40m QIL Cryo_Lab CTN SUS_Lab CAML OMC_Lab CRIME_Lab FEA ENG_Labs OptContFac Mariner WBEEShop
  40m Log, Page 95 of 354  Not logged in ELOG logo
ID Date Author Typeup Category Subject
  1572   Sun May 10 13:41:17 2009 steveUpdateVACETMY damping restored, VC1 opened

ETMY damping restored.

Cryo  interlock closed VC1 ~2 days ago. P1 is 6.3 mTorr. Cryo temp 12K stable, reset photoswitch and opened VC1

  1573   Mon May 11 11:49:20 2009 steveUpdatePSLMOPA cooling water lines are backwards

Quote:
This is 8 days of 10-minute trend.

DTEC is just the feedback control signal required to keep the NPRO's pump diode at a constant temperature.
Its not the amplifier or the actual NPRO crystal's temperature readout.

There is no TEC for the amplifier. It looks like to me that by opening up the flow to the NPRO some more
we have reduced the flow to the amplifier (which is the one that needs it) and created these temperature
fluctuations.

What we need to do is choke down the needle valve and ream out the NPRO block.




I have measured the "input" line temp at the MOPA box 10 C and the "out" line 8 C

This must be corrected.

However look at the 80 days plot of operation where the head temp variation is nothing new
  1574   Mon May 11 12:25:03 2009 josephb,AlexUpdateComputersfb40m down for patching

The 40m frame builder is currently being patched to be able utilize the full 14 TB of the new raid array (as opposed to being limited to 2 TB).  This process is expected to take several hours, during which the frame builder will be unavailable.

  1575   Tue May 12 01:11:55 2009 YoichiUpdateLSCDARM response (DC Readout)
I measured the DARM response with DC readout.

This time, I first measured the open loop transfer function of the X single arm lock.
The open loop gain (Gx) can be represented as a product of the optical gain (Cx), the filter (Fx), and the suspension response (S), i.e. Gx = Cx*Fx*S.
We know Fx because this is the transfer function of the digital filters. Cx can be modeled as a simple cavity pole, but we need to know the finesse to calculate it.
In order to estimate the current finesse of the XARM cavity, I ran the armLoss script, which measures the ratio of the reflected light power between the locked and the unlocked state. Using this ratio and the designed transmissivity of the ITMX (0.005), I estimated the round trip loss in the XARM, which was 170 ppm. From this number, the cavity pole was estimated to be 1608Hz.
Using the measured Gx, the knowledge of Fx and the estimated Cx, I estimated the ETMX suspension response S, which is shown in the first attachment.
Note that this is not a pure suspension response. It includes the effects of the digital system time delay, the anti-imaging and anti-aliasing filters and so on.

Now the DARM open loop gain (Gd) can also be represented as a product of the optical gain (Cd), the filter (Fd) and the suspension response (S).
Since the actuations are applied again to the ETMs and we think ETMX and ETMY are quite similar, we should be able to use the same suspension response as XARM for DARM. Therefore, using the knowledge of the digital filter shape and the measured open loop gain, we can compute the DARM optical gain Cd.
The second attachment shows the estimated DARM response along with an Optickle prediction.
The DARM loop gain was measured with darm_offset_dc = 350. Since we haven't calibrated the DARM signal, I don't know how many meters of offset does this number correspond to. The Optickle prediction was calculated using a 20pm DARM offset. I chose this to make the prediction look similar to the measured one, though they look quite different around the RSE peak. The input power was set to 1.7W in the Optickle model (again this is just my guess).

It looks as if the measured DARM response is skewed by an extra low pass filter at high frequencies. I don't know why is it so.
  1576   Tue May 12 01:22:51 2009 YoichiUpdateLSCArm loss
Using the armLoss script (/cvs/cds/caltech/scripts/LSC/armLoss), I measured the round trip loss (RTL) of the arms.

The results are:
XARM: RTL= 171 (+/-2) ppm
YARM: RTL = 181 (+/-2) ppm

To get the results above, I assumed that the transmissivity of the ITMs are the same as the designed value (0.005).
This may not be true though.
  1577   Tue May 12 15:22:09 2009 YoichiUpdateLSCArm Finesse

Quote:

It looks as if the measured DARM response is skewed by an extra low pass filter at high frequencies. I don't know why is it so.


