40m QIL Cryo_Lab CTN SUS_Lab TCS_Lab OMC_Lab CRIME_Lab FEA ENG_Labs OptContFac Mariner WBEEShop
  COMSOL elog  Not logged in ELOG logo
Message ID: 14     Entry time: Thu Jun 6 17:00:11 2013
Author: Deep Chatterjee 
Type: Optics 
Category: General 
Subject: Comparison of ITM and FTM geometries (FIG. 3 Liu & Thorne) 

In section V of their paper on thermoelastic and homogenous thermal noise, Liu and Thorne have corrected the result of power spectral density of a Finite Test Mass from the result of BHV. Although the result of the infinte test mass has a closed form solution, that for the finite test mass is not closed and has to be approximated numerically. From the infinite series (Eq. (56), Eq.(57)) 100 terms were taken to approximate the sum. Considering that the convergence is fast (my last ELOG entry has a plot which shows little difference between considering 10  and 100 terms), 100 terms are a fair approximation.

The spectral density of thermal noise in the finite cavity is slightly lower than the corresponding infinite case. To highlight the difference between the two, they have plotted a quantity C_FTM which is a ratio of the linearized spectral densities of the Finite Test Mass and the Infinite Test Mass.

In this post, the same quantity has been numerically computed and plotted.

C_FTM.png

The above plot maybe compared to the one given on Fig. 3 of Liu & Thorne. Here r0 is the beam spot radius and C-FTM is the quantity mentioned previously. A snapshot of the figure from Liu & Thorne is shown below

Fig3_Liu&Thorn.bmp

The match between the figures seem fair.

Since C_FTM is a ratio, its frequency independent (both S_ITM and S_FTM have 1/f dependence on frequency which cancels on taking the ratio). This is verified in the above plot where plots are made for 10, 100 and 1000 Hz and they fairly coincide.

Attachment 2: C_FTM.pdf  8 kB  | Hide | Hide all
C_FTM.pdf
Attachment 3: Fig3_Liu&Thorn.bmp  1.227 MB
ELOG V3.1.3-