40m QIL Cryo_Lab CTN SUS_Lab TCS_Lab OMC_Lab CRIME_Lab FEA ENG_Labs OptContFac Mariner WBEEShop
  OMC elog, Page 5 of 9  Not logged in ELOG logo
ID Date Author Typeup Category Subject
  408   Thu May 20 17:03:50 2021 KojiGeneralGeneralSRS LCR meter SRS720 borrowed from Downs

Item loan: SRS LCR meter SRS720 borrowed from Downs. The unit is at the 40m right now for testing with an excelitas PD. Once it is done, the setup will be moved to the OMC lab for testing the high QE PDs

Attachment 1: P_20210520_154841.jpg
P_20210520_154841.jpg
  409   Sun May 30 15:17:16 2021 KojiGeneralGeneralDCPD AF capacitance measirement

Attachment 1: System diagram. The reverse bias voltage is controlled by DS335. This can produce a voltage offset up to 10V. A G=+2 opamp circuit was inserted so that a bias of up to +15V can be produced. The capacitances of the photodiodes were measured with SR720 LCR meter with a probe. DS335 and SR720 were controlled from PC/Mac via serial connections.

Attachment 2: Overview

Attachment 3: How was the probe attached to the photodiode under the test

Attachment 4: The bias circuitry and the power supply

Attachment 5: G=+2 amp

Attachment 1: PD_cap_meas.pdf
PD_cap_meas.pdf
Attachment 2: 20210529013015_IMG_0577.jpeg
20210529013015_IMG_0577.jpeg
Attachment 3: 20210529013114_IMG_0580_2.jpeg
20210529013114_IMG_0580_2.jpeg
Attachment 4: 20210529013200_IMG_0584.jpeg
20210529013200_IMG_0584.jpeg
Attachment 5: 20210529013229_IMG_0586.jpeg
20210529013229_IMG_0586.jpeg
  410   Sun May 30 15:32:56 2021 KojiGeneralGeneralDCPD AF capacitance measirement

Measurement result:

The capacitance at no bias was 460~500pF. This goes down to below 300pF at 1.0~1.5V reverse bias. At maximum +15V, the capacitance goes down to 200~220pF.

On this opportunity, the capacitances of a couple of Excelitas C30665 photodiodes were measured. In Attachment 2, the result was compared with one of the results from the high QE PDs. In general the capacitance of C30665 is lower than the one from the high QE PDs.

Attachment 1: highQEPD_capacitance.pdf
highQEPD_capacitance.pdf
Attachment 2: C30665_capacitance.pdf
C30665_capacitance.pdf
  413   Tue Jun 28 16:13:34 2022 KojiGeneralGeneralThe small optical table not small enough to get out

The table width was an inch too large compared to the door width. We need to tilt the table and it seemed too much for us. Let's ask the transportation for handling.

Photo courtesy by Juan

Attachment 1: IMG-5203.jpg
IMG-5203.jpg
  414   Fri Jul 15 22:14:14 2022 KojiGeneralGeneralOMC Lab recovery for the OMC #002 test

- The lab is chilly (18degC)

- Cleaned the lab and the optical table a bit so that the delicate work can be done. The diode test rig (borrowed from Downs - see OMC ELOG 408 and OMC ELOG 409) was removed from the table and brought to the office (to return on Monday)

- The rack electronics were energized.

- The OMC mirrors in use were returned to the cases and stored in the plastic box.

- The optical table was also cleaned. Removed the old Al foils. The table was wiped with IPA

- The OMC #4 was moved to the other part of the table, and then OMC #2 was placed in the nominal place (Attachment 1). Note that the "legs" were migrated from #4 to #2. There are three poles that defines the location of the OMC Transportation

- The lid was removed and the OMC was inspected (Attachment 2). Immediately found some more delamination of the epoxy beneath the cable bracket (Attachment 3). This needs to be taken care of before shipment.

- The cavity was already flashing as usual, and a bit of alignment made the TEM00 flashing.

- The locking was a little tricky because the LB unit seemed to have a gain-dependent offset. After some adjustment, robust locks were achieved. The cavity was then finely adjusted. Attachment 4 shows the CCD image of the reflection. The core of the spot is more or less axisymmetric as usual. There is also a large helo around the spot. I was not aware of this before. I may need to wipe some of the mirrors of the input path.

- As the satisfactory lock was achieved, I called a day by taking a picture of the table (Attachment 5).

Attachment 1: PXL_20220716_035922673.jpg
PXL_20220716_035922673.jpg
Attachment 2: PXL_20220716_025319391.MP.jpg
PXL_20220716_025319391.MP.jpg
Attachment 3: PXL_20220716_025334324.jpg
PXL_20220716_025334324.jpg
Attachment 4: PXL_20220716_035309066.jpg
PXL_20220716_035309066.jpg
Attachment 5: PXL_20220716_035411435.NIGHT.jpg
PXL_20220716_035411435.NIGHT.jpg
  415   Mon Jul 18 14:20:09 2022 KojiGeneralGeneralOMC #002 Plan Portal

== Initial Preparation ==

  • [Done] OMC #002 placement
  • [Done] OMC #002 locking
  • Details OMC ELOG 414

== Measurements ==

  • [Done] Transmission / Power budget before FirstContact OMC ELOG 416
  • [Done] Transmission / Power budget after FirstContact OMC ELOG 417
  • [Done] Backscatter measurement with a new deflection optics
    • [Done] Optics bonding done waiting for cure OMC ELOG 420 -> Returned the bond to Madeline OMC ELOG 424
    • [Done] Backscatter measurement
      • Measurement: 0.6 ppm OMC ELOG 422
      • (Transmission is 10~60mW. If the backscatter is the order of 1ppm or less, we expect the light level is ~10nW. Can we really detect it? How? ... OK... last time the measurement has been done with the stick PD type powermeter with baffles and the room light turned off (OMC ELOG 209). So it's not totally crazy.)
  • [Done] High QE PD preparation / install / QE check
    • [Done] High QE PD inventory check
      • A1-23    LLO OMC#001
      • A1-25    LLO OMC#001
      • B1-01    LHO OMC#003
      • B1-16    LHO OMC#003
      • B1-22    @CIT Cage B1 Cleaned/Installed
      • B1-23    @CIT Cage B2 Cleaned/Installed
      • C1-03    @CIT Cage B3 Cleaned
      • C1-05    Dead / CIT contamination test cav
      • C1-07    Dead / CIT contamination test cav
      • C1-08    @CIT Cage C2
      • C1-09    @CIT Cage C3
      • C1-10    @CIT Cage C4
      • C1-11    @CIT Cage D1
      • C1-12    @CIT Cage D2
      • C1-14    @CIT Cage D3
      • C1-15    Dead / CIT Cage D4
      • C1-17    LHO Spare
      • C1-21    LHO Spare
      • D1-08    not @CIT, maybe LLO Spare?
      • D1-10    not @CIT, maybe LLO Spare?
    • [Done] Install & QE check
  • [Done] Fiber input beam characterization OMC ELOG 421

