ID 
Date 
Author 
Type 
Category 
Subject 
65

Wed Jul 13 13:16:33 2022 
Juan  General  General  Finished coil driver and sat amp 
I have finished all coil driver and sat amp chassis they all seem to be functioning properly.

64

Mon Jul 11 17:39:17 2022 
Juan  General  General  Coil driver chassis 
Finished all 3 Coil Drover chassis and power lines still need to install the rear cables will do that after I finish Sat Amp chassis tomorrow. 
63

Mon Jul 11 17:27:39 2022 
Jennifer Hritz  General  Optical Contacting  First successful bond 
Note that the slides have "GLOBE" printed on one side. I always bond the opposite using the opposite side without the text.
On Monday (7/11), I began experimenting with bonding, starting with "airbonding," which is trying to make dry, gently cleaned slides stick. I achieved my first succesful optical contact with what I call "acidental waterassisted direct bonding" or "waterbonding," where I accidentally clasped two wet slides together while washing my dirty finger prints off them. After the accidental discovery, I repeated it by running water over the slides while there were clasped together and achieved the same result. After a few hours, I attempted partially sliding apart the second waterbonded sample. I could slowly push them apart by pressing my thumbs against the long edge, but it took quite a bit of force. I decided to let 4 samples sit overnight: 1 airbonded, 1 airbonded with the brass hunk on top of it, and 2 waterbonded. Neither time nor pressure improved the airbonded samples as they still slid apart very easily. The first waterbonded sample slid apart easier, but one part remained stubornly attached until I began shaking it violently. The second waterbonded sample was much harder to slide apart than the last time I tested it. With all the force of my fingers, I could barely make it budge. 
62

Mon Jul 11 16:24:31 2022 
Jennifer Hritz  General  Optical Contacting  Baselining the temperature output of the Oster hot plate 
This was performed last Friday (7/8).
I secured a thermocouple perpendicular against the hotplate and recorded the maximum temperature the hotplate reached at Low, Medium, and High. It took about 5 minutes to reach a stable temperature, where stable means that the temperature stayed within +/ 0.5°C for a minute. The hotplate maintains a certain temperature by turning itself on and off, so the temperature would drop slightly (at most, a few °C) while the hotplate was off. The maximums were:
Low: 51°C
Medium: 185°C
High: 263°C
At the max temperature, I moved the perpendicular thermocouple around to roughly find the variation in tempearture at different locations on the hotplate. Facing the nob, the top right quadrant is about 1020°C cooler than the other quadrants, which are within 5°C of eachother. Excluding the cooler quandrant, the center and the outer edge are within 5°C of eachother. The temperature increases as one approaches half the radius, with it being about 2040°C greater than the center and outer edge. The highest recorded temparture was 289°C at half the radius in the bottom left quandrant. This was only meant to be a rough test to see how even the heating is. 
61

Fri Jul 8 17:09:10 2022 
Juan  General  General  Coil Driver and Sat Amp 
All three coil driver boards are complete and have been tested. Modification for all 4 sat amp have been completed. Ideally, I would like to finish all the chassis on Monday I have one just about done.

60

Thu Jul 7 15:20:04 2022 
rana  General  Optical Contacting  some useful links 
For our optical contacting, Jennifer and I are starting out with glass (microscope slides), with the setup in the EE shop next to the drill press (photos from Jennifer to follow).
Some interesting links:
 https://www.laserfocusworld.com/optics/article/16546805/opticalfabricationopticalcontactinggrowsmorerobust is a write up on contacting, and the link to Dan Shaddock's paper is also useful (need to sign up to get the acutal TSP writeup)
 Thesis on Silicon Bonding (https://escholarship.org/uc/item/5bm8g42k)
 https://youtu.be/qvBoGoh_AE

59

Thu Jul 7 10:23:04 2022 
Juan  General  General  Update 
Almost done with coil driver boards 
58

Tue Jul 5 21:06:47 2022 
Juan  General  General  Work Update 
Update of my current work I have finished one coil driver board and started on the last two that I need here is the progress and Ideally, I'll finish by tomorrow. 
57

Sat Jul 2 09:22:39 2022 
Juan  General  General  Progress update 
I've completed one coil driver board.
Hopefully next week I can finish the other 2 boards and make the modifications to the sat amp baords.

56

Mon Jun 27 08:22:22 2022 
Juan  General  General  General Update/ Need to do task 
I've managed to cut and crimp wires for the power board for coil driver. I will begin adding components to the coil driver board.
 Add Components to Coil Driver board
 Replace some Sat Amp Componetns
 Still working on moving optical table to CAML
 Unsure if cryochamber has been cleaned and moved 
55

Thu Jun 23 21:11:03 2022 
Koji  General  Suspension  Table for Mariner Suspension Cryo 
Table moving effort in the OMC lab: See https://nodus.ligo.caltech.edu:8081/OMC_Lab/412

54

Thu Jun 16 19:43:36 2022 
Koji  General  Suspension  Table for Mariner Suspension Cryo 
 B246/QIL Skyhook
Find the base of Skyhook. It should be in the storage room (B246). Stephen contacted Chub for lab access. Done
 Assemble Skyhook with the base and check the stability/safety/capacity/height/etc
 DOPO
Ask Paco to move the delicate instruments from the table. Done
 Bring Skyhook to DOPO. The chamber seems already vented.
 Find the way to place the cap on the floor safely and cleanly. => Stephen
 Open the cap and then remove the crackle interferometer. Wrap it with something and place it somewhere in the room. How? => Stephen
 Move the base to a dolly or something. Then put a cap on the base. => It'd be better to ask Caltech Transp for the chamber transportation.
 Do we have to temporarily remove the laser safety curtain?
 OMC Lab
We probably need to separate the optical table and the base. Ask Caltech Transp to check how the work should be done.
Do we have to temporarily move anything on the way?
 The table can be rolled out to the corridor and then rolled in to the CAML.
 CAML
 Remove the grey rack and push the desk to the East.
 Place the optical table.
 Place the rack close to the table.

