ID |
Date |
Author |
Type |
Category |
Subject |
65
|
Wed Jul 13 13:16:33 2022 |
Juan | General | General | Finished coil driver and sat amp | I have finished all coil driver and sat amp chassis they all seem to be functioning properly.
|
69
|
Fri Jul 22 13:47:47 2022 |
Juan | General | General | Update | Just a general update of what I have been up to deriving Lagrange for double pendulum system and also been looking at code that koji gave to me I've add comment to some of the code also working on my report. |
70
|
Tue Jul 26 14:17:44 2022 |
Juan | General | General | OSEMS actuators | we have 23 OSEMS they look all full built and I will try and test them this week and or next week. |
72
|
Thu Aug 4 11:26:55 2022 |
Juan | General | General | Sat Amp | Sat amp seems to be working just fine. There does seem to be a saturation issue with one of the outputs we may need to change a resistor on the board.
|
74
|
Mon Aug 8 13:00:56 2022 |
Juan | General | General | Sat Amp testing of OSEMS | In the following test, a single Sat Amp chassis that holds Sat Amp Board S1106078 and S1106077
Verification of Sat Amp
First, as the test of the LED driver circuits in the chassis, 8 of various color LEDs were inserted to the appropriate output pins of the chassis. This resulted in all the LED lit and the LED mon TP was confirmed to have voltage outputs of 5V. (See my previous ELOG)
OSEM tests
Connected OSEMs to the sat amp to test the OSEM LED/PD pairs. With the first test, the PD out gave us 15V. We wondered if this was just the problem of the OSEM or circuit, or just there are too much light for the transimpedance gain of 121K Ohm.
By blocking the OSEM light by a random heat shrink tube found on the table, we saw the number got reduced. This indicates that the OSEM/Satamp outputs are working and there are just too much light.
We decided to reduce the gain: The transimpedance gain R18 was reduced to 16k, which gave us a voltage range from 5V~7V with some outlier OSEMS at 1V (See the attached table)
There are 24 total OSEMs:
- one apparently not functional
- 20 fell in the range of 5~7V
- 3 fell in the range of ~1V
(These numbers given after the change of R18 to 16k Ohm)
Note: We originally aimed for 8~9V. However, from a previous study of OSEM at cryogenic temperature, we learned that there was about an about 30% increase in the response.
Therefore, we decided to leave a sufficient margin from 10V considering this expected increase in the response. |
75
|
Mon Aug 15 16:37:51 2022 |
Juan | General | General | Update on Sat Amp and OSEMs | Sat Amp
- Changes to sat amp 15.8 k ohm resistors instead of 16k The change has been made on Sat Amp - S1103733 & S1103732 ONLY Channel 4 and 2 have been changed on both boards.
OSEM
- I developed a test bed for our OSEM to measure force
I will attach images of the setup and some of the results from 3 different OSEMs.
Future Work
- For the current test bed, we are using a clear plastic bin although not ideal it manages to get the job done and works for now there could be a better solution for this,
- Next step for OSEM we want to use 40 m single pendulum to test OSEM and measure the transfer function. |
117
|
Sat Jan 7 16:07:13 2023 |
| General | General | | The bond quality measurements can be split into two categories: destructive and nondestructive. For destructive, we have measuring tensile and shear strength, and for nondestructive, we have gap distrance and mechanical quality. I am also currently searching for more ways to measure the strenght, but I am having a hard time finding any others.
Tensile strength
Proposed method: based off of the traditional razor test, a blade will be systematically inserted into the gap. For a prototype, I used optical bread board components to hold the razor while a knob was slowly turned to push the razor forward. The knob had markings on it, which could be used to estimate the amount of force applied to the gap. The prototype was made for the larger glass slides, so it is too big and forceful for the silicon and smaller, more fragile glass slides. However, the principles of the protoype had potential to be adapated to be gentler.
Shear strength
Proposed method: a cord will be adhered to the outer sides of the sample such that one side will be hung to the ceiling while the other will have weight hanging from it. Weight us added to the latter cord until the bond breaks. This could pontentially be a little dangerous as it could shatter when the bond finally breaks, so a protective barrier of some sort will have to be set up.
Alternative: affix one outer surface to the table so that it cannot move. Attach the other surface to something that can spun/twisted. The more twists it takes to break the bond corresponds to the shear strenght.
Gap distance
Proposed method: use ellipsometry to find how big the gap is between the two bonded surfaces. I think this would be great to combine with one of the destructive methods since, if you could relate the nm thickness of the gap to, say, the tensile strength, then you could estimate the tensile strength of future bonds without having to destroy them. I read a lot about ellipsometry over winter break, and I know what components are needed for it.
Mechanical quality
Proposed method: this would be based around the paper which measured the ring down of an optically contacted tuning fork. My focus would be on varying the parameters to find the most precise and accurate dimensions of the fork. Although it sounds interesting, I am not sure how practical it would be to pursue as it requires a lot of modeling and building. However, given the application of these measurements (specifically, for Voyager, (if my understanding is correct) the use of optical contacting will resolve the issue of messy noise caused by unpredictable thermal vibration of adhesives), knowing the mechanical quality of the bond seems valuble. |
120
|
Mon Jan 9 21:03:53 2023 |
Koji | General | General | Heavy item transport - preparation | 1) Paco cleared the path in the DOPO lab. We'll need a flat dolly or wooden bars (covered with a mylar sheet) to place the lid on it while we will remove the suspension. The suspension will be placed next to the wall and wrapped with mylar sheets.
We'll need:
(from the 40m) a dooly, mylar sheets, spare slings
(from Downs) heavy-duty inline scale
(from OMC lab) some tapes
2) The crane base is in CAML right now.
3) The yellow crane is in QIL right now. We'll dismount the top part and mount it on the base.
----
Steps
- Remove the lid. Place it on a clean safe platform.
- Remove the suspension, wrap it, and place it next the wall.
- Put the lid on.
- The chamber will be moved to CAML on Thu morning. |
121
|
Tue Jan 10 23:30:25 2023 |
Koji | General | General | Heavy item transport - preparation | [JC, Stephen, Paco, Gabriele, Aidan, Radhika, Koji]
We have successfully extracted the crackle suspension from the chamber at the DOPO lab. We ended up using the engine hoist brought from the cryo lab instead of the yellow Skyhook as Skyhook's arm was too short.
