40m QIL Cryo_Lab CTN SUS_Lab TCS_Lab OMC_Lab CRIME_Lab FEA ENG_Labs OptContFac Mariner WBEEShop
  PSL  Not logged in ELOG logo
Message ID: 108     Entry time: Thu Apr 15 16:42:32 2010
Author: Frank 
Type: Electronics 
Category: RefCav 
Subject: AD590 readout-box modified 

in order to gain more s/n ratio i modified the existing AD590 readout-box a little bit. I assumed that we wanna operate the cavity at 35C (which is not too high but well above RT or the temp of an additional temp stabilized box around both cavities) The required range for shifting the cavities is ~ 1 FSR, better would be a little bit more for each cavity as we can shift both independent.

df~156MHz /K    and     1 FSR~740MHz

this corresponds to ~4.75K/FSR we have to shift.

For testing purposes it might be helpful to have more than that as e.g. if we limit the total range to lets say 6K we might end up at the end of the range and run into trouble as soon some disturbance from outside (e.g we remove part of the insulation, lets say an end cap) might shift the whole thing at the end of the range. As soon as this happens the servo would go crazy.

So i think we should go for 10K range, centered around 35C, so from 30C to 40C. I modified the box for that, so the transimpedance resistors have now a value of 29.4K, which gives us ~9.21V for 40C at the output of this stage.

In order to supply it from an independed power supply to reduce our current ground loops, i've chosen a WM071, the same as we use for the PDH boxes. As they come only in +/-15V, i had to change the voltage regulators in the box to +/-12V instead of =/-15V.
This results in a maximum output voltage of the LT1125 of a couple of 100mV more than 10V, depending on the current they have to source/sink. So 9.2V is still well below the max.

I added a filtered 5V reference, (AD586, 4.7uF filter cap) for the dc offset @35C. The corresponding resistor for the summing amp is 1379.76 which can be implemented almost exact using 2k05 and 4k22 in parallel (1379.7) or 1k54 and 13k3 (1380.2). The feedback resistor of the last stage can then be calculated to be 170k45 in order to match 30C to 40C to -10V to 10V. Paralleling can be used here as well to get an almost exact value.

The matching is not that critical as we don't wanna measure absolut temp, but if can do it that easy why not.

---  new schematic following soon   ---

ELOG V3.1.3-