53

Thu Jun 16 14:04:30 2022 
Juan  General  Suspension  Table for Mariner Suspension Cryo 
Today we looked at possible locations for where we will be setting up Mariner Suspension and Cryo chamber. The first option was the far left table in the CAML lab but it seems that there is going to be an issue with height clearance, so we have come up with another solution which takes a table from Koji's lab which is 3'x4' ft and moving it into CAML lab in the back right of the lab. To move the table we may need to call facilities to help us because we will most likely need to take the table apart to get it out of the lab. The aisle space in Koji's lab is about 43 inches, but the doorway, which is the tightest space, is 35 inches.
After we have set up the table in CAML we are planning on moving the Chamber in DOPOlab to CAML. We plan to use skyhook with has a load limit of 500lbs/227kg this should be more than enough to move the chamber. We still need to get the wheeled base for skyhook we are in the works in doing so.
Also, We want to remove the previous setup from the chamber and leave it at DOPOlab. Stephen is going to figure out how to keep it clean (sort of). Besides these transportation logistics, I am also working on the electronics as an immediate task and the electrical arrangement in the chamber.
to do list
 Check the table height
 Check the chamber height (base/cap)
 Check how much the chamber cap needs to be lifted (so that we can remove it)
 Is the weight capacity sufficient?

52

Tue May 10 18:29:11 2022 
rana  General  Suspension  Mariner Suspension Cryo shield Install / Removal steps 
cool

51

Thu May 5 19:56:25 2022 
Koji  General  Suspension  Mariner Suspension Cryo shield Install / Removal steps 
Does this work? Is this insane? 
50

Wed Dec 15 06:43:43 2021 
Jiri Smetana  General  General  Lagrangian Model  Translation & Pitch 
I've checked the validity of my state space model in a couple of ways so that we have confidence in the results that it gives. I've checked the DC gain of the transfer functions where it is nonzero. I did this by solving the static balance of forces problem in the extended body model by hand to get the DC CoM position as well as the pitch angle of both masses. In the previous ELOG entry I didn't quite do this for all transfer functions so here I completed the check. My values agree with the model's values to within 10% at the worst end and to within 0.1% at the best end. I performed a second check to see if the frequencies occur in the correct places by considering the case of very low coupling between the different resonant modes. It's difficult to check this in the case where the modes are strongly coupled (for example lengthpitch is strong or the two pitch modes are close together) but if I sufficiently separate them, I get very good agreement between my analytic approximation and the state space model.
The model can easily be converted from one that gives motion in X and RY into one that gives motion in Y and RX. Running the model for both directions gives the following list of resonances (note pendulum modes in X and Y direction are identical):
Resonance Type 
Frequency [Hz] 
Pendulum 1 
0.85 
Pendulum 2 
2.10 
Pitch 1 
0.46 
Pitch 2 
2.37 
Roll 1 
17.13 
Roll 2 
46.09 
Given that I think the model seems to give sensible values, I've pushed the updated model to the GitLab repository. It is now possible to quickly change the parameters of the suspension and very quickly see the corresponding shift in the resonances. To change the parameters, open the plain text file called 'params' and change the values to the new ones. Afterwards, run the file 'ss_extended.py', which will solve the state space model, save the resulting ABCD matrices to a folder and print out the values of the resonances to terminal.
Quote: 
I've been having a look at the transfer functions for the translation and pitch of both masses. I'm attaching the plot of all inputtooutput transfer functions of interest so far. Here I've identified the pitch resonances of the two masses (one each) as well as the two pendulum modes. I need to now investigate if they occur in the correct places. I have confirmed the DC response by directly solving the statics problem on paper.


49

Wed Nov 17 09:27:04 2021 
Jiri Smetana  General  General  Lagrangian Model  Translation & Pitch 
I've been having a look at the transfer functions for the translation and pitch of both masses. I'm attaching the plot of all inputtooutput transfer functions of interest so far. Here I've identified the pitch resonances of the two masses (one each) as well as the two pendulum modes. I need to now investigate if they occur in the correct places. I have confirmed the DC response by directly solving the statics problem on paper. 
48

Tue Nov 16 11:47:54 2021 
Paco  General  Design specs  Estimate of inair absorption near 2.05 um 
[Paco]
There was an error in the last plot of the previous log. This was correctly pointed out by rana's pointing out that the broadening from air should be independent of the CO2 concentration, so nominally both curves should coincide with each other. Nevertheless, this doesn't affect the earlier conclusions >
The PMC loss by background, pressure broadened absorption lines at 2049.9 nm by CO2 is < 1 ppm.
The results posted here are reflected in the latest notebook commit here. 
47

Fri Nov 5 11:51:50 2021 
Paco  General  Design specs  Estimate of inair absorption near 2.05 um 
[Paco]
I used the HITRAN database to download the set of rovibrational absorption lines of CO2 (carbon dioxide) near 2.05 um. The lines are plotted for reference vs wavenumber in inverse cm in Attachment #1.
Then, in Attachment #2, I estimate the broadened spectrum around 2.05 um and compare it against one produced by an online tool using the 2004 HITRAN catalog.
For the broadened spectrum, I assumed 1 atm pressure, 296 K temperature (standard conditions) and a nominal CO2 density of 1.96 kg/m^3 under this conditions. Then, the line profile was Lorentzian with a HWHM width determined by self and air broadening coefficients also from HITRAN. The difference between 2050 nm and 2040 nm absorption is approximately 2 orders of magnitude; so 2040 nm would be better suited to avoid inair absorption. Nevertheless, the estimate implies an absorption coefficient at 2050 nm of ~ 20 ppm / m, with a nearby absorption line peaking at ~ 100 ppm / m.
For the PMC, (length = 50 cm), the roundtrip loss contribution by inair absorption at 2050 nm would amount to ~ 40 ppm. BUT, this is nevery going to happen unless we pump out everything and pump in 1 atm of pure CO2. So ignore this part.
Tue Nov 9 08:23:56 2021 UPDATE
Taking a partial pressure of 0.05 % (~ 500 ppm concentration in air), the broadening and total absorption decrease linearly with respect to the estimate above. Attachment #3 shows the new estimate.
For the PMC, (length = 50 cm), the roundtrip loss contribution by inair absorption at 2050 nm would amount to ~ 1 ppm. 
46