Attachment 1 shows how the hoist is inserted to the table and how the lid was lifted. The lid was placed on a cardboard box wrapped with a Mylar sheet. It could be slid on the floor.
Attachment 2 shows how the suspension was lifted and placed on a similar Mylar-wrapped cardboard box. Upon the removal of the suspension, the cables were disconnected from the suspension. A few OSEM wires needed to be cut so that the suspension to be free.
Attachment 3 We are ready for the chamber transportation.
|
122
|
Thu Jan 12 11:38:26 2023 |
Koji | General | General | How to move the large engine hoist through the narrow door | See the attachments. |
123
|
Thu Jan 12 11:54:08 2023 |
Koji | General | General | Heavy item transport | [JC, Koji]
Caltech transport came in this morning. They first went to the OMC lab and moved the 3ft x 4ft table out. They lifted the heavy objects only with human power.
Then the suspension chamber was moved with a hydraulic lifter. (Attachment 1)
The chamber bottom was sled on the table. We asked them to leave the chamber lid on the mylar + cardboard sheet (Attachment 2) so that we can carefully close the lid with a crane (Attachment 3).
JC and I continued to work on the chamber closure, but it wasn't so straightforward.
The nominally planned location of the table (seen in Attachment 3) has a low ceiling and was not a great place to open/close the lid. It is high enough just to close the lid but we can't do anything else.
We worked on the crane operation close to the lab entrance (Attachment 4). We found that the chamber needed to be offset from the center of the table because the legs of the hoist turned out to be too wide to get in between the table legs. This low ceiling had ~3" gap to the crane when the lid was closed (Attachment 5). Meaning, we can't put anything in the chamber if the lid gets stuck with the low ceiling.
Anyway, the chamber was closed and the table was rolled to the end of the lab (for storage) (Attachment 6).
BTW, the rolling of the table further destroyed the floor (Attachment 7)
So, how high the ceiling should be, so that we can put a tall suspension in the chamber? We probably need to use the northeast part of the lab where the ceiling is much higher. But the crane itself can be another limitation. It needs careful consideration. |
124
|
Thu Jan 12 15:36:22 2023 |
Koji | General | General | Crane configuration for the suspension test chamber | I made a quick investigation of the crane configuration for the suspension test chamber.
Conclusions:
- The table and the suspension test chamber need to be placed in the northwest corner of CAML where the ceiling height is 105"
- The engine hoist needs to be connected to the chamber with a shackle or something similar to avoid the interference of the chamber lid and the tilted crane jib.
This shackle needs to raise the hanging point by ~3".
CAML has three types of ceilings.
1) Low ceiling area (west side) the clearance height 75.5"
2) Mid ceiling area (most of the lab area) 85.5". This is limited by the height of the FL light cover.
3) High ceiling area (northeast corner) 105". This is limited by the height of the FL light cover there.
Attachment P1
Nominal closed state: The chamber top height is about 68". Even in the low ceiling area, there is 7.5" space and the crane can remove the lid when the chamber is empty.
Attachment P2
Open chamber with suspension (direct connection): If the lid and the hook are directly connected, the corner of the chamber is going to be very close to the jib arm when the chamber is fully opened with ~1" clearance. This is not a safe condition, considering that the chamber can oscillate due to the lateral motion associated with raising the jib arm.
Attachment P3
Open chamber with suspension (connection via a 3" shackle): When the lid and the hook are connected via a 3" shackle, we'll observe a safe amount of clearance between the chamber and the jib arm. And the crane height is still 96" which is lower than the ceiling height of the high ceiling area of the lab. |
138
|
Fri Aug 25 13:25:05 2023 |
Radhika | General | General | Summary of JPL/Ball cryocooler discussion | Here is a summary of the cryocooler discussion hosted at JPL.
Dave Glaister of Ball Aerospace presented on their low-vibration cryocooler assemblies (CCAs). A summary of their work can be found in this paper. Ball has their own cryocooler vibration testing setup that they use to assess/characterize their platforms. They did not show frequency-dependent vibration noise with/without their assemblies, but they advertized up to 50x reduction in noise at 50-60 Hz. The paper above does show a spectrum of sorts (unknown units) but it does not display data below 50 Hz. Notably, they have experience in augmenting the Sunpower DS-30 cooler which meets the Mariner cooling requirements (though their CCAs should be cooler-agnostic).
Notes from their meeting:
- Fanciest Sunpower DS-30 CCA (with all the bells+whistles): $2 million; 12-24 month lead time. Results in few mN of vibration.
- Yukon Soft Ride CCA for Sunpower DS-30 - lowest cost; in the $100,000 range if they use cheaper electronics.
-vibration attenuation 8x
- They suggested the option of circulating gas instead of a cryocooler for our needs: helium gas lines; keep compressor outside IFO to eliminate almost all vibration.
The Yukon CCA seems to be a reasonable baseline to discuss with them. They can customize to our needs. We should ask them to provide us with vibration measurements of the DS-30 cooler with and without their Yukon CCA down to 1 Hz. |
3
|
Fri Jun 5 11:13:50 2020 |
Raymond | General | Heat Load | Steady state heat load example | Attached is a cartoon partial view into the heat load experienced by the Mariner assembly.
The omnigraffle file with more explicit arrow labelling in the 'layers' tab is available here. The dashed red lines along to top represent vacuum chamber radiation incident on all sides of the OS/IS, not just from the top. Off picture to the right is the BS, left is the beam tube/ETM chamber -- hence the lower absored laser power (solid line) absorbtion (PR power + no HR coating absorption).
Parameters:
- Emissivities are listed outside the cartoon.
- Shields consist of polished aluminum outer surfaces and high emissivity inner surfaces.
