40m QIL Cryo_Lab CTN SUS_Lab TCS_Lab OMC_Lab CRIME_Lab FEA ENG_Labs OptContFac Mariner WBEEShop
  Mariner elog  Not logged in ELOG logo
Message ID: 44     Entry time: Tue Oct 26 08:09:08 2021
Author: Jiri Smetana 
Type: General 
Category: General 
Subject: Lagrangian Suspension Model - Extended Body 

I've been testing out the extended body lagrangian models and I'm trying to understand the ground motion and force coupling to the test mass displacement. I've compared the two point-mass model to the extended model and, as expected, I get very similar results for the ground coupling. Attachment 1 shows the comparison and asside from more agressive damping of the point-mass model making a small difference at high frequency, the two models look the same. If I look at the force coupling, I get a significantly different result (see attachment 2). I think this makes sense because in the point-mass model I am driving purely horizontal displacement as there is no moment of inertia. However, for the extended body I drive the horizontal position of the centre of mass, which then results in an induced rotation as the change propagates through the dynamics of the system. To obtain a consistent result with the point-mass model, I would need to apply a force through the CoM as well as a counteracting torque to maintain a purely horizontal displacement of the mass. What I am wondering now is, what's the correct/more convenient way to consider the system? Do I want my lagrangian model to (a) couple in pure forces through the CoM and torques around the CoM and then find the correct actuation matrix for driving each degree of freedom in isolation or (b) incorporate the actuation matrix into the lagrangian model so that the inputs to the plant model are a pure drive of the test mass position or tilt?

Attachment 1: comparison_xg.png  19 kB  Uploaded Tue Oct 26 09:26:34 2021  | Hide | Hide all
comparison_xg.png
Attachment 2: comarison_F.png  19 kB  Uploaded Tue Oct 26 09:26:48 2021  | Hide | Hide all
comarison_F.png
ELOG V3.1.3-