One large uncertainty in the above estimate is the cavity pole of X-arm because I simply assumed that the ITMX reflectivity to be the designed value.
I think we can directly measure the X-arm finesse from Alberto's absolute length measurements (i.e. from the width of the resonant peaks in his scans).
By looking at Alberto and Koji's posts (elog:1244 elog:838), it looks like the FWHM of the peaks are around 3kHz. With the FSR ~ 3.8MHz, it gives a finesse of about 1300, which is reasonable.
Alberto, can you check your data and measure the FWHM more precisely ?
Note that we want to measure the FWHM of the peak in the *power* of the beat signal. The beat amplitude is proportional to the electric field *amplitude* of the transmitted auxiliary laser. What we need to get a finesse is the FWHM of the transmitted laser *power*. Thus we need to take the power of the beat signal.
  1578   Tue May 12 17:26:56 2009 peteUpdateoplevsetmy oplev quad was bad

Pete, Rob

After looking at some oplev noise spectra in DTT, we discovered that the ETMY quad (serial number 115)  was noisy.  Particularly, in the XX_OUT and XX_IN1 channels, quadrants 2 (by a bit more than an order of magnitude over the ETMX ref) and 4 (by a bit less than an order of mag).  We went out and looked at the signals coming out of the oplev interface board; again, channels 2 and 4 were noise compared to 1 and 3 by about these same amounts.  I popped in the ETMX quad and everything looked fine.  I put the ETMX quad back at ETMX, and popped in Steve's scatterometer quad (serial number 121 or possibly 151, it's not terribly legible), and it looks fine.  We zeroed via the offsets in the control room, and I went out and centered both the ETMX and ETMY quads. 

Attached is a plot.  The reference curves are with the faulty quad (115).  The others are with the 121.

 

  1580   Wed May 13 03:05:13 2009 peteUpdateoplevsetmy oplev quad was bad

Quote:

Pete, Rob

After looking at some oplev noise spectra in DTT, we discovered that the ETMY quad (serial number 115)  was noisy.  Particularly, in the XX_OUT and XX_IN1 channels, quadrants 2 (by a bit more than an order of magnitude over the ETMX ref) and 4 (by a bit less than an order of mag).  We went out and looked at the signals coming out of the oplev interface board; again, channels 2 and 4 were noise compared to 1 and 3 by about these same amounts.  I popped in the ETMX quad and everything looked fine.  I put the ETMX quad back at ETMX, and popped in Steve's scatterometer quad (serial number 121 or possibly 151, it's not terribly legible), and it looks fine.  We zeroed via the offsets in the control room, and I went out and centered both the ETMX and ETMY quads. 

Attached is a plot.  The reference curves are with the faulty quad (115).  The others are with the 121.

 

 I adjusted the ETMY quad gains up by a factor of 10 so that the SUM is similar to what it was before.

  1581   Wed May 13 12:41:14 2009 josephbUpdateCamerasTiming and stability tests of GigE Camera code

At the request of people down at LLO I've been trying to work on the reliability and speed of the GigE camera code.  In my testing, after several hours, the code would tend to lock up on the camera end.  It was also reported at LLO after several minutes the camera display would slow down, but I haven't been able to replicate that problem.

I've recently added some additional error checking and have updated to a more recent SDK which seems to help.  Attached are two plots of the frames per second of the code.  In this case, the frames per second  are measured as the time between calls to the C camera code for a new frame for gstreamer to encode and transmit.  The data points in the first graph are actually the averaged time for sets of 1000 frames.  The camera was sending 640x480 pixel frames, with an exposure time of 0.01 seconds.  Since the FPS was mostly between 45 and 55, it is taking the code roughly 0.01 second to process, encode, and transmit a frame.

During the test, the memory usage by the server code was roughly 1% (or 40 megabytes out of 4 gigabytes) and 50% of a CPU (out a total of  CPUs).

  1585   Thu May 14 02:36:05 2009 peteUpdateLockingunstable IFO

It seems that the MC3 problem is intermittent (one-day trend attached).  I tried to take advantage of a "clean MC3" night, but the watch script would usually fail at the transition to DC CARM and DARM.  It got past this twice and then failed later, during powering up.   I need to check the handoff.

 

  1588   Fri May 15 00:02:34 2009 peteUpdateSUSETMX coils look OK

I checked the four rear coils on ETMX by exciting XXCOIL_EXC channel in DTT with amplitude 1000@ 500 Hz and observing the oplev PERROR and YERROR channels.  Each coil showed a clear signal in PERROR, about 2e-6 cts.  Anyway, the coils passed this test.