- 1 W input power, 50 W power recycling, 30 kW cavity power
- All shields held at 77K
- IS snout radius is equal to TM radius
- 20 ppm/cm bulk silicon absoprtion, 5 ppm coating absorption
Assumptions
- Steady state condition, where the shields are able to be cooled/held to 77K
- Holes punched into the inner shield for stops, magnets, etc are assumed to shine RT light onto 123K TM
- This is very conservative, MOS will stablize at some temp and the OS should block ~all vacuum chamber radiation not funneled through inner shield snout
Missing or wrong
- [M] Contribution of MOS conduction and emission on the outer shield heat budget
- [M] Inner shield
- [W] OS inner surface currently modelled as one surface seeing incident RT light, need to accomodate the view factor of each of the 5 high e sides to the open maw of the OS
- [M] Conduction through shield masses, how efficient is it to link them with straps
- [M] no AR coating absorption
- [M/W] Cold finger cooling power from room temp shield to 77K cryocooler ('wrong' label because 61W is only the heat load once shields are cooled):
- Worst case to reach: 1.5m connection between tank flange and shield (from flange at bottom of the tank)
- Phosphorous deoxidized copper: 5 cm diameter
- ETP copper: 3.5 cm diameter
- Best case: 0.5m connection, from flange at level of OS
- Phos deox Cu: 3 cm diameter
- ETP Cu: 2 cm diameter
-
![q_{\text{conductive}} = \frac{A}{L} \left[\int_{4\, \text{K}}^{T_2} \lambda(T) dT - \int_{4\, \text{K}}^{T_1} \lambda(T)dT \right]](https://latex.codecogs.com/gif.latex?q_%7B%5Ctext%7Bconductive%7D%7D%20%3D%20%5Cfrac%7BA%7D%7BL%7D%20%5Cleft%5B%5Cint_%7B4%5C%2C%20%5Ctext%7BK%7D%7D%5E%7BT_2%7D%20%5Clambda%28T%29%20dT%20-%20%5Cint_%7B4%5C%2C%20%5Ctext%7BK%7D%7D%5E%7BT_1%7D%20%5Clambda%28T%29dT%20%5Cright%5D)
|
30
|
Fri Sep 24 13:12:00 2021 |
Radhika | General | Heat Load | Mariner cooldown model status + next steps | *Note: the current modeling script can be found at: CryoEngineering/MarinerCooldownEstimation.ipynb
Nina pointed me to the current mariner cooldown estimation script (path above) and we have since met a few times to discuss upgrades/changes. Nina's hand calculations were mostly consistent with the existing model, so minimal changes were necessary. The material properties and geometric parameters of the TM and snout were updated to the values recently verified by Nina. To summarize, the model considers the following heat sources onto the testmass (Pin):
- laser absorption by ITM bulk (function of incident laser power, PR gain, and bulk absorption)
- laser absorption by ITM HR coating (function of incident laser power and HR coating absorption)
- radiative heating from room-temp tube snout (function of snout radius and length, and TM radius)
The heat transfer out of the testmass (Pout) is simply the sum of the radiative heat emitted by the HR and AR faces and the barrel. Note that the script currently assumes an inner shield T of 77K, and the inner/outer shield geometric parameters need to be obtained/verified.
Nina and Paco have been working towards obtaining tabulated emissivity data as a function of temperature and wavelength. In the meantime, I created the framework to import this tabulated data, use cubic spline interpolation, and return temperature-dependent emissivities. It should be straightforward to incorporate the emissivity data once it is available. Currently, the script uses room-temperature values for the emissivities of various materials.
Future steps:
- Incorporate tabulated emissivity data
- Verify and update inner/outer shield dimensions
|
31
|
Mon Sep 27 17:01:53 2021 |
rana | General | Heat Load | Mariner cooldown model status + next steps | How about a diagram so that we can understand what this model includes? |
32
|
Wed Sep 29 16:15:19 2021 |
Radhika | General | Heat Load | Mariner cooldown model status + next steps | Attachment 1 is a geometric diagram that reflects the current state of the ITM cooldown model, introduced in [30]. The inner shield is assumed to be held at 77K for simplicity, and 2 heat sources are considered: laser heating, and radiative heating from the room-temperature snout opening. The view factor Fij between the snout opening and test mass (modeled as 2 coaxial parallel discs separated by length L - equation found in Cengel Heat Transfer) is calculated to be 0.022. The parameters used in the model are noted in the figure.
Attachment 2 is a simplified diagram that includes the heating/cooling links to the test mass. At 123K, the radiative cooling power from the inner shield (at 77K) is 161 mW. The radiative heating from the snout opening is 35 mW, and the laser heating (constant) is 101.5 mW. Due to the tiny view factor betwen the snout opening and the test mass, most of the heat emitted by the opening does not get absorbed.
The magnitudes of heating and cooling power can be seen in Attachment 3. Lastly, Attachment 4 plots the final cooldown curve given this model.
My next step is to add the outer shield and fix its temperature, and then determine the optimal size/location of the inner shield to maximize cooling of the test mass. This is question was posed by Koji in order to inform inner shield/outer shield geometric specs. Then, I will add a cold finger and cryo cooler (conductive cooling). Diagrams will be updated/posted accordingly. |
37
|
Tue Oct 5 17:46:14 2021 |
Radhika | General | Heat Load | Mariner cooldown model status + next steps | Building on [32], I added a copper cold finger to conductively cool the inner shield, instead of holding the inner shield fixed at 77K. The cold finger draws cooling power from a cyro cooler or "cold bath" held at 60K, for simplicity. I added an outer shield and set its temperature to 100K. The outer shield supplies some radiative heating to the inner shield, but blocks out 295K heating, which is what we want. The expanded diagram can be seen in Attachment 1.
I wanted to find the optimal choice of inner shield area (AIS) to maximize the radiative cooling to the test mass. I chose 5 values for AIS (from ATM to AOS) and plotted the test mass cooldown for each in Attachment 2. The radiative coupling between the inner shield and test mass is maximized when the ratio of the areas, ATM/AIS, is minimized. Therefore, the larger AIS, the colder the test mass can be cooled. Even though choosing AIS close to AOS increases the coupling between the 2 shields, the resulting heating from the outer shield is negligible compared to the enhancement in cooling.