Thu Nov 4 00:42:05 2021 
Koji  General  Suspension  Mariner Sus Design 
Some more progress:
 Shaved the height of the top clamp blocks. We can extend the suspension height a bit more, but this has not been done.
 The IM OSEM arrangement was fixed.
 Some EQ stops were implemented. Not complete yet. 
45

Wed Nov 3 02:52:49 2021 
Koji  General  Suspension  Mariner Sus Design 
All parameters are temporary:
Test mass size: D150mm x L140mm
Intermediate mass size W152.4mm x D152.4mm x H101.6mm
TM Magnets: 70mm from the center
Height from the bottom of the base plate
 Test mass: 5.0" (127mm) ==> 0.5" margin for the thermal insulation etc (for optical height of 5.5")
 Suspension Top: 488.95mm
 Top suspension block bottom: 17.75" (450.85mm)
 Intermediate Mass: 287.0mm (Upper pendulum length 163.85mm / Lower pendulum length 160mm)
OSEMs
 IM OSEMs: Top x2 (V/P)<This is a mistake (Nov 3 fixed), Face x3 (L/Y/P), Side x 1 (S)
 TM OSEMs: Face x4
 OSEM insertion can be adjusted with 440 screws
To Do:
 EQ Stops / Cradle (Nov 3 50% done)
 Space Consideration: Is it too tight?
 Top Clamp: We are supposed to have just two wires (Nov 3 50% done)
 Lower / Middle / Upper Clamps & Consider installation procedure
 Fine alignment adjustment
 Pendulum resonant frequencies & tuning of the parameters
 Utility holes: other sensors / RTDs / Cabling / etc
 Top clamp options: rigid mount vs blade springs
 Top plate utility holes
 IM EQ stops
Discussion with Rana
 Hoe do we decide the clear aperture size for the TM faces?
 OSEM cable stays
 Thread holes for baffles
 Light Machinery can do Si machining
 Thermal conductivity/expansion
 The bottom base should be SUS... maybe others Al except for the clamps
 Suspension eigenmodes separation and temperature dependence
# Deleted the images because they are obsolete. 
44

Tue Oct 26 08:09:08 2021 
Jiri Smetana  General  General  Lagrangian Suspension Model  Extended Body 
I've been testing out the extended body lagrangian models and I'm trying to understand the ground motion and force coupling to the test mass displacement. I've compared the two pointmass model to the extended model and, as expected, I get very similar results for the ground coupling. Attachment 1 shows the comparison and asside from more agressive damping of the pointmass model making a small difference at high frequency, the two models look the same. If I look at the force coupling, I get a significantly different result (see attachment 2). I think this makes sense because in the pointmass model I am driving purely horizontal displacement as there is no moment of inertia. However, for the extended body I drive the horizontal position of the centre of mass, which then results in an induced rotation as the change propagates through the dynamics of the system. To obtain a consistent result with the pointmass model, I would need to apply a force through the CoM as well as a counteracting torque to maintain a purely horizontal displacement of the mass. What I am wondering now is, what's the correct/more convenient way to consider the system? Do I want my lagrangian model to (a) couple in pure forces through the CoM and torques around the CoM and then find the correct actuation matrix for driving each degree of freedom in isolation or (b) incorporate the actuation matrix into the lagrangian model so that the inputs to the plant model are a pure drive of the test mass position or tilt? 
43

Fri Oct 15 14:31:15 2021 
Radhika  General  Heat Load  Mariner cooldown model status + next steps 
I reran the cooldown model, setting the emissivity of the inner surface of the inner shield to 0.7 (coating), and the emissivity of the outer surface to 0.03 (polished Al). Previously, the value for both surfaces was set to 0.3 (rough aluminum).
Attachment 1: TM cooldown, varying area of the inner shield. Now, the marginal improvement in cooldown once the IS area reaches 0.22 m^{2} is negligible. Cooldown time to 123K is ~100 hrs, just over 4 days. I've kept IS area set to 0.22 m^{2} moving forward.
Attachment 2: TM/IS cooldown, considering 2 lengths for the test mass. Choosing l=100m instead of 150mm increases cooldown time from ~100 hrs to ~145 hrs, or 6 days. 
42

Fri Oct 15 13:45:55 2021 
Radhika  General  Heat Load  Mariner cooldown model status + next steps 
I used the same model in [37] to consider how test mass length affects the cooldown. Attachment 1 plots the curves for TM length=100mm and 150mm. The coupling between the test mass and inner shield is proportional to the area of the test mass, and therefore increases with increasing length. Choosing l=100mm (compared to 150mm) thus reduces the radiative cooling of the test mass. The cooldown time to 123K is ~125 hrs or over 5 days for TM length=150mm (unchanged from [37]), but choosing TM length=100m increases this time to ~170 hrs or ~7 days. (Note that these times/curves are derived from choosing an arbitrary inner shield area of 0.22 m^{2}, but the relative times should stay roughly consistent with different IS area choices.) 
41