== Repair / Preparation ==

  • Obtain from Stephen: UHV Foil (done) / EP30
  • Crimper tool? LLO bought a new one and modify it.
  • BeCu wire clamps:
    • [Done] Sufficient # of clamps found:OMC ELOG 428
    • To be: C&B of Athe clamps
  • [Done] FirstContact cavity mirror cleaning (see OMC ELOG 414)
  • [Done] FirstContact for protection OMC ELOG 430
     
  • Beam dump cleaning -> not necessary
     
  • Replacing the cable bracket
    • [Done] Obtain all parts from Stephen.
    • [Done] Class B Torque wrench present in the lab
    • Replacement work
  • Delamination Repair
  • Check all the fasteners

== Shipping ==

  • Tools to ship to LLO
    • CLASS B special tool kit
    • FC kit
    • Electronic kit (PD connector / trans-impedance amp)
    • Spare PDs
    • Power meters
    • Beamdump
       
  • OMC Pelican Filling (Stephen)
  • OMC Outerbox/insulation (Stephen/Downs)
  • OMC Shipment

 

  416   Tue Jul 19 03:17:56 2022 KojiGeneralGeneralOMC #002 Power Budget before mirror cleaning

o Power Budget (2022/07/18)
NPRO ADJ -50 (min)
Fiber incident 62.8mW
Fiber output 45.1mW
Matching to the fiber 72%


DCPD T =  8.90  +/- 0.01  mW
REFPD  =  3.760  +/- 0.001 V

DCPD R =  8.82  +/- 0.01  V
REFPD  =  3.760 +/- 0.001 V

CM1    =  81.4  +/- 0.1   uW
REFPD  =  3.767 +/- 0.001 V

CM2    =  86.6  +/- 0.1   uW
REFPD  =  3.767 +/- 0.001 V

REFLPD
OFS    = -6.214 +/- 0.001 mV (beam blocked)
OFS_REF= +4.587mV

LOCKED =  57.5  +/- 0.5   mV
REFPD  =  3.970 +/- 0.003 V

UNLOCK =  2.816 +/- 0.003 V
REFPD  =  3.943 +/- 0.001 V

P_Inc  =  20.04 +/- 0.01  mW
REFPD  =  3.946 +/- 0.001 V
 


Analysis Result

- Cavity coupling 0.989 (1.1% junk&sidebands)

- Cavity R&T: R=756ppm, T=0.946
- OMC Throughput (Cavity T x First BS R): T=0.939
- Cavity loss per mirror 90 ppm / Round Trip Loss 432ppm

 

  417   Thu Jul 21 02:55:06 2022 KojiGeneralGeneralOMC #002 Power Budget after mirror cleaning

o Power Budget after FirstContact cleaning (2022/07/20)
NPRO ADJ -50 (min)
Fiber incident --.-mW
Fiber output --.-mW
Matching to the fiber ??%



DCPD T =  8.62  +/- 0.01  mW
REFPD  =  3.549  +/- 0.001 V

DCPD R =  9.46  +/- 0.01  V
REFPD  =  3.562 +/- 0.001 V

CM1    =  74.5  +/- 0.1   uW
REFPD  =  3.585 +/- 0.001 V

CM2    =  81.7  +/- 0.1   uW
REFPD  =  3.585 +/- 0.001 V

REFLPD
vOFS    = -6.197 +/- 0.001 mV (beam blocked)
vOFS_REF= +4.58mV

LOCKED =  47.6  +/- 0.2   mV
REFPD  =  3.596 +/- 0.003 V

UNLOCK =  2.700 +/- 0.003 V
REFPD  =  3.590 +/- 0.001 V

P_Inc  =  19.36 +/- 0.001  mW
REFPD  =  3.594 +/- 0.001 V


Analysis Result

- Cavity coupling 0.980 (2.0% junk&sidebands)

- Cavity R&T: R=229ppm, T=0.970 (previous T=0.946, 2.4% UP!)
- OMC Throughput (Cavity T x First BS R): T=0.963
- Cavity loss per mirror 42.8 ppm / Round Trip Loss 238ppm

  418   Thu Jul 21 13:21:27 2022 KojiGeneralConfigurationWindows laptop for WincamD Beam'R2 recovery

The Windows laptop for WincamD/Beam'R2 (DELL Vostro3300) was not functional.
- Windows 7 got stuck in the starting up process (Google "startup repair loop")
- The battery can't charge and the adapter connection is flaky

I decided to newly install Win10.
I made a new bootable Win10 DVD from the ISO downloaded from IMSS. The ISO file was converted to CDR using Disk Utility on Mac.
This deleted the past disk partitions. The installation process has no trouble and Win10 ran successfully. The machine is slow but still acceptable for our purpose.
Dataray Version 7.1H25Bk was downloaded from the vendor website https://dataray.com/blogs/software/downloads and installed successfully.
The devices ran as expected by connecting the heads and selecting the proper device in the software.

Then, the Win10 fell into "Hibernation Loop" and "Shutdown loop" (after disabling hibernation in the safe mode).
This is probably the combination of extremely slow windows update (feature update i.e. beta OS update) and the occasional shutdown due to the flakiness of the AC connection

Win10 was reinstalled and automatic Win update was disabled via windows policy manager or something like that. Still, it tries to download and update some of the updates (what's happening there!?

Here are my strong recommendations on how to use this laptop

  • Do not use any network connection. It will enable Windows Update kicks in and destroy the machine.
  • Use a USB stick for data transportation if necessary
  • Buy a replacement battery (maybe a 3rd-party cheap one
  • The Win10 DVD should always be inserted into the laptop's drive so that we can reinstall the windows anytime.
Attachment 1: IMG_1102.JPG
IMG_1102.JPG
  419   Thu Jul 21 14:35:35 2022 KojiGeneralGeneralBond reinforcement blocks for the invar brackets

Bond reinforcement blocks for the invar brackets:

  • Attachment 1: CLASS A glass prisms (the surplus of the 2016 repair)
  • Attachment 2: Dirty reiforcement bars made of Aluminum
  • There are also many dirty prisms in the kit obtained from Stephen
Attachment 1: IMG_1095.JPG
IMG_1095.JPG
Attachment 2: IMG_1091.JPG
IMG_1091.JPG
  420   Thu Jul 21 14:55:48 2022 KojiGeneralGeneralOptics bonding for the backscatter measurement

The backscatter beam is supposed to appear in the backpropagation path. The transmission of the OMC has a couple of optics, it's not easy to access that beam.
To try to deflect the beam either horizontally or vertically, small optical pieces were made. (Attachment)

These are the combination of the optics

- Thorlabs PF05-03 Fused Silica Mirror Blank (dia12.7mm x t 6.0mm) + Thorlabs 1/2"sq BB Dielectric Mirror BBSQ05-E03