I chose AIS = 0.22 m2 to model the inner shield and test mass cooldown in Attachment 3. The test mass reaches 123 K at ~ 125 hours, or a little over 5 days. I have pushed the updated script which can be found under mariner40/CryoEngineering/MarinerCooldownEstimation.ipynb. |
42
|
Fri Oct 15 13:45:55 2021 |
Radhika | General | Heat Load | Mariner cooldown model status + next steps | I used the same model in [37] to consider how test mass length affects the cooldown. Attachment 1 plots the curves for TM length=100mm and 150mm. The coupling between the test mass and inner shield is proportional to the area of the test mass, and therefore increases with increasing length. Choosing l=100mm (compared to 150mm) thus reduces the radiative cooling of the test mass. The cooldown time to 123K is ~125 hrs or over 5 days for TM length=150mm (unchanged from [37]), but choosing TM length=100m increases this time to ~170 hrs or ~7 days. (Note that these times/curves are derived from choosing an arbitrary inner shield area of 0.22 m2, but the relative times should stay roughly consistent with different IS area choices.) |
43
|
Fri Oct 15 14:31:15 2021 |
Radhika | General | Heat Load | Mariner cooldown model status + next steps | I reran the cooldown model, setting the emissivity of the inner surface of the inner shield to 0.7 (coating), and the emissivity of the outer surface to 0.03 (polished Al). Previously, the value for both surfaces was set to 0.3 (rough aluminum).
Attachment 1: TM cooldown, varying area of the inner shield. Now, the marginal improvement in cooldown once the IS area reaches 0.22 m2 is negligible. Cooldown time to 123K is ~100 hrs, just over 4 days. I've kept IS area set to 0.22 m2 moving forward.
Attachment 2: TM/IS cooldown, considering 2 lengths for the test mass. Choosing l=100m instead of 150mm increases cooldown time from ~100 hrs to ~145 hrs, or 6 days. |
79
|
Fri Aug 26 14:24:57 2022 |
Radhika | General | Heat Load | Mariner TM Cooldown model | Here I describe the current radiative cooldown model for a Mariner test mass, using parameters from the most recent CAD model. A diagram of all conductive and radiative links can be seen in Attachment 1. Below are some distilled key points:
1. The source of cooling power is an infinite reservoir at 60K - realistically there will be finite cooling power and the system will be optimized within that constraint.
2. The outer shield surrounds the suspension system and some cooling power can be delivered conductively to the outer shield to hold it at an optimal temperature.
3. The suspension cage has 4 feet that insulate the cage from the table at RT.
4. The cage is composed of vertical beams and bottom and top lids. Radiative view factors from the cage to other components have been loosely estimated.
5. Suspension wires conduct heat from the cage to the upper mass, and from the upper mass to the test mass.
6. The inner shield and snout surround the test mass. Aperature openings in the inner shield (for wires) allow the test mass to radiatively "see" surroundings at ~outer shield T.
7. The snout openings and incident laser power are additional heat loads to the test mass.
All parameters have been taken from CAD, with the exception of:
1) snout length: originally 0.665m in CAD (end to end), but I doubled it to 1.33m following a discussion in group meeting
2) length of copper bar / conductive cooling pathway: set to the end-to-end length of snout. Though this is a conservative over-estimate
2) thermal conductivity of insulating feet: using 0.25 W/mK
3) radius of aperture in IS for suspension wires: using 1"
Attachment 2 contains the cooldown curves for the system components. With the above assumptions, the test mass takes ~59hrs to reach 123K, and the final steady-state temperature is 96K. (*This was edited - found a bug in previous iteration of code that underestimated the TM cooldown time constant and incorrectly concluded ~36hrs to reach 123K. The figures have been updated accordingly.)
Attachment 3-6 are power budgets for major components: TM, IS, Cage, OS (can produce for UM if there's interest). For each, the top plot shows the total heating and cooling power delivered to the component, and the bottom plot separates the heating into individual heat loads. I'll discuss these below:
- TM: The laser delivers 100mW of heating power to the test mass throughout the cooldown. The next most significant source of heating is snout - this warrants further optimization (see next ELOG).
- IS: Inevitably the test mass heats the inner shield, but the other heat loads are minimal. Note that the model does not consider radiation from the snout opening to the snout/inner shield walls, and this will be added in soon.
- Cage: The only significant heat load to the cage is conduction from the RT table through the feet. The feet can be made taller, or actively held at a colder temperature.
- OS: I've arbitrarily added conductive cooling to the OS which holds it around 175K. With the current model, adding more cooling power would only help, but in reality this will divert cooling power from going to the IS. This constraint needs to be added in before the optimal OS temperature can be determined. The most significant heat loads are from the chamber walls and the cage (see above).
The next post will describe optimization of the snout length/radius for cooldown. |
80
|
Mon Aug 29 15:44:46 2022 |
Radhika | General | Heat Load | Mariner TM Cooldown model | Here is a more detailed analysis of varying the length and radius of the snout.
Attachment 1 plots the heat load (W) from the snout opening as a function of temperature, for different combinations of snout length and radius. The model using the CAD snout parameters (length=0.67m end-to-end; radius=5.08cm) results in ~0.3W of heat load at steady state. The plot shows that the largest marginal reduction in heat load is achieved by doubling the length of the snout (green curve), which cuts the heat load by over a factor of 2/3. This validates the choice in snout length used in the previous ELOG entry analysis. The bottom line is that the end-to-end snout length should be on the order of 1 meter, if physically possible.
The next marginal improvement comes from reducing the radius of the snout. Attachment 1 considers reducing the radius by a half in addition to doubling the length (red curve). A snout radius of an inch is quite small and might not be feasible within system constraints, but it would reduce the snout heat load to only 25mW at steady state (along with length doubling).
The cooldown model resulting from optimizing parameters of the snout (length=1.33m, radius=2.54cm) is shown in Attachment 2. The test mass reaches 123K in ~57hrs - only 2 hours faster than the case where only the snout length is doubled (see previous ELOG entry) - and the test mass reaches steady state at 92K - only 6K colder than in the previous case. This could discourage efforts to reduce the radius of the snout at all, since increasing the length provides the most marginal gains. |
81
|
Wed Sep 7 10:42:12 2022 |
Radhika | General | Heat Load | Mariner TM Cooldown model | The attached plot (upper) compares the heat load delivered to the test mass from various snout lengths (end to end), as a function of test mass temperature. (At steady state, our point of interest is 123K.) Note that these curves use the original CAD snout radius of 5.08cm (2").