 

  1590   Fri May 15 16:47:44 2009 josephbUpdateCamerasImproved camera code

At Rob's request I've added the following features to the camera code.

The camera server, which can be started on Ottavia by just typing pserv1 (for camera 1) or pserv2 (for camera 2), now has the ability to save individual jpeg snap shots, as well as taking a jpeg image every X seconds, as defined by the user.

The first text box is for the file name (i.e. ./default.jpg will save the file to the local directory and call it default.jpg).  If the camera is running (i.e. you've pressed start), prsessing "Take Snapshot to" will take an image immediately and save it.  If the camera is not running, it will take an image as soon as you do start it.

If you press "Start image capture every X seconds", it will do exactly that.  The file name is the same as for the first button, but it appends a time stamp to the end of the file.

There is also a viedo recording client now.  This is access by typing "pcam1-mov" or "pcam2-mov".  The text box is for setting the file name.  It is currently using the open source Theora encoder and Ogg format (.ogm).  Totem is capable of reading this format (and I also believe vlc).  This can be run on any of the Linux machines.

The viewing client is still accessed by "pcam1" or "pcam2".

I'll try rolling out these updates to the sites on Monday.

The configuration files for camera 1 and camera 2 can be found by typing in camera (which is aliased to cd /cvs/cds/caltech/apps/linux64/python/pcamera) and are called pcam1.ini, pcam2.ini, etc.

 

  1591   Fri May 15 17:30:00 2009 robUpdateLSCarms, coils, locks

This is the two arms locked, for an hour.  No integrator in either loop, but from this it looks like ETMY may have a bigger length2angle problem than ETMX.  I'll put some true integrators in the loops and do this again.

 

 

  1592   Sat May 16 16:20:33 2009 robUpdateLSCarms, coils, locks, #2

Quote:

This is the two arms locked, for an hour.  No integrator in either loop, but from this it looks like ETMY may have a bigger length2angle problem than ETMX.  I'll put some true integrators in the loops and do this again.

 

 

 There appear to be at least two independent problems: the coil balancing for ETMY is bad, and something about ITMX is broken (maybe a coil driver). 

The Y-arm becomes significantly misaligned during long locks, causing the arm power to drop.  This misalignment tracks directly with the DC drive on ETMY.  Power returns to the maximum after breaking and re-establishing lock.

ITMX alignment wanders around sporadically, as indicated by the oplevs and the X-arm transmitted power.  Power returns to previous value (not max) after breaking and re-establishing lock.

Both loops have integrators.

  1593   Sun May 17 14:35:52 2009 YoichiUpdateVACVC1 opened
I found the VC1 was closed and the pressure was 4.5e-3 torr.
I tweaked the optical sensor (cryopump temperature), and opened VC1.
  1595   Sun May 17 21:45:40 2009 robUpdateASCITMX oplev centered
  1596   Sun May 17 23:22:19 2009 ranaUpdateEnvironmentseisBLRMS for the past 3 weeks
Looks like Chris Wipf's fix of using fclose worked for the NDS client.
The attached plot shows the minute trend RMS - we should put the calibration for these into the .m file
so that the EPICS values are in something useful like microns or microns/sec.

I also now see why Nodus seems really slow with the elog sometimes. When we load a page with an attached
PDF, it runs 'gs' to try to generate the PNG preview. Because its on Solaris it often fails because it
can't find some font. We should probably disable the preview or fix the font issue.
  1597   Mon May 18 01:54:35 2009 ranaUpdatePEMUnplugged Guralp channels
To see if Caryn's data dropouts were happening, I looked at a trend of all of our temperature channels. Looks OK now.

Although you can't see it because I zoomed in, there's a ~24 hour relaxation happening before Caryn's sensors equilibrate.
I guess that's the insulating action of the cooler? We need a picture of the cooler in the elog for posterity.
  1599   Mon May 18 10:06:56 2009 carynUpdatePEMTemp sensor

Quote:
To see if Caryn's data dropouts were happening, I looked at a trend of all of our temperature channels. Looks OK now.

Although you can't see it because I zoomed in, there's a ~24 hour relaxation happening before Caryn's sensors equilibrate.
I guess that's the insulating action of the cooler? We need a picture of the cooler in the elog for posterity.[/quote


Dropouts can't been seen with a minute trend, only a second trend. No big deal, but they are still occurring. See plot below.

