).
The output was fed to Ext AM in DS345(#1)

DS345(#1) was set to 30.2MHz 16dBm => The measured output power was 10.3dBm.

On the network analyzer the carrier power at 30.2MHz was 9.89dBm

Measurement 1) SR785     1.6kHz span 30mV random noise (observed flat AM noise)
Measurement 2) SR785   12.8kHz span 100mV random noise (observed flat AM noise)
Measurement 3) SR785 102.4kHz span 300mV random noise (observed cut off of the AM modulation due to the BW of DS345)

The comparison plot is attached as Attachment 2. Note that those three measurements are independent and are not supposed to match each other.
The network analyzer result and RFAM measurement unit output should agree if the calibration is correct. In fact they do agree well.

 

Attachment 1: RFAM_detector_calib.pdf
RFAM_detector_calib.pdf
Attachment 2: RFAM_detector_calib_spectra.pdf
RFAM_detector_calib_spectra.pdf
  236   Wed Aug 26 11:31:33 2015 KojiElectronicsGeneralOMC DCPD in-vacuum electronics chain test

The noise levels of the output pins (pin1/pin6) are measured. Note that the measurement is done with SE. i.e. There was no common mode noise rejection.

Attachment 1: OMC_DCPD_OutputNoise.pdf
OMC_DCPD_OutputNoise.pdf
  235   Thu Aug 20 01:35:01 2015 KojiElectronicsGeneralOMC DCPD in-vacuum electronics chain test

We wanted to know the  transimpedance of the OMC DCPD at high frequency (1M~10M).
For this purpose, the OMC DCPD chain was built at the 40m. The measurement setup is shown in Attachment 1.

- As the preamp box has the differential output (pin1 and pin6 of the last DB9), pomona clips were used to measure the transfer functions for the pos and neg outputs individually.

- In order to calibrate the measurements into transimpedances, New Focus 1611 is used. The output of this PD is AC coupled below 30kHz.
This cutoff was calibrated using another broadband PD (Thorlabs PDA255 ~50MHz).

Result: Attachment 2
- Up to 1MHz, the transimpedance matched well with the expected AF transfer function. At 1MHz the transimpedance is 400.

- Above 1MHz, sharp cut off at 3MHz was found. This is consistent with the openloop TF of LT1128.

 

Attachment 1: OMC_DCPD_Chain.pdf
OMC_DCPD_Chain.pdf
Attachment 2: OMC_DCPD_Transimpedance.pdf
OMC_DCPD_Transimpedance.pdf
  234   Mon Aug 10 12:09:49 2015 KojiElectronicsAM Stabilized EOM DriverRF AM Measurement Unit E1500151

Still suffering from a power supply issue!

I have been tracking the issues I'm having with the RF AM detector board.

I found that the -5V test point did not show -5V but ~+5V! It seemed that this pin was not connected to -5V but was passive.

I removed the RF AM detector board and exposed the power board again. Pin 11 of P3 interboard connector indeed was not connected to TP12 (-5V). What the hell?

As seen in the attached photo, the PCB pattern for the Pin 11 is missing at the label "!?" and not driven. I soldered a piece of wire there and now Pin11 is at -5V.


This fix actually changed several things. Now the bias setting by the rotary switches works.

Setting BIAS1
 [dBm]   [V]

   0    0.585
   2    0.720
   4    0.897
   6    1.12
   8    1.42
  10    1.79
  12    2.25
  14    2.84
  16    3.60
  18    4.56
  20    5.75
  22    7.37

This allows me to elliminate the saturation of MON1 of the first RF AM detector. I can go ahead to the next step for the first channel.

Now the bias feedback of the second detector is also behaving better. Now TP2 is railing.

Still MON2 is saturated. So, the behavior of the peak detectors needs to be reviewed.

Attachment 1: IMG_20150809_215628585_HDR.jpg
IMG_20150809_215628585_HDR.jpg
ELOG V3.1.3-