The greatest marginal reduction in heat load comes from increasing the end-to-end snout length to 1m, as concluded in the prevous ELOG. This drops the heat load from just under 0.5W (from snout length 0.5m) to 0.15W. Further increase in snout length to 1.5m drops the heat load to well under 0.1W. After this point, we get diminishing marginal benefit for increase in snout length.
The effect on the TM cooldown curve can be seen in the lower plot. A snout length of 1m drops the steady-state TM temperature to under 100K. Then, like above, increasing the length to 1.5m makes the next non-negligible impact. |
128
|
Wed Apr 12 12:03:34 2023 |
Radhika | General | Heat Load | Mariner TM Cooldown model | Here we lay out the Mariner cryocooler requirements and discuss the most recent cooldown model, which includes a cryocooler that cools down the inner shield and a separate LN2 dewar that cools the outer shield.
The chosen cryocooler must supply at least 2x the cooling power to the TM than the heat loads on the TM, at 123 K. Implicit in this requirement is that in the absense of temperature control, the cooling power must be enough to cool the TM to well below 123 K.
Attachment 1 is the latest Mariner ITM cooldown model. This updated model is pushed to mariner40/CryoEngineering/MarinerCooldownEstimation.ipynb . Before running the notebook you can toggle between IS cooling sources: LN2, DS30, CH-104, or in the future any crycoolers we are considering. All attachments are generated using the cooling curve of the DS30.
Since the OS is no longer a heat load on the cryocooler, the IS gets cooled more efficiently and reaches within 5 K of the coldhead. The heat loads on the TM (snout, apertures, laser heating) make its temperature plateau just under 100 K. It reaches 123K in ~50 hours.
Attachment 2 is a power budget for the TM. We see that at 123K, the heat loads sum to ~0.4 W. The cooling power at this temperature is around 1 W. The DS30 satisfies our cryocooler cooling requirement; however vibration requirements / vacuum interface compatibility still need to be determined.
Lastly, Attachment 3 is an updated block diagram of the heat transfer couplings considered by the model. (The model also considers radiative links between the inner shield and cage, and inner shield and upper mass; these are omitted from the diagram for simplicity.) |
129
|
Fri Jun 2 11:31:29 2023 |
Radhika | General | Heat Load | Mariner TM Cooldown model | Summarizing the current Mariner ITM cooldown model assumptions:
- Inner shield and outer shield have snouts of equal length (1 m end-to-end)
- Laser off during cooldown
- Inner shield cooled by DS30; outer shield cooled by LN2 tank
- ITM barrel emissivity = 0.9
Takeaways:
1) Time to cool to 123 K: ~30 h (radiative cooling limit: 20 h). See Attachment 1
2) 1W cooling power delivered to ITM at 123 K [Attachment 2]
3) ~5W cooling power delivered to inner shield at steady state [Attachment 3]
4) ~28W cooling power delivered to outer shield at steady state [Attachment 3]
A simplified block diagram can be found in Attachment 4. |
130
|
Fri Jun 23 15:37:39 2023 |
Radhika | General | Heat Load | Mariner TM Cooldown model | I simulated the Mariner cooldown with an additional LN2 tank connected to the main cold strap shared by the cryocooler. LN2 can aid in the initial cooldown from room temperature, and once the inner shield is sufficienly cold the cryocooler can take full control. (The LN2 should not be on the whole time - once the inner shield crosses 77K the LN2 would be contributing heat.) In the model I chose the inner shield temperature of 90K to signal when to turn off the LN2 (any lower and the IS temperature starts to flatten out as it approaches 77K).
The closer the LN2 tank sits towards the chamber/IS (and away from the cold head), the better. This is because the cold head of the cryocooler drops rapidly to ~60K, and the LN2 joint would contribute to heating the cold head. Plus, the cooling of the IS is more efficient if the LN2 source is closer. The model assumes the LN2 tank sits halfway between the coldhead of the cryocooler and the inner shield.
The last assumpion made is that the LN2 tank volume is large enough such that the tip in contact with LN2 remains at 77K.
In Attachment 1, the dashed traces show the cooldown of the cold head, inner shield, and test mass without the additional LN2 cooling. The solid traces include LN2 cooling and use the assumptions above in green. We see that the inner shield is cooled significantly faster with LN2 (on par with the cold head until 150K). As a result, the heat load the inner shield puts on the cold head is reduced, and that reduction more than compensates for the additional heating on the cold head from the LN2 at 77K. Thus the cold head cools much faster in the first 10 hours. The kinks in the cold head/inner shield traces are presumably from the system re-equilibriating after the LN2 source is shut off - it's not clear why the cryocooler doesn't immediately continue the downward trend.
The effect on the test mass is more subtle, but we see the test mass cools to 123K ~2 hours faster (in 28 h). I was then curious if we could get the same gains by simply moving the cryocooler/cold head halfway closer to the inner shield. This simulation is in Attachment 2 - it takes ~1 h longer for the test mass to reach 123K, since we don't get the added cooling power from the LN2.
While there's merit to the additon of LN2, maybe an improvement of a few hours isn't enough to justify the increase in complexity.
|
132
|
Fri Aug 4 17:07:41 2023 |
Radhika | General | Heat Load | Mariner TM Cooldown model | Here is the model including an additional LN2 tank aiding in inner shield cooldown, applied to Voyager [Attachment 1]. The same assumptions have been made as in the previous ELOG. The LN2 is switched off once the inner shield reaches 90K.
Using LN2 in such a way cools down the test mass to 123K 5 hours faster. This is a ~6% improvement from the original 85 hours of cooldown [Attachment 2]. Note that the fundamental radiative cooling limit for a Voyager-like test mass is ~68 hours. |
60
|
Thu Jul 7 15:20:04 2022 |
rana | General | Optical Contacting | some useful links | For our optical contacting, Jennifer and I are starting out with glass (microscope slides), with the setup in the EE shop next to the drill press (photos from Jennifer to follow).