The 24hr relaxation period is due to the cooler and some metal blocks that were cooled in the freezer and then put in the cooler to see if the relationship between the temp sensors changed with temperature. The relationship is not linear, which probably means there is some non-linearity in each temperature sensor's relationship to temperature. So, when calibrating them with Bob's temp sensor, more than 2 data points need to be collected.

Picture of cooler for posterity is attached
  1600   Mon May 18 15:31:11 2009 ranaUpdatePEMTemp sensor

Quote:
Picture of cooler for posterity is attached


I'm puzzled as to why the minute trend doesn't pick this up; its clearly there in the full data.

Looks like its several samples too. Can someone please reboot this DCU and see if the problem goes away?
  1606   Tue May 19 15:54:29 2009 JenneUpdatePEMMore Plots for the S5 H1:DARM Wiener Filtering....

Even more plots for the Wiener filtering!

We have a set of spectrograms, which show (in color) the amplitude spectrum, at various times during a one month stretch of time, during S5. Each vertical data-'stripe' is 10min long.

We also have a set of band-limited plots, which take the spectra at each time, and integrate under it, for different frequency bands.

Each set of plots has the following 3 plots:  The raw DARM spectrum, a ratio of residual/raw, and the residuals, normalized to the first one (on which the wiener filter was trained).

The residuals are the DARM spectrum, after subtracting the Wiener-filtered seismometer witness data.

 

From the ratio plots, it looks like the wiener filter is pretty much equally effective at the time on which the filter was trained, as one month later.  Static filters may be okey-dokey for a long period of time with for the seismic stuff.

  1607   Tue May 19 15:57:07 2009 steveUpdateIOOMC2 damping restored after EQ

  Earthquake mag 4.0 at Lennox, Ca     trips MC2 watchdogs       http://quake.usgs.gov/recenteqs/Quakes/ci10411545.html

See 40m accelerometers as they see it.

  1610   Wed May 20 01:41:19 2009 peteUpdateVACcryopump probably not it

I found some neat signal analysis software for my mac (http://www.faberacoustical.com/products/), and took a spectrum of the ambient noise coming from the cryopump.  The two main noise peaks from that bad boy were nowhere near 3.7 kHz.

  1611   Wed May 20 01:53:48 2009 rob, peteUpdateLockingviolin mode filters in drstep_bang

Recently the watch script was having difficulty grabbing a lock for more than a few seconds.  Rob discovered that the violin notch filters which were activated in the script were causing the instability.  We're not sure why yet.  The script seems significantly more stable with that step commented out.

  1612   Wed May 20 09:55:18 2009 steveUpdatePEMoplev servos turned off

All oplevs servos turned off to protect our suspentions from vibration due to drilling and pounding in CES high bay area.

This activity will be done from 10 am till 3 pm today.

 

Meanwhile our IFO-air conditions are turned off for maintenance.

Their performance of 6 months is shown on plot.

  1616   Thu May 21 18:05:03 2009 peteUpdateSUSETMX coils look OK

Quote:

I checked the four rear coils on ETMX by exciting XXCOIL_EXC channel in DTT with amplitude 1000@ 500 Hz and observing the oplev PERROR and YERROR channels.  Each coil showed a clear signal in PERROR, about 2e-6 cts.  Anyway, the coils passed this test.

 

 I also made xfer fctns of the 4 piston coils on ETMY and ETMX with OL_PIT.  (I looked at all 4 even though the attached plot only shows three.)  So it looks ike the coils are OK.

  1617   Thu May 21 18:07:32 2009 ranaUpdatePSLScrew on Needle valve loosened
Alberto and I went in to loosen up the needle valve yesterday around 4:30 PM. The idea was to cut down on
the flow to the NPRO so that the cooling power of the chiller would be used almost entirely on the
amplifier instead of the NPRO block.

The need valve was basically all the way open. The lock nut was screwed in all the way and stuck. By using
pliers and a wrench for the nut, we freed the lock nut. Even so, the screw for the needle valve seemed to
be bad: I think the thread is stripped; it doesn't go down even after several turns. I even tried to squirt
alchohol on it and really press down in the hopes of catching a thread. It may have closed slightly but its
impossible to be sure.