- Thorlabs PF05-03 Fused Silica Mirror Blank (dia12.7mm x t 6.0mm) + Thorlabs ME05-G01 Protected Al Mirror (dia12.7mm x t 3.2mm) + Thorlabs MRA10-K13 Right-Angle Prism Nd:YAG 10mm

Torr seal was used as the bonding epoxy. It uses a 1:2 volume mixture (not easy because of the viscosity) and is relatively fast to cure (in a couple of hours).
The test piece showed some softness after 3~4 hours so I left the parts cured overnight at room temp (i.e. 18degC)

Attachment 1: IMG_1098.JPG
IMG_1098.JPG
  421   Thu Jul 21 17:47:00 2022 KojiGeneralGeneralThe profile of the beam incident on the fiber input coupler

The profile of the beam incident on the fiber input

The fiber input was deflected by a 45deg mirror. The beam profile was measured with WincamD. The beam was too strong (~60mW) even at the smallest pump power (ADJ -50) of the NPRO. So the two ND20 filters were added to the lens right before the 45 deg mirror and the camera.

The measured profile had some deviation from the nice TEM00 particularly around the waist. This could be a problem of the too small beam on the ND filter and the CCD.
This is not an issue as we just want to know the approximate shape of the beam.

For the fiber coupling, if we have the beam waist radius of ~200um it is sufficient for decent coupling.

Attachment 1: fiber_beam_profile.pdf
fiber_beam_profile.pdf
  422   Fri Jul 22 00:31:17 2022 KojiGeneralGeneralOMC #002 backscatter measurement

Measure the power ratio between the forward-propagating and reverse-propagating beams.

  1. Place a small deflecting mirror at the transmission.
  2. Place a flat mirror at the deflected transmission. When the alignment of this mirror is adjusted to retroreflect this beam, the DC of the cavity reflection PD increases, and also the CCD shows spurious fringes.
  3. This condition allows us to locate the power meter at the reverse-propagating spot of the transmission (Attachment 1)
  4. Place a black glass beam dump for the main (bright) transmission (Attachment 2)
  5. Now the power meter is receiving the counter-propagating beam. Turn off the room light and place an anodized Al baffle as shown in Attachment 2. Move the baffle to block only the counter-propagating. Move the baffle out. => Record the power meter reading with/without the baffle in the counter-propagating path. The difference is the power of the reverse-propagating beam.
  6. Now measure the power of the reflected main transmission. This tells us the power ratio between the foward- and back-propagating beams.
  7. Remove the small deflecting mirror and measure the power of the main transmission.
  8. Now the back-propagating power can be estimated from 6 and 7. The same amount is going back to the IFO path.
  9. The reflectivity can be calculated from the 7 and the transmission

- To increase the incident laser power, NPRO Current ADJ was set to be 0 (increased from -50)

- 1st:  Without the baffle 0.373 +/- 0.001 uW / With the baffle 0.318 +/- 0.001 uW
- 2nd: Without the baffle 0.370 +/- 0.001 uW / With the baffle 0.318 +/- 0.001 uW
- 3rd: Without the baffle 0.370 +/- 0.001 uW / With the baffle 0.317 +/- 0.001 uW

==> 53.3 +/- 0.6 nW

- The main transmission was 84.0mW
==> Backpropagation ratio was 0.634+/-0.007 ppm

- Direct measurement of the OMC was  after BS 96.6mW
==> Backpropagation power from the cavity: 61.3 +/- 0.7 nW

- Cavity transmission for the matched beam is Tcav RinputBS = 0.963
==> Incident resonant TEM00 power 100.3mW

- Reflection 61.3+/-0.7 nW x RinputBS = 60.8+/-0.7 nW
-> The effective reflectivity for the mode-matched resonant TEM00 beam incident on the OMC (1st steering mirror) is 0.606+/-0.007 ppm

Attachment 1: OMC_backscatter.pdf
OMC_backscatter.pdf OMC_backscatter.pdf
  423   Fri Jul 22 17:41:01 2022 KojiGeneralGeneralSRS LCR meter SRS720 returned to Downs

SRS LCR meter SRS720 was returned to Downs as before.

 

Attachment 1: PXL_20220723_002330805.jpg
PXL_20220723_002330805.jpg
  424   Fri Jul 22 17:47:38 2022 KojiGeneralGeneralC&B request for the reinforcement blocks

OMC Reinforcement blocks

1. P/N D1600316; Version v4; Type 01; Qty 30; Source Chemistry Machine Shop
2. P/N D1600316; Version v4; Type 02; Qty 15; Source Chemistry Machine Shop
3. P/N D1600316; Version v4; Type 01; Qty 40; Source Resource MFG PO S422806
4. P/N D1600316; Version v4; Type 02; Qty 40; Source Resource MFG PO S422806

Stephen asked Srinath for the ICS entry.
Stephen made the C&B request https://cleanandbake.ligo.caltech.edu/clean_and_bake/request/1708/

Madeline was asked to take care of the C&B.

Also, the Torr Seal box was returned to Madeline.

Attachment 1: PXL_20220722_222013127.jpg
PXL_20220722_222013127.jpg
  425   Mon Jul 25 18:25:04 2022 KojiGeneralGeneralA/C Filter was replaced
New filter PN
Grainger
TK70457312T Mini-Pleat Air Filter, Style - Air Filters Box, Performance Rating MERV 14, Nominal Filter Size 12x24x2
 
Previous filter PN
Global Industrial Equipment
Extended Surface Pleated Cartridge Filter Serva-Cell Mp4 Slmp295 12X24X2 Gl WBB431699
-> No longer available
  426   Tue Jul 26 00:01:59 2022 KojiGeneralGeneralOMC #002 delamination check 2

More epoxy delamination check:

DCPD R (Attachment 1): Found half delaminated

DCPD T (Attachment 2): Found half delaminated

QPD1/QPD2 (Attachment 3): Looks fine

------

In total we need to fix bonding of three invar bases (including the one for the cable bracket)

Attachment 1: IMG_1106.JPG
IMG_1106.JPG
Attachment 2: IMG_1107.JPG
IMG_1107.JPG
Attachment 3: IMG_1110.JPG
IMG_1110.JPG
  427   Tue Jul 26 00:12:58 2022 KojiGeneralGeneralHigh QE PD: QE measurements

- Installed the High QE PDs to OMC #002

  • B1-22@Cage B1 was installed to the transmission DCPD
  • B1-23@Cage B1 was installed to the reflection DCPD

Upon the installation, the legs of the PDs were cut by 3mm. Also, the tab of the PD could not be embedded in the DCPD housing. Therefore, the tabs were cut.

The alignment looked just fine. The weak reflections are directed to the black glass beam dumps.

- After the installation, the QEs were measured.