Some interesting links:
- https://www.laserfocusworld.com/optics/article/16546805/optical-fabrication-optical-contacting-grows-more-robust is a write up on contacting, and the link to Dan Shaddock's paper is also useful (need to sign up to get the acutal TSP writeup)
- Thesis on Silicon Bonding (https://escholarship.org/uc/item/5bm8g42k)
- https://youtu.be/qvBoGoh_-AE
|
62
|
Mon Jul 11 16:24:31 2022 |
Jennifer Hritz | General | Optical Contacting | Baselining the temperature output of the Oster hot plate | This was performed last Friday (7/8).
I secured a thermocouple perpendicular against the hotplate and recorded the maximum temperature the hotplate reached at Low, Medium, and High. It took about 5 minutes to reach a stable temperature, where stable means that the temperature stayed within +/- 0.5°C for a minute. The hotplate maintains a certain temperature by turning itself on and off, so the temperature would drop slightly (at most, a few °C) while the hotplate was off. The maximums were:
Low: 51°C
Medium: 185°C
High: 263°C
At the max temperature, I moved the perpendicular thermocouple around to roughly find the variation in tempearture at different locations on the hotplate. Facing the nob, the top right quadrant is about 10-20°C cooler than the other quadrants, which are within 5°C of eachother. Excluding the cooler quandrant, the center and the outer edge are within 5°C of eachother. The temperature increases as one approaches half the radius, with it being about 20-40°C greater than the center and outer edge. The highest recorded temparture was 289°C at half the radius in the bottom left quandrant. This was only meant to be a rough test to see how even the heating is. |
63
|
Mon Jul 11 17:27:39 2022 |
Jennifer Hritz | General | Optical Contacting | First successful bond | Note that the slides have "GLOBE" printed on one side. I always bond the opposite using the opposite side without the text.
On Monday (7/11), I began experimenting with bonding, starting with "air-bonding," which is trying to make dry, gently cleaned slides stick. I achieved my first succesful optical contact with what I call "acidental water-assisted direct bonding" or "water-bonding," where I accidentally clasped two wet slides together while washing my dirty finger prints off them. After the accidental discovery, I repeated it by running water over the slides while there were clasped together and achieved the same result. After a few hours, I attempted partially sliding apart the second water-bonded sample. I could slowly push them apart by pressing my thumbs against the long edge, but it took quite a bit of force. I decided to let 4 samples sit overnight: 1 air-bonded, 1 air-bonded with the brass hunk on top of it, and 2 water-bonded. Neither time nor pressure improved the air-bonded samples as they still slid apart very easily. The first water-bonded sample slid apart easier, but one part remained stubornly attached until I began shaking it violently. The second water-bonded sample was much harder to slide apart than the last time I tested it. With all the force of my fingers, I could barely make it budge. |
66
|
Thu Jul 14 14:55:01 2022 |
Jennifer Hritz | General | Optical Contacting | Testing isopropanol and methanol | Note that I am just testing out different techniques, so I have not set up the thermocouples to precisely measure the temperatue.
On Tuesday, I developed a new method of putting water, isopropanol, or methanol on one slide then squishing the other slide on top of it to fill the gap with the afformentioned liquid. The slides are slippery at first, but as they dried, which took about 15 minutes, the bond forms. The bonds were strong enough that I could just barely push the slides appart by applying pressure to the side using my thumbs. I prepared 4 samples this way, 2 with iso and 2 with meth. I took one of each and heated them on Medium for 30 minutes under the brass hunk with the aluminum square on the bottom and copper foil on both sides of the samples. Earlier in the day, I tried heating them without the weight on top, but the heat just broke the bond. I took the remain two and set them aside as controls.
On Thursday, I returned to check the bonds. The heated samples had broken. I intented to check on Wednesday, but I was sick from food poisoning, so I do not know whether the bonds broke immediately after heating or due to sitting for an extra day. For the control samples, one also had a broken bond, but the other had become even stronger.
I noticed that, when the slides are successfully bonded, the shape and appearance of the Newton's rings change, which can be seen in the pictures. I speculate that the circles on the unbroken control are the bonded regions. Ideally, we want to see no Newton's rings. |
71
|
Wed Jul 27 14:50:20 2022 |
Jennifer Hritz | General | Optical Contacting | Bonding without liquids and narrowing down heating issue | I have found that, after cleaning the glass with methanol (or even sometimes with just a dry lense-cleaning cloth), I can get glass slides to bond by rappidly rubbing them together until something sticks. This was inspired by watching "Wizard of Vaz" perform bonds on YoutTube. While cleaning, I now use enough strength to make the glass squeak, as advised by him.
Upon heating, I encountered the same issue as when I bonded them by putting a liquid (water, methanol, etc.) in the gap, which leads me to now believe that the broken bond is not due to the expansion of a liquid. Further, even at the low temperature of 60°C, placing the liquid-less sample on the hotplate breaks the bond in seconds, which I caught on video. In the attached video*, you can see that, before the heat, the bond is strong enough that I cannot push it appart with my fingers, but after the heat, it slides easily. Note that, outside of taking the video, I always lay the entire slide on the center of the metal so the sample is evenly heated.
*This is my first time attaching a video. If it didn't attach properly, I'll add it on to a later log. I also want to record myself performing the rubbing bonding technique. |
73
|
Thu Aug 4 13:44:56 2022 |
Jennifer Hritz | General | Optical Contacting | Success with slowly heating | Yesterday, I did two rounds of slowly heating 4 samples to the maximum hot plate temperature. This was to formally test if my success with a single sample earlier in the week was a fluke. Note that the hot plate takes about 10-15 minutes to reach a stable temperature when it is turned up one notch.
First round:
I bonded 4 samples by putting methanol in the gap between the glass slides and letting it dry to create a gap.
Starting at room temperature, I heated the slides on each setting for roughly 15 minutes, then let them cool down naturally over the course of an hour. 3 broke broke at medium heat, and 1 survived the whole process. I belive these broke because the bonds were weaker and I heated them slightly too quickly. In previous tests, I would manually switch the hot plate on and off, but I wanted to see if the hot plate could heat up slow enough on its own.
Second round:
I bonded 4 samples by scrubbing the slides with methanol, using a compressed air duster to blow off the fibers, rubbing them together with the pressure of my fingers, and repeating this whole procedure until they stuck (it took 2-4 repeats).