I also increased the NPRO diode current to the max (+0.1 A). This got us a little bit of NPRO power and
I hope some more AMPMON stability. The attached plot shows 4 days of minute trend. If you squint you
might believe that we got some suppression in the HTEMP fluctuations over the last two days.
  1620   Fri May 22 01:27:14 2009 peteUpdateSUS200 days of MC3 side

Looks like something went nuts in late April.  We have yet to try a hard reboot.

  1621   Fri May 22 17:03:14 2009 rob, steveUpdatePSLMOPA takes a holiday

The MOPA is taking the long weekend off.

Steve went out to wipe off the condensation inside the MOPA and found beads of water inside the NPRO box, perilously close to the PCB board.  He then measured the water temperature at the chiller head, which is 6C.  We decided to "reboot" the MOPA/chiller combo, on the off chance that would get things synced up.  Upon turning off the MOPA, the neslab chiller display immediately started displaying the correct temperature--about 6C.  The 22C number must come from the MOPA controller.  We thus tentatively narrowed down the possible space of problems to: broken MOPA controller and/or clog in the cooling line going to the power amplifier.  We decided to leave the MOPA off for the weekend, and start plumbing on Tuesday.  It is of course possible that the controller is the problem, but we think leaving the laser off over the weekend is the best course of action.

 

 

  1622   Fri May 22 17:05:24 2009 rob, peteUpdateComputershard reboot of vertex suspension controllers

we did a hard reboot of c1susvme1, c1susvme2, c1sosvme, and c1susaux.  We are hoping this will fix some of the weird suspension issues we've been having (MC3 side coil, ITMX alignment).

  1623   Sun May 24 11:24:08 2009 robUpdateComputerselog restarted

I just restarted the elog.  It was crashed for unknown reasons.  The restarting instructions are in the wiki.

  1624   Mon May 25 21:31:47 2009 carynUpdatePEMplugged in Guralp channels

Guralp Vert1b and Guralp EW1b are plugged back in to PEM ADCU #10 and #12 respectively. Guralp NS1b remains plugged in. So,  PEM-SEIS_MC1_X,Y,Z should now corrsp to seismometer as before.

  1625   Tue May 26 17:05:44 2009 robUpdatePSLMOPA re-activated

steve, rob, alberto

 

Steve installed two rotary flow meters into the MOPA chiller system--one at the chiller flow output and one in the NPRO cooling line.  After some hijinks, we discovered that the long, insulated chiller lines have the same labels at each end.  This means that if you match up the labels at the chiller end, at the MOPA end you need switch labels: out goes to in and vice-versa.  This means that, indubitably, we have at some point had the flow going backwards through the MOPA, though I'm not sure if that would make much of a difference. 

Steve also installed a new needle valve in the NPRO cooling line, which works as expected as confirmed by the flow meter. 

We also re-discovered that the 40m procedures manual contains an error.  To turn on the chiller in the MOPA start-up process, you have to press ON, then RS-232, then ENTER.  The proc man says ON, RS-232, RUN/STOP.

The laser power is at 1.5W and climbing.

  1626   Tue May 26 17:34:14 2009 robUpdatePSLMOPA re-deactivated

Quote:

steve, rob, alberto

 

Steve installed two rotary flow meters into the MOPA chiller system--one at the chiller flow output and one in the NPRO cooling line.  After some hijinks, we discovered that the long, insulated chiller lines have the same labels at each end.  This means that if you match up the labels at the chiller end, at the MOPA end you need switch labels: out goes to in and vice-versa.  This means that, indubitably, we have at some point had the flow going backwards through the MOPA, though I'm not sure if that would make much of a difference. 

Steve also installed a new needle valve in the NPRO cooling line, which works as expected as confirmed by the flow meter. 

We also re-discovered that the 40m procedures manual contains an error.  To turn on the chiller in the MOPA start-up process, you have to press ON, then RS-232, then ENTER.  The proc man says ON, RS-232, RUN/STOP.

The laser power is at 1.5W and climbing.

 Rob, Alberto

The chiller HT alarm started blinking, as the water temperature had reached 40 degrees C, and was still rising.  We turned off the MOPA and the chiller.  Maybe we need to open the needle valve a bit more?  Or maybe the flow needs to be reversed?  The labels on the MOPA are backwards?

