40m QIL Cryo_Lab CTN SUS_Lab TCS_Lab OMC_Lab CRIME_Lab FEA ENG_Labs OptContFac Mariner WBEEShop
  Mariner elog  Not logged in ELOG logo
Message ID: 16     Entry time: Tue Jun 22 22:28:09 2021
Author: Koji 
Type: General 
Category: Design specs 
Subject: Test Mass wedge design 

The ETM wedge of 0.5deg will allow us to separate the AR reflections. We will be OK with the ITM wedge of 0.5deg too. 0.36 deg for ITM is also OK, but not for the ETM.


- Attachment 1 shows the deflection of the 2128mn and 1418nm beams by the test mass wedge. Here, the wedge angle of 1deg was assumed as a reference. For the other wedge angle, simply multiply the new number (in deg) to the indicated values for the displacement and angle.

- Attachment 2 shows the simplified layout of the test masses for the calculation of the wedge angle. Here the ITM and ETM are supposed to be placed at the center of the in-vacuum tables. Considering the presence of the cryo baffles, we need to isolate the pick-off beam on the BS table. There we can place a black glass (or similar) beam dump to kill the AR reflection. For the ETM trans, the propagation length will be too short for in-vacuum dumping of the AR reflection. We will need to place a beam baffle on the transmon table.

- I've assumed the cavity parameter of L=38m and RoC(ETM)=57m (This yields the Rayleigh range zR=27m). The waist radii (i.e. beam radii at the ITM) for the 2128nm and 1418nm beams are 4.3mm and 3.5mm, while the beam radii at the ETM are 7.4mm and 6.0mm, respectively,

- Attachment 3: Our requirement is that the AR reflection of the ALS (1418nm) beam can be dumped without clipping the main beam.
If we assume the wedge angle of 0.5deg, the opening of the main and AR beams will be (2.462+4.462)*0.5 = 3.46 deg. Assuming the distance from the ETM to the in-air trans baffle is 45" (=1.14m), the separation of the beams will become 69mm. The attached figure shows how big the separation is compared with the beam sizes. I declare that the separation is quite comfortable. As the main and AR beams are distributed on both sides of the optic (i.e. left and right), I suppose that the beams are not clipped by the optical window of the chamber. But this should be checked.
Note that the 6w size for the 2128nm beam is 44mm. Therefore, the first lens for the beam shrinkage needs to be 3" in dia, and even 3" 45deg BS/mirrors are to be used after some amount of beam shrinkage.

- Attachment 4 (Lower): If we assume the same ITM wedge angle of 0.5deg as the ETM, both the POX/POY and the AR beams will have a separation of ~100mm. This is about the maximum acceptable separation to place the POX/POY optics without taking too much space on the BS chamber.

- Attachment 4 (Upper): Just as a trial, the minimum ITM wedge angle of 0.36deg was checked, this gives us the PO beam ~3" separated from the main beam. This is still comfortable to deal with these multiple beams from the ITM/

Attachment 1: wedge.pdf  28 kB  Uploaded Tue Jun 22 23:28:18 2021  | Hide | Hide all
wedge.pdf
Attachment 2: Layout.pdf  1.292 MB  Uploaded Tue Jun 22 23:28:28 2021  | Hide | Hide all
Layout.pdf
Attachment 3: ETM.pdf  138 kB  Uploaded Tue Jun 22 23:28:37 2021  | Hide | Hide all
ETM.pdf
Attachment 4: ITM.pdf  72 kB  Uploaded Tue Jun 22 23:28:45 2021  | Hide | Hide all
ITM.pdf
ELOG V3.1.3-