c=3e8; %speed of light lambda = 1064e-9; Finesse = 1e4; L=0.2035; %cavity length %adjustable parameters f=10; %Let's look at 10 Hz Pin= 10e-3; % power input 10 mW RIN= 1e-4; % RIN level at 10 Hz Abs= 5e-6; %absorption level 5ppm %%coating properties alpha= 1.8e-6; %effective thermal expansion coeff of the coatings beta = 4.47e-6; %effective dndt of the coatings d= 4.4e-6; %coatings thickness, 16doublets 300 ppm Transmission %%substrate properties Cap= 1.6e9; %SiO2 heat capacity per volume J/(m^3.K) kappa= 1.38; %SiO2 thermal conductivity W/(m.K) rt= sqrt( kappa/(2*pi*Cap*f) ); %thermal diffusion length inside SiO2 rg= 292e-6; %spotsize on the mirror Volume= pi*rg*rg*rt; %volume that is heat up from thermal fluctuation %First, let's calculate dzdt = alpha*d - beta*lambda %Result from M. Evans et.al. PHYSICAL REVIEW D 78, 102003 (2008) %this is the combined thermoelastic and thermorefractive mechanisms dzdT= alpha*d - beta*lambda; %Area under sine curve, 1/2 cycle, with amplitude A, frequency f, is A/2f %Then heat absorbed from half cycle of fluctuation is Q = Pin*RIN*Abs*Finesse/(pi*pi*f); %. %To find dT, % Q = Volume * Cap *dT dT = Q/(Volume * Cap); dz = dzdT*dT; %to calculate frequency noise, use dz/L = df/f df = (dz/L)*(c/lambda); df % Freq noise is 1.4 mHz/rtHz at 10 Hz, from this calculation.