  • With Thorlabs S130C power meter, the QE was estimated to be ~95%. (Accuracy +/-7%)
  • With Thorlabs S401C power meter, the QE was estimated to be ~100%. (Accuracy +/-3%)

It is so confusing. So I decided to make the QE test setup.


Ophir RM9 with chopper (+/-5%): 8.97mW
Thorlabs S140C integrating sphere (+/-7%): 9.11mW
Thorlabs S130C PD power meter (+/-7%): 9.15mW
Thorlabs S401C thermal power meter (+/-3%): 8.90mW
So there looks ~3% discrepancy between S130C and S401C

Then tried to measure the QE of C1-03@Cage B3 with Ophir RM9
- Initial state: QE=0.95
- First FirstContact application: QE went up to 0.973
- Second FirstContact application: QE = 0.974, basically no change


To Do:
- Calibrate the trans-impedance amp with Keithley
- Apply FC to B1-22 and B1-23 to see if there is an improvement
- The power should be measured with S401C because the accuracy seems better (+/-3%).
- Take photos of the PD FC process

General To Do:

- Backscatter test 2nd trial

- Start applying the first contact to the optical surfaces
- Beam dump cleaning
- Apply FC cap to the PDs
- Delamination repair (light side)
- Delamination repair (dark side)
- Cable bracket replace (dark side)

 

Attachment 1: IMG_1118.JPG
IMG_1118.JPG
  428   Wed Jul 27 10:09:51 2022 KojiGeneralGeneral4+4 wire clamp in hand

Regarding: D1200971

- 4 CLASS A wire clamp obtained from the OMC spare
- 4 more DIRTY wire clamp obtained from WB experiments (they no longer use these)

Once the later ones are C&Bed, we have enough.

 

Attachment 1: PXL_20220727_072154009.jpg
PXL_20220727_072154009.jpg
  429   Wed Jul 27 10:34:09 2022 KojiGeneralGeneralHigh QE PD: QE measurements 2

- DLPCA-200 trans-impedance amplifier was calibrated.
  Keithley source meter 2450 was connected to the amp. Provide current and read the output voltage with the precision digital voltage meter (Agilent/Keysight).
  Gain: 999.7V/A@7mA, 999.6V/A@8mA

- From the power meter spec, Thorlabs S401C seemed the best (+/-3%). So the QEs of the 9 PDs were checked with this power meter again.

- All PDs exhibited the QE of 0.95~0.96. It's all relative as the power meter has a systematic error.
- Tried to clean B1-22 and B1-23 PDs. They didn't show significant improvement after the cleaning. To avoid the unnecessary risk of damaging the PDs, further cleaning was not performed. (Some photos were attached)

- What we can do is use this result as the relative measurements.
- For OMC#2, B1-22 is the DCPD(T) and B1-23 is the DCPD(R). C1-03 and C1-12 are the spares, according to this latest result.
- At LLO, we track down the source of the throughput reduction (-10%). The QEs of the PDs are going to be tested in the same setup at once to compare their PDs and our PDs.

PD Type SN Case DCV1 Pin [mW] dPin [mW] Power Meter DCV2 Avg(DCV) Std(DCV) DCVOFS (mV) Responsivity [A/W] dR QE dQE Date Note
IGHQEX3000 B1-22 B1 7.734 9.43 0.02 TL 401C 7.745 7.7395 0.006 -0.0260 0.821 0.002 0.957 0.002 July 26, 2022 clean1 / installed (T)
IGHQEX3000 B1-23 B2 7.679 9.26 0.02 TL 401C 7.709 7.6940 0.015 -0.0220 0.831 0.002 0.969 0.003 July 26, 2022 clean1 / installed (R)
IGHQEX3000 C1-03 B3 7.775 9.40 0.02 TL 401C 7.770 7.7725 0.003 -0.0450 0.827 0.002 0.964 0.002 July 26, 2022 clean3
                                 
IGHQEX3000 C1-08 C2 7.717 9.45 0.02 TL 401C 7.750 7.7335 0.017 -0.0430 0.819 0.002 0.954 0.003 July 26, 2022 initial
IGHQEX3000 C1-09 C3 7.737 9.50 0.05 TL 401C 7.776 7.7565 0.019 -0.0580 0.817 0.005 0.952 0.006 July 26, 2022 initial
IGHQEX3000 C1-10 C4 7.757 9.50 0.03 TL 401C 7.774 7.7655 0.009 -0.0650 0.818 0.003 0.953 0.003 July 26, 2022 initial
                                 
IGHQEX3000 C1-11 D1 7.826 9.66 0.01 TL 401C 7.828 7.8270 0.001 -0.0570 0.810 0.001 0.945 0.001 July 26, 2022 initial
IGHQEX3000 C1-12 D2 7.841 9.51 0.02 TL 401C 7.841 7.8410 0.000 -0.0410 0.825 0.002 0.961 0.002 July 26, 2022 initial
IGHQEX3000 C1-14 D3 7.769 9.55 0.01 TL 401C 7.789 7.7790 0.010 -0.0520 0.815 0.001 0.950 0.002 July 26, 2022 initial
Attachment 1: IMG_1119.JPG
IMG_1119.JPG
Attachment 2: IMG_1120.JPG
IMG_1120.JPG
  430   Wed Jul 27 10:34:30 2022 KojiGeneralGeneralOMC #002 Protective FirstContact Paint

The optical surfaces were coated with FirstContact to keep them clean / somewhat protected during the transportation.
The PD aperture was sealed with FirstContact "caps" (made by Kate in 2016?).

Attachment 1: IMG_1125.JPG
IMG_1125.JPG
  431   Wed Jul 27 23:52:18 2022 KojiGeneralGeneralOMC #002 Cable bracket replacement (1)

Parts check

- D1300052-V3 SN001 is going to be used (Attachment 1)

- This is the PEEK version of the cable bracket (Attachment 2). The side thread holes have no Helicoils inserted. This needs to be done!
 

Connector arrangement check / cable routing check

Attachment 3: Connector Arrangement from the Northside

Attachment 4: Connector Arrangement from the South side

Attachment 5: Cable routing (Northside down)

At this point, the delamination of the V shape beam dumps was visible. This is the subject of bonding reinforcement.

Attachment 1: IMG_1126.JPG
IMG_1126.JPG
Attachment 2: IMG_1135.JPG
IMG_1135.JPG
Attachment 3: IMG_1127.JPG
IMG_1127.JPG
Attachment 4: IMG_1129.JPG
IMG_1129.JPG
Attachment 5: IMG_1130.JPG
IMG_1130.JPG
  432   Thu Jul 28 00:28:15 2022 KojiGeneralGeneral OMC #002 Cable bracket replacement (2)

Connector unmounting

- (Attachment 1) The connector nut rings were removed using an angled needle nose plier. The connector shell has a tight dimension relative to the hole on the bracket. But of course, they could be extracted.

- The 4 screws mounting the bracket to the invar blocks were successfully removed. No extra damage to the bonding.