Thu Oct 14 04:17:36 2021 
Jiri Smetana  General  General  Damping Loop (PointMass Pendulums) 
Here are the DAC and residual displacement spectra for different suspension heights ranging from 450 mm to 600 mm. I aimed to get the Q of the lower resonance close to 5 and the DAC output RMS close to 0.5 V but as this was just tweaking values by hand I didn't get to exactly these values so I'm adding the actual values for reference. The parameters are as follows:
Height [mm] 
Displacement RMS [nm] 
DAC Output RMS [V] 
Q Lower Resonance 
Q Higher Resonance 
Driver Resistor {Ohm] 
600 
560 
0.51 
5.3 
1.5 
175 
550 
580 
0.54 
5.1 
1.4 
175 
500 
610 
0.49 
5.0 
1.4 
150 
450 
630 
0.54 
5.0 
1.4 
150 
Quote: 
Now that I have correct phase and amplitude behaviour for my MIMO state space model of the suspension and the system is being correctly evaluated as stable, I'm uploading the useful plots from my analysis. File names should be fairly selfexplanatory. The noise plots are for a total height of 550 mm, or wire lengths of 100 mm per stage. I've also attached a model showing the ground motion for different lengths of the suspension.


40

Tue Oct 12 12:49:42 2021 
Jiri Smetana  General  General  Damping Loop (PointMass Pendulums) 
Now that I have correct phase and amplitude behaviour for my MIMO state space model of the suspension and the system is being correctly evaluated as stable, I'm uploading the useful plots from my analysis. File names should be fairly selfexplanatory. The noise plots are for a total height of 550 mm, or wire lengths of 100 mm per stage. I've also attached a model showing the ground motion for different lengths of the suspension. 
39

Tue Oct 12 12:44:44 2021 
Jiri Smetana  General  General  New Damping Loop Model 
I've ironed out the issues with my MATLAB model so that it now shows correct phase behaviour. The problem seems to arise from infinite Q poles where there is an ambiguity in choosing a shift of +/ 180 deg in phase. I've changed my state space model to include finite but very high Q poles to aid with the phase behaviour. The model has been uploaded to the GitLab project under mariner40 > mariner_sus > models > lagrangian. 
38

Mon Oct 11 15:22:18 2021 
Yehonathan  General  General  Microcomb alternatives 
Following our discussion at the Friday JC meeting, I gathered several resources and made a small simulation to show how frequency combs might be generated on platforms other than microcombs or modelocked lasers.
Indeed, frequency combs generated directly from a modelocked laser are expensive as they require ultrabroadband operation (emitting few fs pulses) to allow for f2f interferometry.
Microcombs are a fancy way of generating combs. They are lowpowerconsuming, chipscale, have a high repetition rate, and are highly compatible with Silicon technology. While these are huge advantages for industry, they might be disadvantageous for our purpose. Lowpower means that the output comb will be weak (on the order of uW of average power). Microscopic/chipscale means that they suffer from thermal fluctuations. High reprate means we will have to worry about tuning our lasers/comb to get beat notes with frequencies smaller than 1GHz.
Alternatively, and this is what companies like Menlo are selling as fullsolution frequency combs, we could use much less fancy modelocked lasers emitting 50fs  1ps pulses and broaden their spectrum in a highly nonlinear waveguide, either on a chip or a fiber, either in a cavity or linear topologies. This has all the advantages:
1. Highpower (typically 100mW)
2. Low reprate (typically 100MHz)
3. Relatively cheap
4. "Narrowband" modelocked lasers are diverse and can come as a fiber laser which offers high stability.
As a proof of concept, I used this generalized Schrodinger equation solver python package to simulate 1d light propagation in a nonlinear waveguide. I simulated pulses coming out of this "pocket" laser (specs in attachment 1) using 50mW average power out of the available 180mW propagating in a 20cm long piece of this highly nonlinear fiber (specs in attachment 2).
The results are shown in attachments 34:
Attachment 3 shows the spectrum of the pulse as a function of propagation distance.
Attachment 4 shows the spectrum and the temporal shape of the pulse at the input and output of the fiber.
It can be seen that the spectrum is octavespanning and reaches 2um at moderate powers.
One important thing to consider in choosing the parameters of the laser and fiber is the coherence of the generated supercontinuum. According to this paper and others, >100fs pulses and/or too much power (100mW average is roughly the limit for 50fs pulses) result in incoherent spectra which is useless in laser locking or 1f2f interferometry. These limitations apply only when pumping in the anomalous dispersion regime as traditionally have been done. Pumping in an allnormal (but low) dispersion (like in this fiber) can generate coherent spectra even for 1ps pulses according to this paper and others. So even cheaper lasers can be used. ps pulses will require few meterlong fibers though.

37

Tue Oct 5 17:46:14 2021 
Radhika  General  Heat Load  Mariner cooldown model status + next steps 
Building on [32], I added a copper cold finger to conductively cool the inner shield, instead of holding the inner shield fixed at 77K. The cold finger draws cooling power from a cyro cooler or "cold bath" held at 60K, for simplicity. I added an outer shield and set its temperature to 100K. The outer shield supplies some radiative heating to the inner shield, but blocks out 295K heating, which is what we want. The expanded diagram can be seen in Attachment 1.
I wanted to find the optimal choice of inner shield area (A_{IS}) to maximize the radiative cooling to the test mass. I chose 5 values for A_{IS} (from A_{TM} to A_{OS}) and plotted the test mass cooldown for each in Attachment 2. The radiative coupling between the inner shield and test mass is maximized when the ratio of the areas, A_{TM}/A_{IS}, is minimized. Therefore, the larger A_{IS}, the colder the test mass can be cooled. Even though choosing A_{IS} close to A_{OS} increases the coupling between the 2 shields, the resulting heating from the outer shield is negligible compared to the enhancement in cooling.
I chose A_{IS} = 0.22 m^{2} to model the inner shield and test mass cooldown in Attachment 3. The test mass reaches 123 K at ~ 125 hours, or a little over 5 days. I have pushed the updated script which can be found under mariner40/CryoEngineering/MarinerCooldownEstimation.ipynb. 
36

