40m QIL Cryo_Lab CTN SUS_Lab TCS_Lab OMC_Lab CRIME_Lab FEA ENG_Labs OptContFac Mariner WBEEShop
  PSL  Not logged in ELOG logo
Entry  Fri Mar 15 11:23:45 2013, tara, Notes, optic, AlAs/GaAs edgeloss.pngnoise_compare.png
    Reply  Sun Mar 17 16:09:10 2013, Evan, Notes, optic, AlAs/GaAs 0.5m_ROC_modematch.pdf1m_ROC_modematch.pdf
Message ID: 1121     Entry time: Fri Mar 15 11:23:45 2013     Reply to this: 1122
Author: tara 
Type: Notes 
Category: optic 
Subject: AlAs/GaAs 

I'm thinking about the spec for AlAs/GaAs coatings. Here is the list of what I have:

  • coating on concave side of the mirror for 0.5m x6 (I'm not sure if they can do the transfer on 0.5m mirror now) for 1.0m x6 for flat mirror x3 -
  • for circularly polarized light, normal incidence
  • Transmission @1064 = 100ppm +/- 10ppm. 10% error is still within the acceptable value for 10ppm loss (T ~ 67-73%), see T1200057v11 -
  • Absorption + scatter loss < 10ppm, this is what Garrett told us. -
  • coatings diameter = 8mm (The number is from Garrett), the loss around the edge for our beam with diameter=364 um is less than 10^-10 ppm. -
  • Max scratch surface and point defects are not determined yet. I can look up the specs from our current SiO2/Ta2O5 mirror since they are ok for us. -
  • I think we are aiming for the thermo-optic optimized coatings. The layer structure can be found in T1200003-v1.

==Coating diamter for 0.5m ROC mirror==

About the coatings diameter, Garrett said it depends on the aperture size/ coating diameter. So I made a plot to estimate the loss due to the finite size coating vs Coating diameter for our spot radius of 182 um. The loss is simply calculated by the ratio of the power not falling on the coating = Ploss/Pin = (exp(-2*r0.^2./w0.^2))*1e6*26000/pi   

where r0 = coating radius, w0 = spot radius, a factor of 1e6 for showing the result in ppm, 26000/pi is the total loss due to the light bouncing in the cavity.


fig1: Loss vs coating diameter (in meter)


It seems we can go to 2mm coating diameter, and the loss is still much less than 1ppm (the expected loss from absorption and scatter is ~ 10ppm). However, we have to consider about how well they can center the film, how well we can assemble the cavity. So larger coating diameter is always better. If we assume that 1mm error is limiting us, coating diameter of 4-5 mm should be ok for us.

 ==for mirror with 1m ROC==

If the ROC is 1.0m, the coating diameter can be 8mm. For the cavity with 1.45" long, the spot radius on the mirror will be 215um (182um with 0.5m mirror). This changes the noise budget of the setup a little bit. The total noise level is lower by a factor of ~ 1.2. (see below figure) at 100 Hz.


fig2: Noise budget comparison between setup with 0.5 m and 1.0m RoC mirrors, plotted on top of each other. Noises that change with spotsize are coating brownian, substrate brownian, thermoelastic in substrate, and thermo-optic.


==What do we choose? 0.5m or 1.0m==

For both 0.5 and 1m, the cavity will be stable (see T1200057-v11, fig11). So either choice is fine

if we use 1.0 m,

  • we loss the signal level a bit,
  • but we are more certain that the coating will work. 
  • The procurement should be faster (as promised by Garrett)
  • have large area coating up to 8mm diamter
  • need to check if we can mode match or not (I'm positive that we can, but I'll check or let Evan check)

So at this point, I'm thinking about going with 1.0 m mirror.



ELOG V3.1.3-