- (Attachment 2) The plan was to remove the cable pegs by unfastening the button head 1/4-20 screws from the bracket and then just replace the bracket with the new one. However, these screws were really tight. The two were successfully removed without cutting the PEEK cable ties. Two cable ties were necessary to be cut to detach the bracket+pegs from the fragile OMC. Then one screw was removed. However, the final one could not be unfastened. This is not a problem as we are not going to recycle the metal cable bracket... as long as we have spare parts for the new bracket.

- (Attachment 3) Right now, the new bracket is waiting for the helicoils to be inserted. So the OMC lid was closed with the cables piled up. Just be careful when the lid is open.

Attachment 1: IMG_1132.JPG
IMG_1132.JPG
Attachment 2: IMG_1133.JPG
IMG_1133.JPG
Attachment 3: IMG_1136.JPG
IMG_1136.JPG
  433   Thu Jul 28 00:46:47 2022 KojiGeneralGeneral Subject: OMC #002 Cable bracket replacement (3)

Checking the spare parts

- Conclusion for OMC#2: need PEEK cable ties
- for more OMCs: need more BHCS / PEEK cable ties / Helicoils

  • Helicoils: 1/4-20 0.375 helicoils / Qty 4 / Class A (Attachment 1)
    • looks like there are many more as the transport fixture bags (Attachment 2). Stephen noted that they are meant to be CLASS B
       
  • Cable pegs: D1300057 / Qty 24 + 3 recycled from OMC#2 / Class A (Attachment 3)
    • Requirement: 3+3+4 = 10 for the 4th OMC / 3x4 =12 for the cable bracket replacement -> we have enough
       
  • PEEK Cable Ties: Stephen reported they were deformed by baking heat... did not check how they are in the bags.
     
  • Button Head Cap Screws 1/4-20 length ? none found in the bags.
    • Qty 4 spare (forgot to take a picture) + 3 recycled. So we have sufficient for OMC#2
Attachment 1: IMG_1137.JPG
IMG_1137.JPG
Attachment 2: IMG_1148.JPG
IMG_1148.JPG
Attachment 3: IMG_1138.JPG
IMG_1138.JPG
  434   Wed Aug 10 18:42:27 2022 KojiGeneralGeneralOMC #002 Cable bracket replacement (4)

[Stephen Koji]

Now we got the C&Bed parts to continue to work on the cable bracket replacement.

1) Helicoil insertion

1/4-20 Helicoils were inserted into the 6 thread holes of D1300052. It went mostly okay. We witnessed that the Helicoil insertion tool delaminated the plating of the Helicoils upon insertion (Attachment 1). Stephen mentioned that this is not usual, but we didn't find anything further such as increased friction, more debris, etc. So we decided to go forward.

2) EP30-2 Kit

The EP30-2 kit was transferred from the 40m clean room to the OMC lab. The EP30-2 kit tracking was updated via C1900343

3) D1300052 reinstallation -> FAIL

Now resumed to the installation of D1300052 bracket. However, the hole size of the bracket is just a bit too small compared with the size of the mighty mouse connectors. It was already quite tight with the metal version. However, this PEEK version seems to have 0.1 mm further small diameter, and then the connectors do not penetrate the holes. The plan could be
1) Use a razor blade to shave the hole inner circle.
2) Use a cleaned drill bit to make the hole size 0.2mm bigger.

Attachment 1: PXL_20220809_235457354.jpg
PXL_20220809_235457354.jpg
Attachment 2: PXL_20220811_011910569.jpg
PXL_20220811_011910569.jpg
Attachment 3: PXL_20220811_013746139.jpg
PXL_20220811_013746139.jpg
  435   Thu Aug 11 15:24:57 2022 KojiGeneralGeneralOMC #002 Cable bracket replacement (4)

- The hole size extension is going forwared now.

- Madeline and Chub are cleaning (sonicating) a drill (29/64=0.4531")
- The parts in a bag were brought to the 40m C&B lab.

- The hole is going to be 11mil=0.28mm larger than the recommendation (0.442").
  It's not a D-hole. The connector has a rounded-rectangular flange that fits into the PEEK parts.
  So I don't think it's an issue.

- Chub has a proper spanner to fasten the nuts. We want to use it here and LLO.

 

  52   Sun Jan 6 23:22:21 2013 KojiMechanicsGeneralSolidWorks model of the OMC suspension

D0900295_AdvLIGO_SUS_Output_Mode_Cleaner_Overall_Assembly.png

Attachment 2: D0900295_AdvLIGO_SUS_Output_Mode_Cleaner_Overall_Assembly.easm
  58   Tue Jan 22 17:56:32 2013 KojiMechanicsGeneralRotary stage selection

Newport UTR80

Newport 481-A (SELECTED)

  • Sensitivity: 15 arcsec
  • Graduations: 1 deg
  • Vernier: 5 arcmin
  • Fine travel range: 5 deg
  • With Micrometer

Newport RS40

  • Sensitivity: 16 arcsec
  • Graduations: 2 deg
  • Vernier: 12 arcmin
  • Fine travel range: 10 deg
  • Micrometer BM11.5

Newport RS65

  • Sensitivity: 11 arcsec
  • Graduations: 2 deg
  • Vernier: 12 arcmin
  • Fine travel range: 10 deg
  • Micrometer SM-06 to be bought separately

Elliot science MDE282-20G

  • Sensitivity: 5 arcsec
  • Graduations: 2 deg
  • Vernier: 10 arcmin
  • Fine travel range: 10 deg
  • Micrometer 2 arcmin/1div
  • Metric

Suruga precision B43-110N

Thorlabs precision B43-110N

  69   Thu Mar 7 15:53:47 2013 KojiMechanicsGeneralOMC Transportation fixture, OMC PD/QPD mounts

P3073218.JPG 

P3073219.JPG

P3073223.JPG

P3073225.JPG

P3073227.JPG

  70   Thu Mar 14 17:06:21 2013 KojiMechanicsGeneralOMC SUS work @LLO

EDIT (ZK): All photos on Picasa. Also, I discovered that since Picasa was migrated to Google+ only,
you no longer have the option to embed a slideshow like you used to. Lame, Google.

Photos sent from Zach

(3D VIEW)

2013-03-14_16.04.07.jpg2013-03-14_16.03.40.jpg

  90   Mon Apr 1 10:28:03 2013 KojiMechanicsGeneralAdditional UV blast for the top surface

[Koji, Lisa, Jeff, Zach]

Jeffs concern after talking with the glue company (EMI) was that the UV blast for the top side was not enough.

First we wanted to confirm if too much blasting is any harmful for the glue joint.

We took a test joint of FS-FS with the UV epoxy. We blasted the UV for 1min with ~15mm distance from the joint.
After the observation of the joint, we continued to blast more.
In total, we gave additional 5min exposure. No obvious change was found on the joint.