Fri Oct 1 14:11:23 2021 
Paco  General  Design specs  TM Barrel coating emissivity 
Agree with this. Quickly running tmm on the same "stacks" gave the Attachment #13. (Ignore the vertical axis units... will post corrected plots) and extend the wavelength range to 100 um. 
35

Fri Oct 1 13:24:40 2021 
Aidan  General  Design specs  TM Barrel coating emissivity 
I have to question whether this passes a sanity test. Surely in the case of Stack 2, the 10um thick Ta2O5 will absorb the majority of the incident radiation before it reaches the SiO2 layer beneath. It should at least be similar to just absorption in Ta2O5 with some Fresnel reflection from the AIrTa2O5 interface.
For example, at around 18um, K~2, so the amplitude attenuation factor in a 10um thick layer is 160,000x or a gain of 6E6. So whatever is under the Ta2O5 layer should be irrelevant  there is negligible reflection.
Quote: 
[Paco, Nina, Aidan]
We ran our stack emissivity calculation on different AR stacks to try and make a decision for the TM barrel coatings. This code has yet to be validated by cross checking against tmm as suggested by Chris. The proposed layer structures by Aidan and Nina are:
 * Air  SiO2 x 800 nm  Ta2O5 x 5 um  Silicon *
 * Air  Ta2O5 x 10 um  Sio2 x 20 nm  Silicon *
 * Air  SiO2 x 100 nm  TiO2 x 1 um  Silicon *
Attachments # 13 show the emissivity curves for these simple dielectric stacks. Attachment #4 shows the extinction coefficient data used for the three different materials. The next step is to validate these results with tmm, but so far it looks like TiO2 might be a good absorbing film option.


34

Fri Oct 1 12:01:24 2021 
Paco  General  Design specs  TM Barrel coating emissivity 
[Paco, Nina, Aidan]
We ran our stack emissivity calculation on different AR stacks to try and make a decision for the TM barrel coatings. This code has yet to be validated by cross checking against tmm as suggested by Chris. The proposed layer structures by Aidan and Nina are:
 * Air  SiO2 x 800 nm  Ta2O5 x 5 um  Silicon *
 * Air  Ta2O5 x 10 um  Sio2 x 20 nm  Silicon *
 * Air  SiO2 x 100 nm  TiO2 x 1 um  Silicon *
Attachments # 13 show the emissivity curves for these simple dielectric stacks. Attachment #4 shows the extinction coefficient data used for the three different materials. The next step is to validate these results with tmm, but so far it looks like TiO2 might be a good absorbing film option. 
33

Fri Oct 1 11:52:06 2021 
Paco  General  Design specs  HR coating emissivity 
[Paco, Nina, Aidan]
Updated the stack emissivity code to use the Kitamura paper fused silica dispersion which has a prominent 20 um absorption peak which wasn't there before... (data was up to 15 um, and extrapolated smoothly beyond). The updated HR stack emissivities are in Attachments #1  #2. A weird feature I don't quite understand is the discontinous jump at ~ 59 um ... 
32

Wed Sep 29 16:15:19 2021 
Radhika  General  Heat Load  Mariner cooldown model status + next steps 
Attachment 1 is a geometric diagram that reflects the current state of the ITM cooldown model, introduced in [30]. The inner shield is assumed to be held at 77K for simplicity, and 2 heat sources are considered: laser heating, and radiative heating from the roomtemperature snout opening. The view factor F_{ij} between the snout opening and test mass (modeled as 2 coaxial parallel discs separated by length L  equation found in Cengel Heat Transfer) is calculated to be 0.022. The parameters used in the model are noted in the figure.
Attachment 2 is a simplified diagram that includes the heating/cooling links to the test mass. At 123K, the radiative cooling power from the inner shield (at 77K) is 161 mW. The radiative heating from the snout opening is 35 mW, and the laser heating (constant) is 101.5 mW. Due to the tiny view factor betwen the snout opening and the test mass, most of the heat emitted by the opening does not get absorbed.
The magnitudes of heating and cooling power can be seen in Attachment 3. Lastly, Attachment 4 plots the final cooldown curve given this model.
My next step is to add the outer shield and fix its temperature, and then determine the optimal size/location of the inner shield to maximize cooling of the test mass. This is question was posed by Koji in order to inform inner shield/outer shield geometric specs. Then, I will add a cold finger and cryo cooler (conductive cooling). Diagrams will be updated/posted accordingly. 
31

Mon Sep 27 17:01:53 2021 
rana  General  Heat Load  Mariner cooldown model status + next steps 
How about a diagram so that we can understand what this model includes? 
30

Fri Sep 24 13:12:00 2021 
Radhika  General  Heat Load  Mariner cooldown model status + next steps 
*Note: the current modeling script can be found at: CryoEngineering/MarinerCooldownEstimation.ipynb
Nina pointed me to the current mariner cooldown estimation script (path above) and we have since met a few times to discuss upgrades/changes. Nina's hand calculations were mostly consistent with the existing model, so minimal changes were necessary. The material properties and geometric parameters of the TM and snout were updated to the values recently verified by Nina. To summarize, the model considers the following heat sources onto the testmass (P_{in}):
 laser absorption by ITM bulk (function of incident laser power, PR gain, and bulk absorption)
 laser absorption by ITM HR coating (function of incident laser power and HR coating absorption)
 radiative heating from roomtemp tube snout (function of snout radius and length, and TM radius)
The heat transfer out of the testmass (P_{out}) is simply the sum of the radiative heat emitted by the HR and AR faces and the barrel. Note that the script currently assumes an inner shield T of 77K, and the inner/outer shield geometric parameters need to be obtained/verified.
Nina and Paco have been working towards obtaining tabulated emissivity data as a function of temperature and wavelength. In the meantime, I created the framework to import this tabulated data, use cubic spline interpolation, and return temperaturedependent emissivities. It should be straightforward to incorporate the emissivity data once it is available. Currently, the script uses roomtemperature values for the emissivities of various materials.
Future steps:
 Incorporate tabulated emissivity data
 Verify and update inner/outer shield dimensions