Starting at room temperature, I heated the slides on each setting for exactly 20 minutes, then let them cool down naturally over the course of an hour. All of them survived to the maximum temperature (the pictures show them at the start and end of the heating, note the temperature). I credit this to the stronger bonding proceedure and the extra 5 minutes for them to adjust to the temperature. I did not turn the hot plate on or off at any point, I just let it heat up at its own rate.
I cannot tell if the bonds are stronger. The size and shape of the Newtons rings did not change. |
77
|
Tue Aug 16 19:54:29 2022 |
Jennifer Hritz | General | Optical Contacting | Razor blade test | We succeeded in setting up an apparatus for quantifiying the razor blade test. After mounting the glass slides such that the razor edge rested against the gap, we slowly turned the knob to push the blade into the gap. We started with the knob at 0.111, and at 0.757, the bond between the glass slides failed. As we approached 0.757, the interference pattern in the glass shifted, foreshadowing the break.
(Edit by Koji. This 0.757 is 0.0757 I suppose...? And the unit is in inch) |
82
|
Tue Sep 27 22:29:34 2022 |
Jennifer Hritz | General | Optical Contacting | Razor test apparatus disassembly pictures | Pictures of the razor test apparatus before and after disassembly, to make future reassembly easier. |
83
|
Wed Sep 28 22:11:31 2022 |
Jennifer Hritz | General | Optical Contacting | Looked at Thor Lab slides | While finalizing my work plan for the quarter, I decided to look at the Thor Lab slides. This was instructive because they highlighted the troubles I will have with working with silicone. They are fragile and their small, thin sizes makes cleaning and manipulating them (without contamination) much more difficult compared to the glass sides from before.
I tried cleaning and bonding them the same way as the larger slides. Rubbing them together did not work like with the larger sides, but that may also be a function of being more careful, as not to break them. Once I cleaned them, it only took a tap from my finger to get the center to bond, but the bonded surface area still did not spread out like it did in the YouTube videos (http://youtu.be/se3K_MWR488?t=80). By pressing down around the bonded area, I could expand it slighty. Note that I did crack one slide in the process of doing this, as shown in the pictures.
Because the slides are so thin, I think they will benefit greatly from being left under a heavy object, although it may be difficult to put the weight on the slides without them breaking. |
84
|
Thu Sep 29 18:36:40 2022 |
Jennifer Hritz | General | Optical Contacting | Looked at Thor Lab slides (continued) | Continuining with my casual exploration of the Thor Lab slides, I heated them from off --> low --> med --> high, with 10 minutes on each setting. The only pressure I applied was 3 larger glass slides, and that was only to flatten out the copper that the smaller, bonded slides sat on top of (so the contact with the heating plate was even).
The heat made the bonded area smaller, but it did not break. As the slides cooled, the bond area increased slightly but not back to the original size. Next I will try this with slower heating and additional pressure. |
86
|
Fri Sep 30 21:51:31 2022 |
Jennifer Hritz | General | Optical Contacting | Quick test heat and pressure test | Given that these glass slides are much thinner than the ones I worked with prior, I suspected they would be more receptive to pressure. I decided to replicate the tests I performed with the larger slides: I prepared 8 samples, 4 by smushing the slides together with methanol in the middle and another 4 by cleaning the slides with methanol before pressing them together with my fingers. I put 2 of each type under the cylindrical weight, and 2 of each type under the rectangular weight with the addition of heating. The heating consisted of switching the temperature from off --> low --> med --> high with 15 minutes on each setting.
I will check the results in the morning. I need to wait until the rectangular weight is completely cooled, otherwise I cannot remove it from the hot plate in manner that does not risk cracking the glass.
The first sample picture shows the pressed slides on the top and the smushed slides on the bottom. For the second picture, this is reveresed. Correction: the order is the same for both samples. |
87
|
Sat Oct 1 23:00:03 2022 |
Jennifer Hritz | General | Optical Contacting | (RESULTS!) Quick test heat and pressure test | These are the results from the previous log.
At long last, there was an improvement with pressure and heat! Pressure without heat and pressure with heat both showed a small improvement. Although the improvement was not major, it does show that pursuing this method of adding weight and heat are viable. Since this was a test, I put less weight on and heated it fast than intended, but now I feel confident to add more weight and slower/greater amounts of heat.
|
88
|
Sun Oct 2 23:23:07 2022 |
Jennifer Hritz | General | Optical Contacting | Cause of improved bond: time or pressure | Before jumping to conclusions based on my previous results, I wanted to check that it was indeed heat and pressure, not time, that led to the bonds improving.
I prepared 4 samples, all with my standard pressing technique (which still leaves room for improvement). 2 samples will simply be left to sit undisturbed, and the other 2 will be left under both (rectangular and cylindrical) weights. I will check these in roughly 24 hours, just like the last test.
The 2 slides on the right are the ones under the weights. |
89
|
Mon Oct 3 23:32:30 2022 |
Jennifer Hritz | General | Optical Contacting | Cause of improved bond: time or pressure (Update) | I was unable to check the samples because I could not get access to Bridge, so they will be checked tomorrow and the results will be added as an edit to this log.
Given that I was unable to do work in the lab, I instead began a second attempt at writing code for the Arduino to use PWM to control the hot plate temperature.
As expected, the suface area of the bond only increased for the samples under the weights. I did notice something worrying: one of the non-weighted samples actually had its surface area decrease. It is unclear if this is a one-time thing or if all of the bonds deteriorate with time. Unrelated, but I also noticed that the bonded areas always have small dots that refuse to bond. It's unclear if that is due to imperfections or contamination (I suspect the latter).
I left all 4 samples under both weights out of curiosity to see if the bonded surface area would increase further (or possibly decrese further).
|
90
|
Tue Oct 4 22:15:23 2022 |
Jennifer Hritz | General | Optical Contacting | Hot plate PWM Test #1 | I wrote a program to control the heating rate of the hot plate using Pulse Width Modulation (PWM), and it was a great success!
