[Tara, Evan]
We replaced the Lambertian diffuser with AlGaAs mirror 137B1. We intentionally induced a nonzero AOI of the incident beam, so that the reflected beam could be dumped cleanly. At a distance of 25.7(3) cm back from the mirror, the reflected and incident beams were separated by 1.3(1) cm, giving an AOI of 1.45(11)°.
- We measured the incident laser power as 9.94(2) mW.
- We set the exposure time of the camera to 250 ms.
- We swung the boom to 13°, 16°, 19°, 22°, 25°, 28°, 31°, and 34°. At each angle, we took 5 CCD images with the beam incident, and 1 CCD image with the beam blocked.
- We measured the incident laser power as 9.95(2) mW.
- Because the scattered power had fallen off sharply by 30°, we turned up the exposure time to 1.00 s.
- We swung the boom to 31°, 34°, 37°, 40°, and 43°. At each angle, we took 5 CCD images with the beam incident, and 1 CCD image with the beam blocked.
- We measured the incident laser power as 10.08(2) mW.
- We swung the boom to 46°, 49°, 52°, 55°, 58°, 61°, 64°, 67°, and 70°. At each angle, we took 5 CCD images with the beam incident, and 1 CCD image with the beam blocked.
- We measured the incident laser power as 10.06(2) mW.
For all of these measurements, the two ND filters (OD1.5+OD3.0) were not attached; just the RG1000. With the ThorLabs power meter, we measured the combined transmissivity of these two ND filters to be 1865(14) ppm.
The first attachment shows an example CCD image. The second attachment shows the raw counts, the inferred scattered power, and the BRDF. |