  1627   Wed May 27 10:54:09 2009 robUpdatePSLwe don't understand the chiller (broken)

Quote:

Quote:

steve, rob, alberto

 

Steve installed two rotary flow meters into the MOPA chiller system--one at the chiller flow output and one in the NPRO cooling line.  After some hijinks, we discovered that the long, insulated chiller lines have the same labels at each end.  This means that if you match up the labels at the chiller end, at the MOPA end you need switch labels: out goes to in and vice-versa.  This means that, indubitably, we have at some point had the flow going backwards through the MOPA, though I'm not sure if that would make much of a difference. 

Steve also installed a new needle valve in the NPRO cooling line, which works as expected as confirmed by the flow meter. 

We also re-discovered that the 40m procedures manual contains an error.  To turn on the chiller in the MOPA start-up process, you have to press ON, then RS-232, then ENTER.  The proc man says ON, RS-232, RUN/STOP.

The laser power is at 1.5W and climbing.

 Rob, Alberto

The chiller HT alarm started blinking, as the water temperature had reached 40 degrees C, and was still rising.  We turned off the MOPA and the chiller.  Maybe we need to open the needle valve a bit more?  Or maybe the flow needs to be reversed?  The labels on the MOPA are backwards?

 The chiller appears to be broken.  We currently have it on, with both the SENSOR and RS-232 unplugged.  It's running, circulating water, and the COOL led is illuminated.  But the temperature is not going down.  The exhaust out the back is not particularly warm.  We think this means the refrigeration unit has broken, or the chiller computer is not communicating with the refrigerator/heat exchanger.  Regardless, we may need a new chiller and a new laser.

  1628   Wed May 27 15:59:44 2009 robUpdatePSLwe don't understand the chiller (broken)

steve, alberto, rob

After some futzing around with the chiller, we have come to the tentative conclusion that the refrigeration unit is not working.  Steve called facilities to try to get them to recharge the refrigerant (R-404a) tomorrow, and we're also calling around for a spare chiller somewhere in the project (without luck so far).

  1629   Thu May 28 14:34:25 2009 robUpdatePSLchiller diagnosis

Quote:

steve, alberto, rob

After some futzing around with the chiller, we have come to the tentative conclusion that the refrigeration unit is not working.  Steve called facilities to try to get them to recharge the refrigerant (R-404a) tomorrow, and we're also calling around for a spare chiller somewhere in the project (without luck so far).

 The repair man thinks it's a bad start capacitor, which is 240uF at 120V.  Steve has ordered a new one which should be here tomorrow, and with luck we'll have lasing by tomorrow afternoon.

  1630   Thu May 28 18:41:26 2009 steveUpdatePSLthe saga of the chiller is ending

I drained the water and removed side covers from the Neslab RTE 140 refrigerated water cooler unit this morning. The hoses to the laser were disconnected.

This abled you to see the little window of refregerant  R404A was free of bubles, meaning: no recharge was needed.

The circulator bath was refilled with 7 liters of Arrowhead distilled water and the unit was turned on.

The water temp was kept 20.00+- .05C without any load. Finally the AC-repair man Paul showed up.

He measured the R404A level to be as specified: 23-24 PSI on the suction side and 310 PSI on the discharge side.

The unit was working fine. Paul found an intermittently functioning starting capacitor on the compressor  that was removed.

The 240 micro Farad 120VAC cap will arrive tomorrow

  1631   Fri May 29 18:57:09 2009 steveUpdatePSLthe laser is back

Steve, Rob and Alberto

 

Starting capacitor 216 miroFarad was installed on the compressor. Water lines were connected to the MOPA as corrected, so the flow meter readings are logical.

Now IN means flowing water in the direction of black arrow on the hose.

We struggled with the Neslab presetting:  temp, bauds rate  and other  unknowns  till Rob found the M6000 manual on Peter king's website.

Alberto realized that the chiller temp had to be reset to 20C on water chiller.

I put 1mg of Chloramin T into the water to restrict the growth of algae in the bath.

The NPRO heat sink  was around ~20C without flow meter wheel rotation  and the PA body ~25C by touch of a finger

I just opened up the needle valve a litle bit so the flow meter wheel would started rotating slowly.

That small glitch at the end of this 3 hrs plot shows this adjustment.

  1633   Sat May 30 12:03:34 2009 robUpdatePSLMC locked

I locked to PSL loops, then tweaked the alignment of the MC to get it to lock. 

I first steering MC1 until all the McWFS quads were saturated.  This got the MC locking in a 01 mode.  So I steered MC1 a little more till it was 00.  Then I steered MC2 to increase the power a little bit.  After that, I just enabled the MC autolocker.