29

Fri Sep 24 11:02:41 2021 
Koji  General  General  Actuation Feedback Model and Noise 
We had a meeting with the code open in ZOOM. Here are some points we discussed:
 The code requires another file ground.m. It is attached here.
 The phase of the bode plots were not wrapped. This can be fixed by applying the "PhaseWrapping" options as
opts=bodeoptions('cstprefs');
opts.PhaseWrapping = 'on';
bode(A,opts)
 We evaluated the openloop transfer function of the system. For this purpose, we added the monitor point ('F') at the actuator and cut the loop there like:
sys = connect(P, S, W, ADC, Winv, A2, DWinv, Dinv, DAC, DW, D, R, C, {'xg' 'nADC', 'nDAC', 'nd', 'nth'}, 'xt', {'F','VDAC'});
OLTF=getLoopTransfer(sys(1),'F');
figure(2)
clf
bode(OLTF,opts);
 We played with the loopgain (Ga2). When Ga2 is a positive number, the loop was stable. We had to shift the low pass cutoff frequency from 10Hz to 12Hz to make the damping of the 2nd peak stable.

28

Sun Sep 19 18:52:58 2021 
Paco  General  Design specs  HR coating emissivity 
[Paco, Nina]
We have been working on an estimate of the wavelength dependent emissivity for the mariner test mass HR coatings. Here is a brief summary.
We first tried extending the thin film optimization code to include extinction coefficient (so using the complex index of refraction rather than the real part only). We used cubic interpolations of the silica and tantala thin film dispersions found here for wavelengths in the 1 to 100 um range. This allowed us to recompute the field amplitude reflectivity and transmissivity over a broader range. Then, we used the imaginary part of the index of refraction and the thin film thicknesses to estimate the absorbed fraction of power from the interface. The power loss for a given layer is exponential in the product of the thickness and the extinction coefficient (see eq 2.6.16 here) . Then, the total absorption is the product of all the individual layer losses times the transmitted field at the interface. This is true when energy conservation distributes power among absorption (=emission), reflection, and transmission:
The resulting emissivity estimate using this reasoning is plotted as an example in Attachment #1 for the ETM design from April. Two things to note from this; (1) the emissivity is vanishignly small around 1419 and 2128 nm, as most of the power is reflected which kind of makes sense, and (2) the emissivity doesn't quite follow the major absorption features in the thin film interpolated data at lower wavelengths (see Attachment #2), which is dominated by Tantala... which is not naively expected?
Maybe not the best proxy for emissivity? Code used to generate this estimates is hosted here. 
27

Thu Sep 16 10:02:47 2021 
Jiri Smetana  General  General  Actuation Feedback Model and Noise 
Here's the DAC voltage spectrum with its associated RMS.
Also, for clarity, this model is for a lossless pointmass double pendulum system with equal masses and equal lengths of 20 cm.
Quote: 
I've implemented a more extensive feedback model that uses proper conversions between metres, volts, counts etc. and includes all the (inverse) (de)whitening filters, driver, servo and noise injections in the correct places. I then closed the loop to obtain the transfer function from horizontal ground motion and each noise source to test mass displacement. I tuned the servo gain to reduce the Q of both resonances to ~20.
Our idea was then to compensate servo gain with the output resistance of the coil driver to raise the RMS of the DAC output signal in order to raise SNR and thus suppress DAC noise coupling. I found that raising the output resistor by a factor of 10 above the nominal suggestion 2.4 kOhm gave me a DAC output RMS of 0.3 V, so in line with our safety factor of 10 requirements. This also coincidentally made all the noise sources intersect at approximately the same frequency when these noises begin to dominate over the seismic noise. All these initial tests are subject to change, particularly depending on the design of the servo transfer function. I'm attaching the relevant plots as well as the MATLAB script I used and the two files required for the script to run.


26

Wed Sep 15 09:15:21 2021 
Jiri Smetana  General  General  Actuation Feedback Model and Noise 
I've implemented a more extensive feedback model that uses proper conversions between metres, volts, counts etc. and includes all the (inverse) (de)whitening filters, driver, servo and noise injections in the correct places. I then closed the loop to obtain the transfer function from horizontal ground motion and each noise source to test mass displacement. I tuned the servo gain to reduce the Q of both resonances to ~20.
Our idea was then to compensate servo gain with the output resistance of the coil driver to raise the RMS of the DAC output signal in order to raise SNR and thus suppress DAC noise coupling. I found that raising the output resistor by a factor of 10 above the nominal suggestion 2.4 kOhm gave me a DAC output RMS of 0.3 V, so in line with our safety factor of 10 requirements. This also coincidentally made all the noise sources intersect at approximately the same frequency when these noises begin to dominate over the seismic noise. All these initial tests are subject to change, particularly depending on the design of the servo transfer function. I'm attaching the relevant plots as well as the MATLAB script I used and the two files required for the script to run. 
25

Thu Sep 9 20:42:34 2021 
Paco  General  Design specs  Rerun HR coatings with n,k dispersion 
[Paco]
Alright, I've done a reoptimization targetting a wider T band around 2128 nm. For this I modified the scalar minimization cost to evaluate the curvature term (instead of the slope) around a wide range of 10% (instead of 1%). Furthermore, in prevision of the overall effects of using the updated dispersion, I intentionally optimized for a lower T such that we intentionally overshoot.
The results are in Attachment #1 and Attachment #2. 
24

