40m QIL Cryo_Lab CTN SUS_Lab TCS_Lab OMC_Lab CRIME_Lab FEA ENG_Labs OptContFac Mariner WBEEShop
  Mariner elog, Page 2 of 2  Not logged in ELOG logo
ID Date Authorup Type Category Subject
  18   Wed Jul 7 16:32:27 2021 StephenGeneralEquipmentOverall Dimensions for Mariner Suspension Test Chamber Concept

WIP - Stephen to check on new suspension dimensions and fit into 40m chamber

  23   Thu Aug 26 17:40:41 2021 StephenGeneralSuspensionSelecting MOS-style frame

[Koji, Stephen]

Kind of a silly post, and not very scientific, but we are sticking to it. During our check in today we discussed Mariner suspension frame design concept, and we chose to proceed with MOS-style (4 posts, rectangular footprint).

 - We looked at a scaled-up SOS (WIP, lots of things broke, just notice the larger side plates and base - see Attachment 1) and we were not super excited by the aspect ratio of the larger side plates - didn't look super stiff - or the mass of the base.

 - We noted that the intermediate mass will need OSEMs, and accommodating those will be easier if there is a larger footprint (as afforded by MOS).

MOS-style it is, moving forward!

Also, Checked In to PDM (see Attachment 2 - filename 40mETMsuspension_small-shields.SLDASM and filepath \llpdmpro\Voyager\mariner 40m cryo upgrade ) the current state of the Mariner suspension concept assembly (using MOS). Other than updating the test mass to the 6" configuration, I didn't do any tidying up, so I'm not perfectly satisfied with the state of the model. This at least puts the assembly in a place where anyone can access and work on it. Progress!

Attachment 1: no_sos_cad_screenshot.png
Attachment 2: vault_check_in_of_mariner_suspension_cad.png
  38   Mon Oct 11 15:22:18 2021 YehonathanGeneralGeneralMicrocomb alternatives

Following our discussion at the Friday JC meeting, I gathered several resources and made a small simulation to show how frequency combs might be generated on platforms other than microcombs or mode-locked lasers.

Indeed, frequency combs generated directly from a mode-locked laser are expensive as they require ultra-broadband operation (emitting few fs pulses) to allow for f-2f interferometry.

Microcombs are a fancy way of generating combs. They are low-power-consuming, chip-scale, have a high repetition rate, and are highly compatible with Silicon technology. While these are huge advantages for industry, they might be disadvantageous for our purpose. Low-power means that the output comb will be weak (on the order of uW of average power). Microscopic/chip-scale means that they suffer from thermal fluctuations. High rep-rate means we will have to worry about tuning our lasers/comb to get beat notes with frequencies smaller than 1GHz.

Alternatively, and this is what companies like Menlo are selling as full-solution frequency combs, we could use much less fancy mode-locked lasers emitting 50fs - 1ps pulses and broaden their spectrum in a highly nonlinear waveguide, either on a chip or a fiber, either in a cavity or linear topologies. This has all the advantages:

1. High-power (typically 100mW)

2. Low rep-rate (typically 100MHz)

3. Relatively cheap

4. "Narrowband" mode-locked lasers are diverse and can come as a fiber laser which offers high stability.

As a proof of concept, I used this generalized Schrodinger equation solver python package to simulate 1d light propagation in a nonlinear waveguide. I simulated pulses coming out of this "pocket" laser (specs in attachment 1) using 50mW average power out of the available 180mW propagating in a 20cm long piece of this highly nonlinear fiber (specs in attachment 2).

The results are shown in attachments 3-4:

Attachment 3 shows the spectrum of the pulse as a function of propagation distance.

Attachment 4 shows the spectrum and the temporal shape of the pulse at the input and output of the fiber.

It can be seen that the spectrum is octave-spanning and reaches 2um at moderate powers.

One important thing to consider in choosing the parameters of the laser and fiber is the coherence of the generated supercontinuum. According to this paper and others, >100fs pulses and/or too much power (100mW average is roughly the limit for 50fs pulses) result in incoherent spectra which is useless in laser locking or 1f-2f interferometry. These limitations apply only when pumping in the anomalous dispersion regime as traditionally have been done. Pumping in an all-normal (but low) dispersion (like in this fiber) can generate coherent spectra even for 1ps pulses according to this paper and others. So even cheaper lasers can be used. ps pulses will require few meter-long fibers though.



Attachment 1: ELMO_specs.png
Attachment 2: HNLF_specs.png
Attachment 3: SimulationResults1.png
Attachment 4: SimulationResults3.png
  7   Wed Mar 17 21:24:27 2021 gautamGeneralDesign specsSilicon TM dichroic coatings for phase I

I guess you have tried it already - but does enforcing the stacks to be repeating bilayer pairs of the same thickness fail miserably? When doing this for the PR3 optic @1064nm, I found that the performance of a coating in which the layers are repeating bilayers (so only 2 thicknesses + the cap and end are allowed to vary) was not that much worse than the one in which all 38 thicknesses were allowed to vary arbitrarily. Although you are aiming for T=50ppm at the second wavelength (which isn't the harmonic) which is different from the PR3 reqs. This kind of repetitive structure with fewer arbitrary thicknesses may be easier to manufacture (and the optimizer may also converge faster since the dimensionality of the space to be searched is smaller). 

Cool starfish 🌟 . What is the interpretation of the area enclosed by the vertices? Is that the (reciprocal) cost? So the better solution maximizes the area enclosed?


Attachment 2 shows the stack. Surprisingly not as crazy (or maybe I have internalized the old "crazy" as "normal")

  31   Mon Sep 27 17:01:53 2021 ranaGeneralHeat LoadMariner cooldown model status + next steps

How about a diagram so that we can understand what this model includes?

  52   Tue May 10 18:29:11 2022 ranaGeneralSuspensionMariner Suspension Cryo shield Install / Removal steps

Transformers Optimus GIF - Transformers Optimus Prime - Discover & Share  GIFs



ELOG V3.1.3-