My goal was to investigate the effect of placing a 1k ohm resistor as the input of the DC port of the Bias Tee. The expectation was it would decrease the bandwidth around DC, and this is supported by LTspice simulation. According to simulation, at around 300 Hz there becomes a few dB difference between having the resistor and not having it. From the paper 'W. Zhang, M. J. Martin, C. Benko, J. L. Hall, J. Ye, C. Hagemann, T. Legero, U. Sterr, F. Riehle, G. D. Cole, and M. Aspelmeyer, "Reduction of residual amplitude modulation to 1 × 10-6 for frequency modulation and laser stabilization," Opt. Lett. 39, 1980-1983 (2014)'(https://www.osapublishing.org/ol/abstract.cfm?URI=ol-39-7-1980) in Figure 2B we see the frequency noise without servos active. The noise falls off after around 50 Hz, which indicates the change of bandwidth to 300 Hz should not be an issue. I also showed the effect for 500 ohms to see how the transfer function changes intermediately between 0 and 1k ohm resistances. |