We tried to damp mechanical peaks from each optics. For now, by putting a rubber piece on a mirror mount can suppress mechanical peaks effectively. We are still thinking about more robust way to damp the peaks.
Beat signal has a lot of acoustic peaks from 100Hz up to 1kHz, and they may mask any improvement we work on flat noise. Damping them is necessary before we can work on the flat noise hidden underneath.
By tapping each optic, we can see peaks raising up in beat signal or feedback signal to ACAV AOM. We used the feedback to ACAV AOM to identify peaks in ACAV path first. The curve mirror behind AOM has a strong peak which can be damped by a rubber cone placed on top of the mount, see fig1 below.

fig1: Mirror mount1, with a damping rubber on top.
We also tried using different mounts to see if the peak would be reduced. The original mount was an anodized aluminium mount. We switched to different two stainless steel mounts, mount1 and mount2. The spectrum of the feedback signal to AOM (not calibrated) between two mounts with and without damping rubber are shown below. From the spectrum, there are not much different between the current anodized Al mount (not shown) and the steel mount in fig1.

Note: We also tried to damp the mirror mount with small rubber pieces placed between the frame and the body of the mount, but it did not help at all. The springs of the mount are stronger than the rubber, so this method is not effective.
To sum up,
- we need to damp most of our optics. The current plan is to use a rubber cone and just place on top of the mirror mounts. We are also thinking about better damping schemes.
- There are not much different between a stainless steel mount [add model#], and an aluminium mount[add model#]. It is probably unnecessary to change mirror mounts.
- We will order more of the rubber cones for damping.
|