  1634   Sat May 30 12:36:52 2009 robUpdateComputersc1susvme2, c1iscex running late

c1susvme2 has been running just a bit late for about a week.  I rebooted it. 

The plot shows SRM_FE_SYNC, which is the number of times in the last second that c1susvme2 was late for the 16k cycle.   Similarly for ETMX.

 

  1635   Mon Jun 1 13:25:00 2009 robUpdateComputersc1susvme2, c1iscex running late

Quote:

c1susvme2 has been running just a bit late for about a week.  I rebooted it. 

The plot shows SRM_FE_SYNC, which is the number of times in the last second that c1susvme2 was late for the 16k cycle.   Similarly for ETMX.

 

 

The reboot appears to have worked.

  1636   Mon Jun 1 13:56:52 2009 AlbertoUpdatePSLLaser Power after fixing the laser chiller

The laser power seems to have become more stable after fixing the laser chiller. The power is lower than it used to be (MOPA amplitude 2.5 versus 2.7) but, as shown in the attchement, it became more steady.

  1639   Mon Jun 1 15:01:31 2009 ranaUpdatePSLLaser Power after fixing the laser chiller: more traces
If you look at the correlation between RMTEMP and HTEMP, you see what we knew: namely that there
was a 1:1 correlation before. After the chiller fix, I can see no correlation between the room and
amplifier temperature at the resolution of 10:1. So the chiller loop has a gain > 10 at 24 hour time
scales.

I don't understand why the PMC looks more stable.
  1640   Mon Jun 1 19:19:26 2009 ranaUpdatePSL1000 days of hour-trend
  1641   Tue Jun 2 02:28:58 2009 peteUpdateLockingDD handoff work

alberto, pete

 

We worked on tuning the DD handoff tonight.  We checked the DD PD alignments and they looked fine.  First I tuned the 3 demod phases to minimize offsets.  Then I noticed that the post-handoff MICH xfer function needed an increase in gain to look like the pre-handoff xfer function (which has a UGF of about 25 Hz).  I increased the MICH PD9_Q gain from 2 to 7 in the input matrix.   But, the handoff to PRC still failed, so tomorrow we will try to find out why.

In the plot, ref0 is before MICH handoff, and ref1 is after MICH handoff.  There is also a PRC trace (before PRC handooff).

 

 

  1644   Tue Jun 2 23:55:45 2009 AlbertoUpdateoplevsoplevs centerd

Tonight I centered the oplevs for ITMX/Y, SRM, PRM, BS.

After doing that I noticed that the BS drifted a little from where I had set it.

  1645   Wed Jun 3 03:22:16 2009 peteUpdateLockingDD handoff

Rana, Alberto, Pete

We have the DD handoff nominally working.  Sometimes, increasing the SRC gain at the end makes MICH get unstable.  This could be due to a non-diagonal term in the matrix, or possibly because the DRM locks in a funky mode sometimes. 

To get the DD handoff working, first we tuned demod phases in order to zero the offsets in the PD signals handed-off-to.  Based on transer function measurements, I set the PRC PD6_I element to 0.1, and set the PD8_I signal to 0, since it didn't seem to be contributing much.  We also commented out the MICH gain increase at the end of the DD_handoff script.

It could still be more stable, but it seems to work most of the time.

 

 

  1646   Wed Jun 3 03:30:52 2009 ranaUpdateMOPANPRO current adjust
I increased the NPRO's current to the max allowed via EPICS before the chiller shutdown. Yesterday, I did this
again just to see the effect. It is minimal.

If we trust the LMON as a proportional readout of the NPRO power, the current increase from 2.3 to 2.47 A gave us
a power boost from 525 to 585 mW (a factor of 1.11). The corresponding change in MOPA output is 2.4 to 2.5 W
( a factor of 1.04).

Therefore, I conclude that the amplifier's pump has degraded so much that it is partially saturating on the NPRO
side. So the intensity noise from NPRO should also be suppressed by a similar factor.

We should plan to replace this old MOPA with a 2 W Innolight NPRO and give the NPRO from this MOPA back to the
bridge labs. We can probably get Eric G to buy half of our new NPRO as a trade in credit.
  1647   Wed Jun 3 11:28:01 2009 carynUpdatePEMUnplugged Guralp channels
ELOG V3.1.3-