For roughly 6 minutes, the hot plate was power cycled with a rate of 100 ms on followed by 900 ms off. Based on my calculations, this should correspond to a 0.08°C/sec temperature increase. In other terms, we expect a 24°C increase in the span of 5 minutes. For comparision, without PWM, the hot plate heats up roughly 100°C in that same timespan. I recorded the temperature by filming a thermometer and transcribing that video into a text file, which could be analyzed and graphed. I only transcribed the first 5 minutes of the 17 minute video (I also filmed part of the cool down) because 5 minutes was enough to show clear results.
At t=0, the hot plate was 21.4°C, and at t=300, the hot plate was 49.7°C. That is a 28.3°C increase in the span of 5 minutes, only 4.3°C higher than the predicted value. The rate, 0.094°C/sec, is only slightly faster than the desired 0.08°C/sec. Further, as shown in the graph, the temperature increase was almost perfectly linear, which is ideal. Overall, using an Arduino to PWM the hot plate is looking very promising. |
91
|
Wed Oct 5 23:24:08 2022 |
Jennifer Hritz | General | Optical Contacting | Hot plate PWM Test #2 | I repeated the first test, but let the hot plate run longer. It revealed that the linearity for the lower temperatures completely falls apart at the higher temperatures. I think it should be fairly straightforward to modify the code to accommodate this. |
92
|
Fri Oct 7 00:21:24 2022 |
Jennifer Hritz | General | Optical Contacting | Hot plate PWM Test #3 | The previous test was cycled with 0.3s on follwed by 0.7s off*. This test was 0.7s on followed by 0.3s off. I intended to let it run longer, but I accidetly knocked the thermocouple over while trying to move the cable father from the hot plate so the plastic would not risk melting.
Like before, we see that it starts out relatively linear. I noticed the heating light kind of fluttering around 200°C which appeared in the data as a small decrease around 450s on the graph. I do not know the source of this issue, but I fear it may be the hot plate overriding my cycling with its own built-in cycle; something left for future testing. This is the last data I will gather using v1 of my Arduino code, as am I now working on implementing what I have learned in a smarter v2 of the code. I included v1 of the code, and the txt files for the first three tests.
*I think. Could have been 0.1 on, 0.9 off. Note to self: double check this. |
93
|
Fri Oct 7 21:20:08 2022 |
Jennifer Hritz | General | Optical Contacting | Hot plate PWM v2 progress | I had a little set back regarding the non-linear portion of the heating. After about 150°C, if the heating rate is kept constant, the heating graph transitions from linear to logarithmic. I was able to show graphically that, yes, it is indeed logarithmic, but I could not think of an algorithmic way to translate this logarithmic curve into the increase in heating rate to maintain a linear heating rate. I do have some ideas which I will test tomorrow. |
94
|
Sat Oct 8 23:22:25 2022 |
Jennifer Hritz | General | Optical Contacting | Hot plate PWM v2 test #1 | I had some trouble with the code not working as intended (partially because it has been I while since I coded in C++). However, I was able to run two tests with the new code, although I ran out of time to type up the data for the 2nd. Graphing the 1st test's data, it appears that my improved code is an improvement, but the heating is still slowing down as it approaches 200°C. I need to re-run this test, but with v1 of the code, for better comparison.
The hot plate was supposed to increase 180°C in 10 minutes (so that I would reach 200°C), but due to an inscrutable bug, it did not exit the while loop, so it continued past 10 minutes. |
95
|
Sun Oct 9 21:55:53 2022 |
Jennifer Hritz | General | Optical Contacting | Hot plate PWM v2 test #1 & 2 | For the following two graphs, I ram four tests: two using the the v1 of the PWM code and two using v2 of the PWM code. The graphs show the heating rate I was aiming for and the actual results. It turns out, my v2 does not work better than my v1. Before 150°C (which is where I believed that (assuming the rate is kept constantly) the heating rate shifted from linear to logarithmic), v1 is an overshoot and v2 is slightly less of an overshoot. The goal of v2 was to increase the rate after 150°C to compensate for this drop off, but it does not appear to have worked.
While I would still like to refine my code, I think it will be good enough to try using it to actually heat the samples. |
96
|
Mon Oct 10 15:34:13 2022 |
Jennifer Hritz | General | Optical Contacting | Hot plate PWM v2.1,2,3 Test #1 and v2.3 Test #2 | Before trying the PWM on actual samples, I wanted to make one final attempt at improving my code (labled as v2.1). This change appears to have 1) broken the code regulating the basic heat cycling process 2) caused the hot plate to heat up far, far too quick. Since the thermometer strangely turned off halfway through, I only have two pictures as evidence that this test existed: a screenshot of the Arduino program telling me that the max cycle rate had been reached (which should have not happened) and a frame from the video filming the thermometer showing the peak temperature (which is 100°C high than expected). Somehow the hot plate reached over 300°C, which I thought was impossible because the hot plate's built-in heat cycle should have kicked in around 260°C. Unrelated, but I am performing this test in my dorm room because I was quarentined due to COVID exposure, and I like using my personal fan and the house's freezer to cool down the hot plate quicker.
I made some adjustments (labled as v2.2), and I had the same failure as v2.1, except I managed to capture it on camera.
Finally, with v2.3, I managed to fix all the issues. I ran out time today to transcribe the temperatures for graphing, but this itteration of the code managed to reach 200°C in 10 and 7 minutes for test #1 and #2, respectively. I also managed to fix the problem of the hot plate not turning off after the desired heating time. The real test will be trying a slower heating time, like 20 minutes, but I am glad I postponed using actual samples because this fix has given me code that appears to work exactly as I hoped. |
97
|
Tue Oct 11 23:59:07 2022 |
Jennifer Hritz | General | Optical Contacting | Hot plate PWM v2.3 Test #1 and 2 | Here are the graphed results from yesterday's tests, both by themselves and overlayed with the previous tests. I am satisfied with my code; it has given me the (roughly) linear heat increase that I desired. The only last thing I would like to test is heating over a signficantly slower time. |
98
|
Wed Oct 12 23:26:48 2022 |
Jennifer Hritz | General | Optical Contacting | Hot plate PWM v2.3 Test #3 | I tried increasing the temperature by 180°C over 20 minutes. As suspected, it did not quite reach the target temperature because the temperature started to drop off around 100°C instead of 150°C, as the program expected. This should be an easy adjustment, since it is just a matter of increasing the duration of the cycle at an earlier time. |
|