[Paco, Nina]
We have been working on an estimate of the wavelength dependent emissivity for the mariner test mass HR coatings. Here is a brief summary.
We first tried extending the thin film optimization code to include extinction coefficient (so using the complex index of refraction rather than the real part only). We used cubic interpolations of the silica and tantala thin film dispersions found here for wavelengths in the 1 to 100 um range. This allowed us to recompute the field amplitude reflectivity and transmissivity over a broader range. Then, we used the imaginary part of the index of refraction and the thin film thicknesses to estimate the absorbed fraction of power from the interface. The power loss for a given layer is exponential in the product of the thickness and the extinction coefficient (see eq 2.6.16 here) . Then, the total absorption is the product of all the individual layer losses times the transmitted field at the interface. This is true when energy conservation distributes power among absorption (=emission), reflection, and transmission:
The resulting emissivity estimate using this reasoning is plotted as an example in Attachment #1 for the ETM design from April. Two things to note from this; (1) the emissivity is vanishignly small around 1419 and 2128 nm, as most of the power is reflected which kind of **makes sense**, and (2) the emissivity doesn't quite follow the major absorption features in the thin film interpolated data at lower wavelengths (see Attachment #2), which is dominated by Tantala... **which is not naively expected**?
Maybe not the best proxy for emissivity? Code used to generate this estimates is hosted here. |