P3283483.JPG

Then proceed to blast the OMC top again. We gave 1 min additional blast on each glue joint.

 P3283459.jpg P3283473.JPG

  92   Wed Apr 3 17:39:38 2013 KojiMechanicsCharacterizationCalibration of the test PZTs before the glue test

We want to make sure the responses of the PZT actuator does not change after the EP30-2 gluing.

A shadow sensor set up was quickly set-up at the fiber output. It turned out the ring PZTs are something really not-so-straightforward.
If the PZT was free or just was loosely attached on a plane by double-sided tape, the actuation response was quite low (30% of the spec).
After some struggle, I reached the conclusion that the PZT deformation is not pure longitudinal but some 3-dimensional, and you need to
use a "sandwitch" with two flat surfaces with some pressue.

I turned the setup for horizontal scans to the vertical one, and put the PZT between quarter-inch spacers.
Then two more spacers are placed on the stack so that the weight applies the vertical pressure on the PZT.
This is also use ful to adjust the height of the shadow.

P4033491.JPG

The calibration plot is attached. It gives us ~21k V/m.
Voltage swing of 150V results the output voltage change of ~50mV.  This is pretty close to what is expected from the spec (16nm/V).
The PZT#3 (which had the mirror glued on) showed significantly large response.

Test PZT #1: 17.4nm/V
Test PZT #2: 17.2nm/V
Test PZT #3: 30.6nm/V
UHV PZT #24: 17.6nm/V

These numbers will be checked after the heat cure of EP30-2

Attachment 2: shadow_sensor_calib.pdf
shadow_sensor_calib.pdf
  98   Fri Apr 5 14:39:26 2013 KojiMechanicsCharacterizationCalibration of the test PZTs after the heat cure

We attached fused silica windows on the test PZTs. http://nodus.ligo.caltech.edu:8080/OMC_Lab/93

The glued assemblies were brought to Bob's bake lab for the heat cure. There they are exposed to 94degC heat for two hours (excluding ramp up/down time).

After the heat cure, we made the visual inspection.
The photos are available here.

Pre-bake
Test PZT #1: 17.4nm/V
Test PZT #2: 17.2nm/V
Test PZT #3: 30.6nm/V

Post-bake
Test PZT #1: 27.2 nm/V
Test PZT #2: 26.9 nm/V
Test PZT #3: 21.4 nm/V

Measurement precision is ~+/-20%
Spec is 14nm/V

Attachment 1: shadow_sensor_calib_after_bake.pdf
shadow_sensor_calib_after_bake.pdf
Attachment 2: PZTresponse.pdf
PZTresponse.pdf
  102   Mon Apr 8 11:49:18 2013 KojiMechanicsCharacterizationPZT actuator tested at LLO

Test result of the PZTs by Valera and Ryan

PZT  Length Angle
 #   [nm/V] [urad/um]
 11  14.5   17.6
 12  13.8   17.8
 13  11.2   25.0
 14  14.5    6.6
 15  12.5   10.6

 21  14.5    9.7
 22  13.8   28.8
 23  14.5    6.8  ==> Assembly #2
 24  18.5   51.7  ==> Used for prototyping
 25  17.1   13.8
 26  14.5    6.6  ==> Assembly #1
  124   Mon May 13 14:49:35 2013 KojiMechanicsCharacterizationMounting Glass Bracket still broke with tightenin stress

[Koji / Jeff]

This is the elog about the work on May 9th.

We made two glass brackets glue on the junk 2" mirrors with the UV glue a while ago when we used the UV bonding last time.

On May 7th:

We applied EP30-2 to the glass brackets and glued invar shims on them. These test pieces were left untouched for the night
and brought to Bob for heat curing at 94degC for two hours.

On May 9th:

We received the test pieces from Bob.

First, a DCPD mount was attached on one of the test pieces. The fasteners were screwed at the torque of 4 inch lb.
It looked very sturdy and Jeff applied lateral force to break it. It got broken at once side of the bracket.

We also attached the DCPD mount to the other piece. This time we heard cracking sound at 2 inch lb.
We found that the bracket got cracked at around the holes. As the glass is not directly stressed by the screws
we don't understand the mechanism of the failure.

After talking to PeterF and Dennis, we decided to continue to follow the original plan: glue the invar shims to the brackets.

We need to limit the fastening torque to 2 inch lb.

  125   Mon May 13 14:59:16 2013 KojiMechanicsGeneralInvar shim gluing

The invar reinforcement shims were glued on the glass brackets on the breadboard.
We worked on the light side on May 10th and did on the dark side on May 13rd.

U-shaped holding pieces are used to prevent each invar shim to be slipped from the right place.

We are going to bring the OMC breadboard to the bake oven tomorrow to cure the epoxies and promote the outgasing.

  130   Thu May 23 23:41:48 2013 KojiMechanicsGeneralDCPD/QPD Mount

DCPD mounts and QPD mounts were attached on the breadboard. They are not aligned yet and loosely fastened.

DCPD (mounting 4-40x5/16 BHCS Qty4)

Face plates fatsened by 4-40x5/16 BHCS (24 out of 40)

Housing   Face plate Destination  PD
002       002        L1OMC DCPD1  #10
003       003        L1OMC DCPD2  #11
004
       004        H1OMC DCPD1
008
       005        H1OMC DCPD2
009
       006        I1OMC DCPD1
010
       007        I1OMC DCPD2

QPD (mounting 4-40x5/16 BHCS Qty4)

Face plates fatsened by 4-40x1/4 BHCS (24 out of 80)

Housing   Face plate Destination QPD
002       002        L1OMC QPD1  #38 #43 swapped on 29th May.
003       003
        L1OMC QPD2  #43 #38 swapped on 29th May.
004
       004        H1OMC QPD1
005
      005        H1OMC QPD2
006
      006        I1OMC QPD1
007
      007        I1OMC QPD2

* 4-40x5/16 BHCS Qty 8 left
* 4-40x5/16 BHCS Qty 56 left

Cut the diode legs by 3mm

 

  148   Sat Jul 6 17:10:07 2013 KojiMechanicsCharacterizationPZT Response analysis

Analysis of the PZT scan / TF data taken on May 31st and Jun 1st.

[DC scan]

Each PZT was shaken with 10Vpp 1Hz triangular voltage to the thorlabs amp.
The amp gain was x15. Abut 4 TEM00 peaks were seen on a sweep between 0 and 10V.

The input voltage where the peaks were seen was marked. Each peak was mapped on the
corresponding fringe among four. Then the each slope (up and down) was fitted by a iiner slope.
Of course, the PZTs show hystersis. Therefore the result is only an approximation.

