%% Use the results from the Model_with_2parallel_BRDs.nb % based on the model from Norna T1600259 % MK November 2019 clc; clear all; close all; % BS and damper parameters % primary oscillator with damping % BS Bounce mode BS.bounce.f = 16.69; %fixed bounce mode BS.bounce.m = 27.78; % in [kg] for the k computation BS.bounce.Q = 4400; % BS Roll mode BS.roll.f = 24.34; %fixed roll mode BS.roll.m = 12.9; % in [kg] for the k computation BS.roll.Q = 4300; % Dampers BRD1 and BRD3 brd1.bounce.m = 4.936e-3;% brd bounce mass in [kg] for the k computation brd1.bounce.Q = 100.4; brd1.roll.m = 3.063e-3;% brd roll mass in [kg] for the k computation brd1.roll.Q = 118; brd2.bounce.m = 4.865e-3;% brd bounce mass in [kg] for the k computation brd2.bounce.Q = 154; brd2.roll.m = 3.207e-3;% brd roll mass in [kg] for the k computation brd2.roll.Q = 137; %% 1 = BS, 2 = damper BRD1, 3 = damper BRD3 mode = 'roll'; % BS f1 = BS.(mode).f; %fixed bounce mode m1 = BS.(mode).m; % in [kg] for the k computation % = 1e12; % effectively infinite Q1 = BS.(mode).Q; w1 = 2*pi*f1; %fixed b1 = m1*w1/Q1; gamma1 = b1/m1; % damper1 m2 = brd1.(mode).m;% brd damper mass in [kg] for th k computation mu = m2/m1; %actual f2 = f1; % perfect tuning f2 = 24.26; %f2 = 16.693; w2= 2*pi*f2; k2 = m2*w2^2; Q2 = brd1.(mode).Q; b2 = m2*w2/Q2; gamma2 = b2/m2; % damper 2 m3 = brd2.(mode).m;% brd damper mass in [kg] for th k computation mu = m3/m1; %actual f3 = f1; % perfect tuning f3 = 24.32+0.1; %f3 = 16.66; w3= 2*pi*f3; k3 = m3*w3^2; Q3 = brd2.(mode).Q; b3 = m3*w3/Q3; gamma3 = b3/m3; %% Compute the transfer function freq = linspace(10,50,1e5); w=2*pi*freq; %double oscillator, both modes with damping %num1/den2 gives x1/x0 num1 = [w1^2,... (gamma2*w1^2 + gamma3*w1^2),(gamma2*gamma3*w1^2 + w1^2*w2^2 + w1^2*w3^2),... (gamma3*w1^2*w2^2 + gamma2*w1^2*w3^2), ... w1^2*w2^2*w3^2]; den2 = [1,... (gamma2 + gamma3 + (gamma2*m2)/m1 + (gamma3*m3)/m1),... (gamma2*gamma3 + (gamma2*gamma3*m2)/m1 + (gamma2*gamma3*m3)/m1 + w1^2 + w2^2 + (m2*w2^2)/m1 + w3^2 + (m3*w3^2)/m1), ... (gamma2*w1^2 + gamma3*w1^2 + gamma3*w2^2 + (gamma3*m2*w2^2)/m1 + (gamma3*m3*w2^2)/m1 + gamma2*w3^2 + (gamma2*m2*w3^2)/m1 +(gamma2*m3*w3^2)/m1), ... (gamma2*gamma3*w1^2 + w1^2*w2^2 + w1^2*w3^2 + w2^2*w3^2 + (m2*w2^2*w3^2)/m1 + (m3*w2^2*w3^2)/m1), ... (gamma3*w1^2*w2^2 + gamma2*w1^2*w3^2), ... w1^2*w2^2*w3^2]; spring2tf = tf(num1,den2); Y3= freqresp(spring2tf,freq,'Hz'); [wn,z]= damp(spring2tf); F1= wn(1,1)/(2*pi);Q1new= 1/(2*z(1,1)); F2 = wn(3,1)/(2*pi);Q2new= 1/(2*z(3,1)); F3 = wn(5,1)/(2*pi);Q3new= 1/(2*z(5,1)); F = [F1 F2 F3] Q = [Q1new Q2new Q3new] %% 2 masses model - BRD1 num1 = [w1^2, w1^2*gamma2,(w1^2)*(w2^2)]; den2 = [1,(gamma2*(1+m2/m1)+ gamma1),((w1^2)+(w2^2)*(1+m2/m1) + gamma1*gamma2), gamma2*(w1^2) + gamma1*(w2^2),(w1^2)*(w2^2)]; spring2tf = tf(num1,den2); Y2_1= freqresp(spring2tf,freq,'Hz'); [wn,z]= damp(spring2tf); F1= wn(1,1)/(2*pi);Q1new= 1/(2*z(1,1)); F2 = wn(3,1)/(2*pi);Q2new= 1/(2*z(3,1)); F = [F1 F2] Q = [Q1new Q2new] %% 2 masses model - BRD3 num1 = [w1^2, w1^2*gamma3,(w1^2)*(w3^2)]; den2 = [1,(gamma3*(1+m3/m1)+ gamma1),((w1^2)+(w3^2)*(1+m3/m1) + gamma1*gamma3), gamma3*(w1^2) + gamma1*(w3^2),(w1^2)*(w3^2)]; spring2tf = tf(num1,den2); Y2_3= freqresp(spring2tf,freq,'Hz'); [wn,z]= damp(spring2tf); F1= wn(1,1)/(2*pi);Q1new= 1/(2*z(1,1)); F2 = wn(3,1)/(2*pi);Q2new= 1/(2*z(3,1)); F = [F1 F2] Q = [Q1new Q2new] % %% % % Bounce % fid = fopen('srs0033.txt'); % data = textscan(fid,'%f %f','HeaderLines',35); % data = cell2mat(data); %% figure(1) plot(freq,mag2db(abs(squeeze(Y3))), ... freq,mag2db(abs(squeeze(Y2_1))), ... freq,mag2db(abs(squeeze(Y2_3)))); xlabel('Frequency [Hz]'); ylabel('Magnitude []'); title(['BRDs on BS ' mode]) grid on; hold on; xlim([16 17.5]) xlim([23.5 25]) ylim([20 50]) legend('Model 2 BRDs', 'Model 1 BRD (BRD1)','Model 1 BRD (BRD3)','Measurement (#33)');