Thu Sep 9 11:25:30 2021 
Paco  General  Design specs  Rerun HR coatings with n,k dispersion 
[Paco]
I've rerun the HR coating designs for both ETM and ITM using interpolated dispersions (presumably at room temperature). The difference is shown in Attachment #1 and Attachment #2.
Basically, all features are still present in both spectral transmission plots, which is consistent with the relatively flat dispersions from 1 to 3 um in Silica and Tantala thin films, but the index corrections of a few percent from lowtemperature estimates to roomtemperature measured (?) dispersions are able to push the HR transmission up by a few (23) times. For instance, the ETM transmission at 2128.2 nm goes up by ~ 3. The new number is still well below what we have requested for phase I so this is in principle not an issue.
A secondary change is the sensitivity (the slope around the specified wavelength) which seems to have increased for the ETM and decreased for the ITM. This was another consideration so I'm running the optimizer to try and minimize this without sacrificing too much in transmission. For this I am using the stack as a first guess in an attempt to run fast optimization. Will post results in a reply to this post. 
23

Thu Aug 26 17:40:41 2021 
Stephen  General  Suspension  Selecting MOSstyle frame 
[Koji, Stephen]
Kind of a silly post, and not very scientific, but we are sticking to it. During our check in today we discussed Mariner suspension frame design concept, and we chose to proceed with MOSstyle (4 posts, rectangular footprint).
 We looked at a scaledup SOS (WIP, lots of things broke, just notice the larger side plates and base  see Attachment 1) and we were not super excited by the aspect ratio of the larger side plates  didn't look super stiff  or the mass of the base.
 We noted that the intermediate mass will need OSEMs, and accommodating those will be easier if there is a larger footprint (as afforded by MOS).
MOSstyle it is, moving forward!
Also, Checked In to PDM (see Attachment 2  filename 40mETMsuspension_smallshields.SLDASM and filepath \llpdmpro\Voyager\mariner 40m cryo upgrade ) the current state of the Mariner suspension concept assembly (using MOS). Other than updating the test mass to the 6" configuration, I didn't do any tidying up, so I'm not perfectly satisfied with the state of the model. This at least puts the assembly in a place where anyone can access and work on it. Progress! 
22

Tue Aug 24 08:15:37 2021 
Jiri Smetana  General  General  Actuation Feedback Model 
I'm posting a summary of the work I've done on the Lagrangian analysis of the Mariner suspension design and a state space model of the actuator control loop. The whole feedback mechanism can be understood with reference to the block diagram in attachment 1.
The dynamics of the suspension are contained within the Plant block. To obtain these, I derived the system Lagrangian, solved the EulerLagrange equations for each generalised coordinate and solved the set of simultaneous equations to get the transfer functions from each input parameter to each generalised coordinate. From these, I can obtain the transfer functions from each input to each observable output. In this case, I inserted horizontal ground motion at the pivot point (top of suspension) and a generic horizontal force applied to at the intermediate mass. These two drives become the two inputs to the Plant block. The two observables are x_{i}  the position of the intermediate mass, which is sensed and fed to the actuator servo, and x_{t}  the test mass position that we are most interested in. I obtained the transfer functions from each input to each output using a symbolic solver in Python and then constructed a MIMO state space representation of these transfer functions in MATLAB. For this initial investigation, I've modelled the suspension in the Lagrangian as a lossless pointmass double pendulum with two degrees of freedom  the angle to the horizontal of the first mass and the angle to the horizontal of the second mass. The transfer functions are very similar to the more advanced treatment with elastic restoring forces and moments of inertia and the system can always be expanded in a later analysis.
For the sensor block I assumed a very simple model given by
where G_s is the conversion factor from the physical distance in metres to the electronic signal (in, for example, volts or ADC counts) and n_s is the added sensor noise. A more general sensor model can easily be added at a later date to account for, say, a diminishing sensor response over different frequency ranges.
The actuator block converts the measured displacement of the intermediate mass into an actuation force, with some added actuator noise. The servo transfer function can be tuned to whatever filter we find works best but for now I've made two quite basic suggestions: a simple servo that actuates on the velocity of the intermediate mass, given by
and an 'improved' servo, which includes a rolloff after the resonances, given by
where p is the pole frequency at which we want the rolloff to occur. Attachment 2 shows the two servo transfer functions for comparison.
The state space models can then be connected to close the loop and create a single state space model for the transfer functions of the ground and each noise source to the horizontal test mass displacement. Attachment 3 contains the transfer functions from x_{g} to x_{t} and shows the effect of closing the loop with the two servo choices compared to the transfer function through just the Plant alone. We can see that the closed loop system does damp away the resonances as we want for both servo choices. The basic servo, howerver, loses us a factor of 1/f^2 in suppression at high frequencies, as it approximates the effect of viscous damping. The improved servo gives us the damping but also recovers the original suppression at high frequencies due to the rolloff. I can now provide the ground and noise spectra and propagate them through to work out the fluctuations of the test mass position. 
21

Tue Aug 17 17:48:57 2021 
Koji  General  Equipment  Crackle SW model 
As a kickoff of the mariner sus cryostat design, I made a tentative crackle chamber model in SW.
Stephen pointed out that the mass for each part is ~100kg and will likely be ~150kg with the flanges. We believe this is with in the capacity of the yellow Skyhook crane as long as we can find its wheeled base. 
20