PZT1: PZT #26, Mirror C6 (CM1)
PZT2: PZT #23, Mirror C5 (CM2)

PZT arrangement [ELOG Entry]

PZT1:
Ramp Up        13.21nm/V
Ramp Down   13.25nm/V
Ramp Up        13.23nm/V
Ramp Down   13.29nm/V

=> 13.24+/-0.02 nm/V

PZT2:
Ramp Up        13.27nm/V
Ramp Down   12.94nm/V
Ramp Up        12.67nm/V
Ramp Down   12.82nm/V

=> 12.9+/-0.1 nm/V

[AC scan]

The OMC cavity was locked with the fast laser actuation. Each PZT was shaken with a FFT analyzer for transfer function measurments.
(No bias voltage was given)

The displacement data was readout from the laser fast feedback. Since the UGF of the control was above 30kHz, the data was
valid at least up to 30kHz. The over all calibration of the each curve was adjusted so that it agrees with the DC response of the PZTs (as shown above).

The response is pretty similar for these two PZTs. The first series resonance is seen at 10kHz. It is fairly high Q (~30).

Attachment 1: PZT_Scan.pdf
PZT_Scan.pdf
Attachment 2: L1OMC_PZT_Response.pdf
L1OMC_PZT_Response.pdf
  158   Tue Aug 27 17:02:31 2013 KojiMechanicsCharacterizationSpot position measurement on the diode mounts

After the PZT test, the curved mirrors were aligned to the cavity again.

In order to check the height of the cavity beam, the test DCPD mount was assembled with 2mm shim (D1201467-3)
The spot position was checked with a CCD camera.

According to the analysis of the picture, the spot height is about 0.71mm lower than the center of the mount.

Attachment 1: DCPD1.png
DCPD1.png
  160   Thu Aug 29 18:55:36 2013 KojiMechanicsGeneralI1 OMC top side gluing (UV)

The glass components for the I1 OMC top side were glued by the UV glue.

Breadboard SN#4
Wire bracket SN#5/6/7/8

  202   Tue Jul 8 18:54:54 2014 KojiMechanicsCharacterizationPZT characterization

Each PZT was swept with 0-150V 11Hz triangular wave.
Time series data for 0.2sec was recorded for each PZT.

The swept voltage at the resonances were extracted and the fringe number was counted.
Some hysteresis is seen as usual.

The upward/downward slopes are fitted by a linear line.

The average displacement is 11.3nm/V for PZT1 and 12.7nm/V.

The PZT response was measured with a FFT analyzer. The DC calibration was adjusted by the above numbers.

Attachment 1: PZT_Scan.pdf
PZT_Scan.pdf
Attachment 2: I1OMC_PZT_Response.pdf
I1OMC_PZT_Response.pdf
  210   Thu Jul 17 02:19:20 2014 KojiMechanicsCharacterizationI1OMC vibration test

Summary

- The breadboard has a resonance at 1.2kHz. The resonant freq may be chagned depending on the additional mass and the boundary condition.

- There is no forest of resonances at around 1kHz. A couple of resonances It mainly starts at 5kHz.

- The PZT mirrors (CM1/CM2) have the resonance at 10kHz as I saw in the past PZT test.


Motivation

- Zach's LLO OMC characterization revealed that the OMC length signals have forest of spikes at 400-500Hz and 1kHz regions.

- He tried to excite these peaks assuming they were coming from mechanical systems. It was hard to excite with the OMC PZT,
but actuating the OMCS slightly excited them. (This entry)

Because the OMC length control loop can't suppress these peaks due to their high frequency and high amplitude, they limit
the OMC residual RMS motion. This may cause the coupling of the OMC length noise into the intensity of the transmitted light.
We want to eventually suppress or eliminate these peaks.

By this vibration test we want to:

- confirm whether the peaks are coming from the OMC or not.
- identify what is causing the peaks if they are originated from the OMC
- correct experimental data for comparison with FEA

Method

- Place a NOLIAC PZT on the object to be excited.
- Look at the actuation signal for the OMC locking to find the excited peaks.

Results

Breadboard

- This configuration excited the modes between 800-1.2kHz most (red curve). As well as the others, the structures above 5kHz are also excited.

- The mode at 1.2kHz was suspected to be the bending mode of the breadboard. To confirm it, metal blocks (QPD housing and a 4" pedestal rod)
  were added on the breadboard to change the load. This actually moved (or damped) the mode (red curve).

- Note that the four corners of the breadboard were held with a PEEK pieces on the transport fixture.
  In addition, the installed OMC has additional counter balance mass on it.
  This means that the actual resonant frequency can be different from the one seen in this experiment. This should be confirmed with an FEA model.
  The breadboard should also exhibit higher Q on the OMCS due to its cleaner boundary condition. 

 

I1OMC_vibration_test_Breadboard.png

DCPD / QPD

- Vibration on the DCPDs and QPDs mainly excited the modes above 3kHz. The resonances between 3 to 5kHz are observed in addition to the ubiquitous peaks above 5kHz.
  So are these coming from the housing? This also can be confirmed with an FEA model.

- Some excitation of the breadboard mode at 1.2kHz is also seen.

 

I1OMC_vibration_test_DCPD.pngI1OMC_vibration_test_QPD.png

CM1/CM2 (PZT mirrors)

- It is very obvious that there is a resonance at 10kHz. This was also seen in the past PZT test. This can be concluded that the serial resonance of the PZT and the curved mirror.
- There is another unknown mode at around 5~6kHz.

- Some excitation of the breadboard mode at 1.2kHz is also seen.

I1OMC_vibration_test_CM.png

FM1/FM2 and Peripheral prism mirrors (BSs and SMs)

- They are all prism mirrors with the same bonding method.

- The excitation is concentrated above 5kHz. Small excitation of the breadboard mode at 1.2kHz is also seen. Some bump ~1.4kHz is also seen in some cases.

I1OMC_vibration_test_FM.png I1OMC_vibration_test_Prism.png

Beam dumps

- The excitation is quite similar to the case of the peripheral mirrors. Some bump at 1.3kHz.

I1OMC_vibration_test_BD.png


Other tapping test of the non-OMC object on the table

- Transport fixture: long side 700Hz, short side 3k. This 3K is often seen in the above PZT excitation

- Fiber coupler: 200Hz and 350Hz.

- The beam splitter for the back scattering test: 900Hz

  211   Sun Jul 20 17:19:50 2014 KojiMechanicsCharacterizationI1OMC vibration test ~ 2nd round

Improved vibration measurement of the OMC

Improvement

- Added some vibration isolation. Four 1/2" rubber legs were added between the OMC bread board and the transport fixture (via Al foils).
  In order to keep the beam height same, 1/2" pedestal legs were removed.

- The HEPA filter at the OMC side was stopped to reduce the excitation of the breadboard. It was confirmed that the particle level for 0.3um
  was still zero only with the other HEPA filter.


Method

- Same measurement method as the previous entry was used.

Results

Breadboard

- In this new setup, we could expect that the resonant frequency of the body modes were close to the free resonances, and thus the Q is higher.
  Noise is much more reduced and it is clear that the resonance seen 1.1kHz is definitely associated with the body mode of the breadboard (red curve).

  As a confirmation, some metal objects were placed on the breadboard as tried before. This indeed reduced the resonant frequency (blue curve).

I1OMC_vibration_test_Breadboard.pngI1OMC_vibration_test_Breadboard_HiRes.png

DCPD / QPD

- Vibration on the DCPDs and QPDs mainly excited the modes above 2~3kHz.
  In order to check if they are coming from the housing, we should run FEA models.

- Some excitation of the breadboard mode at 1.1kHz was also seen.

I1OMC_vibration_test_DCPD.pngI1OMC_vibration_test_QPD.png

CM1/CM2 (PZT mirrors)

- Baseically excitation was dominated by the PZT mode at 10kHz. Some spourious resonances are seen at 4~5kHz but I believe this is associated with the weight placed on the excitation PZT.

I1OMC_vibration_test_CM.png

FM1/FM2 and peripheral prism mirrors (BSs and SMs)

- The modes of the FMs are seen ~8k or 12kHz. I believe they are lowered by the weight for the measurement. In any case, the mode frequency is quite high compared to our frequency region of interest.

- As the prism resonance is quite high, the excitation is directly transmitted to the breadboard. Therefore the excitation of the non-cavity caused similar effect to the excitation on the breadboard.
  In fact what we can see from the plot is excitation of the 1.1kHz body mode and many high frequency resonances.

I1OMC_vibration_test_FM.pngI1OMC_vibration_test_Prism.png

Beam dumps

- This is also similar to the case of the peripheral mirrors.

I1OMC_vibration_test_BD.png

Attachment 1: I1OMC_vibration_test.pdf
I1OMC_vibration_test.pdf I1OMC_vibration_test.pdf I1OMC_vibration_test.pdf I1OMC_vibration_test.pdf I1OMC_vibration_test.pdf I1OMC_vibration_test.pdf I1OMC_vibration_test.pdf I1OMC_vibration_test.pdf
  213   Mon Jul 21 01:02:43 2014 KojiMechanicsCharacterizationSome structual mode analysis

Prisms

Fundamental: 12.3kHz Secondary: 16.9kHz

PRISM_12_3kHz.png PRISM_16_9kHz.png

DCPDs

Fundamental: 2.9kHz Secondary: 4.1kHz

DCPD_2_9kHz.png DCPD_4_1kHz.png

QPDs

Fundamental: 5.6kHz Secondary: 8.2kHz

QPD_6_0kHz.png QPD_8_2kHz.png

  218   Tue Sep 9 20:59:19 2014 KojiMechanicsCharacterizationStructural mode analysis for the PZT mirror

Structural analysis of the PZT mirror with COMSOL.

Inline figures: Eigenmodes which involves large motion of the tombstone. In deed 10kHz mode is not the resonance of the PZT-mirror joint, but the resonance of the tombstone.

Attached PDF: Simulated transfer function of the PZT actuation. In order to simulate the PZT motion, boundary loads on the two sides of the PZT were applied with opposite signs.
10kHz peak appears as the resonance of the tombstone dominates the mirror motion. At 12kHz, the PZT extension and the backaction of the tombstone cancells each other and
the net displacement of the mirror becomes zero.

PZT_10.0kHz.png PZT_14.6kHz.png PZT_18.0kHz.png

PZT_22.5kHz.png PZT_29.7kHz.png

Attachment 1: PZT_response_FEA.pdf
PZT_response_FEA.pdf
  296   Wed May 30 16:40:38 2018 KojiMechanicsCharacterizationEOM mount stability test

https://awiki.ligo-wa.caltech.edu/wiki/EOM_Mount_Stability

  314   Fri Feb 1 12:52:12 2019 KojiMechanicsGeneralPZT deformation simulation

A simple COMSOL simulation was run to see how the PZT deforms as the voltage applied.

Use the geometry of the ring PZT which is used in the OMCs -  NAC2124 (OD 15mm, ID 9mm, H 2mm)
The material is PZT-5H (https://bostonpiezooptics.com/ceramic-materials-pzt) which is predefined in COMSOL and somewhat similar to the one used in NAC2124 (NCE51F - http://www.noliac.com/products/materials/nce51f/)
The bottom surface of the ring was electrically grounded (0V), and mechanically fixed.
Applied 100V between the top and bottom.

 

Attachment 1: pzt.png
pzt.png
  320   Thu Mar 28 16:36:52 2019 KojiMechanicsCharacterizationOMC(002) PZT characterization

As performed in the ELOG 202, the PZTs of the OMC 002 were tested.

DC response was measured by sweeping each PZT with 0-150V triangular voltage at 11Hz. Acquire 0.2sec of the tie series using an oscilloscope to get the PDH error, cavity transmission, and the sweep signal.

The voltage where the tranmission peaks were observed were fitted were recorded. One fringe corresponds to the displacement of 532nm. So the displacement and the applied volatagewere fitted witha linear function.

This gave the PZT response for PZT1 and PZT2 to be 14.9nm/V and 14.4nm/V.

 

AC response was measured with SR785. The PZT was shaken with 1~50mVpp signal with the DC offset of 5V while the OMC was locked with the feedback to the laser fast PZT. The transfer function from the applied PZT voltage to the servo output were measured. The closed loop TF was also measured to remove the effect of the servo control.  The DC levels of the responses were calibrated using the values above.

Attachment 1: PZT_Scan.pdf
PZT_Scan.pdf
Attachment 2: OMC_PZT_Response.pdf
OMC_PZT_Response.pdf
  328   Thu Apr 11 12:15:31 2019 KojiMechanicsConfigurationPZT sub assy mirror orientations
Attachment 1: PZT_subassy.png
PZT_subassy.png
Attachment 2: PZT_subassy.pdf
PZT_subassy.pdf PZT_subassy.pdf PZT_subassy.pdf PZT_subassy.pdf
  329   Thu Apr 11 21:22:26 2019 KojiMechanicsGeneralOMC(004): PZT sub-assembly gluing

[Koji Stephen]

The four PZT sub-assemblies were glued in the gluing fixtures. There were two original gluing fixtures and two additional modified fixtures for the in-situ bonding at the repair of OMC(002).

- Firstly, we checked the fitting and arrangements of the components without glue. The component combinations are described in ELOG 329.
- Turned on the oven toaster for the cure test (200F).
- Then prepared EP30-2 mixture (7g EP30-2 + 0.35g glass sphere).
- The test specimen of EP30-2 was baked in the toaster oven. (The result shows perfect curing (no stickyness, no finger print, crisp fracture when bent)
- Applied the bond to the subassemblies.
- FInally the fixtures were put in airbake Oven A. We needed to raise one of the tray with four HSTS balance weights (Attachment 2).

Attachment 1: IMG_7561.jpg
IMG_7561.jpg
Attachment 2: IMG_7567.jpg
IMG_7567.jpg
ELOG V3.1.3-