Fri Aug 6 04:34:43 2021 
Koji  General  General  Theoretical Cooling Time Limit 
I was thinking about how fast we can cool the test mass. No matter how we improve the emissivity of the test mass and the cryostat, there is a theoretical limitation. I wanted to calculate it as a reference to know how good the cooling is in an experiment.
We have a Si test mass of 300K in a blackbody cryostat with a 0K shield. How fast can we cool the test mass?
Then assume the specific heat is linear as
The actual Cp follows a nonlinear function (cf Debye model), but this is not a too bad assumption down to ~100K.
Then the differential equation can be analytically solved:
,
where the characteristic time of t0 is
.
Here T_0 is the initial temperature, cp0 is the slope of the specific heat (Cp(T_0) = c_p0 T_0). epsilon is the emissivity of the test mass, sigma is Stefan Boltzmann constant, A is the radiating surface area, and m is the mass of the test mass.
Up to the characteristic time, the cooling is slow. Then the temperature falls sqrt(t) after that.
As the surfacevolume ratio m/A becomes bigger for a larger mass, in general, the cooling of the bigger mass requires more time.
For the QIL 4" mass, Mariner 150mm mass, and the Voyager 450mm mass, t0 is 3.8hr, 5.6hr, and 33.7hr respectively.
 If the emissivity is not 1, just the cooling time is expanded by that factor. (i.e. The emissivity of 0.5 takes x2 more time to cool)
 And if the shields are not cooled fast or have a finite temperature in the end, of course, the cooling will require more time.
 1.25 t0 and 8 t0 tell us how long it takes to reach 200K and 100K.
This is the fundamental limit for radiation cooling. Thus, we have to use conductive cooling if we want to accelerate the cooling further more than this curve. 
19

Tue Jul 27 11:38:25 2021 
Paco  General  Design specs  DOPO single pass PDC efficiency 
Here is a set of curves describing the singlepass downconversion efficiency in the 20 mm long PPKTP crystals for the DOPO. I used the "nondepleted pump approximation" and assumed a planewave (although the intensity matches the peak intensity from a gaussian beam). Note that these assumptions will in general tend to overestimate the conversion efficiency.
The parameters use an effective nonlinear coefficient "d_eff" of 4.5 pm/V, and assume we have reached the perfect (quasi) phase matching condition where delta_k = 0 (e.g. we are at the correct crystal operating temperature). The wavelengths are 1064.1 nm for the pump, and 2128.2 nm for degenerate signal and idler. The conversion efficiency here is for the signal photon (which is indistinguishable from the idler, so am I off by a factor of 2?)...
Attachment 1 shows the single pass conversion efficiency "eta" as a function of the pump power. This is done for a set of 5 minimum waists, but the current DOPO waist is ~ 35 um, right in the middle of the explored range. What we see from this overestimates is an almost linearinpump power increase of order a few %. I have included vertical lines denoting the damage threshold points, assuming 500 kW / cm ^2 for 1064.1 nm (similar to our freespace EOMs). As the waist increases, the conversion efficiency tends to increase more slowly with power, but enables a higher damage threshold, as expected.
At any rate, the singlepass downconversion efficiency is (over)estimated to be < 5 % for our current DOPO waist right before the damage threshold of ~ 10 Watts, so I don't think we will be able to use the amplified pump (~ 2040 W) unless we modify the cavity design to allow for larger waist modes.
The important figure (after today's group meeting) would be a single pass downconversion efficiency of ~ 0.5 % / Watt of pump power at our current waist of 35 um (i.e. the slope of the curves below) 
18

Wed Jul 7 16:32:27 2021 
Stephen  General  Equipment  Overall Dimensions for Mariner Suspension Test Chamber Concept 
WIP  Stephen to check on new suspension dimensions and fit into 40m chamber 
17

Wed Jun 30 16:21:53 2021 
Stephen  General  Design specs  
[Stephen, Koji]
WIP  check layout of 60 cm suspension in chamber at 40m, will report here
WIP  also communicate the 
16

Tue Jun 22 22:28:09 2021 
Koji  General  Design specs  Test Mass wedge design 
The ETM wedge of 0.5deg will allow us to separate the AR reflections. We will be OK with the ITM wedge of 0.5deg too. 0.36 deg for ITM is also OK, but not for the ETM.
 Attachment 1 shows the deflection of the 2128mn and 1418nm beams by the test mass wedge. Here, the wedge angle of 1deg was assumed as a reference. For the other wedge angle, simply multiply the new number (in deg) to the indicated values for the displacement and angle.
 Attachment 2 shows the simplified layout of the test masses for the calculation of the wedge angle. Here the ITM and ETM are supposed to be placed at the center of the invacuum tables. Considering the presence of the cryo baffles, we need to isolate the pickoff beam on the BS table. There we can place a black glass (or similar) beam dump to kill the AR reflection. For the ETM trans, the propagation length will be too short for invacuum dumping of the AR reflection. We will need to place a beam baffle on the transmon table.
 I've assumed the cavity parameter of L=38m and RoC(ETM)=57m (This yields the Rayleigh range zR=27m). The waist radii (i.e. beam radii at the ITM) for the 2128nm and 1418nm beams are 4.3mm and 3.5mm, while the beam radii at the ETM are 7.4mm and 6.0mm, respectively,
 Attachment 3: Our requirement is that the AR reflection of the ALS (1418nm) beam can be dumped without clipping the main beam.
If we assume the wedge angle of 0.5deg, the opening of the main and AR beams will be (2.462+4.462)*0.5 = 3.46 deg. Assuming the distance from the ETM to the inair trans baffle is 45" (=1.14m), the separation of the beams will become 69mm. The attached figure shows how big the separation is compared with the beam sizes. I declare that the separation is quite comfortable. As the main and AR beams are distributed on both sides of the optic (i.e. left and right), I suppose that the beams are not clipped by the optical window of the chamber. But this should be checked.
Note that the 6w size for the 2128nm beam is 44mm. Therefore, the first lens for the beam shrinkage needs to be 3" in dia, and even 3" 45deg BS/mirrors are to be used after some amount of beam shrinkage.
 Attachment 4 (Lower): If we assume the same ITM wedge angle of 0.5deg as the ETM, both the POX/POY and the AR beams will have a separation of ~100mm. This is about the maximum acceptable separation to place the POX/POY optics without taking too much space on the BS chamber.
 Attachment 4 (Upper): Just as a trial, the minimum ITM wedge angle of 0.36deg was checked, this gives us the PO beam ~3" separated from the main beam. This is still comfortable to deal with these multiple beams from the ITM/ 