40m QIL Cryo_Lab CTN SUS_Lab TCS_Lab OMC_Lab CRIME_Lab FEA ENG_Labs OptContFac Mariner WBEEShop
  40m Log, Page 93 of 341  Not logged in ELOG logo
ID Date Authorup Type Category Subject
  2527   Tue Jan 19 03:04:14 2010 KojiUpdateElectronicstriple resonant circuit for EOM

Self-follow:

I got the answer of Q3 from the follow-up entry.

For Q4, once you get the impedance of the LC network lower than n^2*50, the EOM gain will be quite low. This means that the resonance is anyway narrow.
I did some simple calculation and it shows that the width of the resonance will be 100kHz~500kHz. So it maybe OK.

Quote:

The design looks very good. I have some questions.

1. As far as I remember, you've got the gain of slightly worse than 10 for a 55MHz single resonant case. Why your expectation of the gain (G=11) for the highest resonance better than this?

Supposing the loss exists only on the EOM, the other part of the LC network for the triple work as an inductor at the resonant frequency. This is just equivalent as the single resonant case. So the expected gain at 55MHz should coincides with what we already have. Probably, the resistance of 4 Ohm that is used here had too rough precision???

2. How can you adjust the resonances precisely?

Do we need any variable components for Cs and Ls, that may have worse quality than the fixed one, generally speaking.
I myself has no experience that I had to tune the commercial EOM because of a drift or whatever. I hope if you can adjust the resonance with a fixed component it should be fine.

3. Changing Cp. What does it mean?

Do you put additional cap for Cp?

4. The resonances for the lower two look very narrow. Is that fine?

This will show up in a better shape if we look at the transfer function for the gain. Is this right?

If we have BW>100kHz, it is sufficient.

5. Impedance matching for the lower two resonances.

Yep. You know this problem already. 

 

  2528   Tue Jan 19 03:20:28 2010 KojiUpdateElectronicsdesign complete --- triple resonant circuit for EOM ---

First I was confused, but now I think I understood.

My confusion:
If the k get bigger, L get smaller, C get bigger. This makes R(L) smaller and R(C) smaller. This sounds very nice. But why smaller k is preferable in the Kiwamu's result?

Explanation:
The resultant impedance of the network at a resonance is determined by Zres = L/(R C) or something like that. Here R = R(L)+R(C). (I hope this is right.)

Here larger Zres is preferable. So smaller R is nice.

But If the speed of reduction for R is slower than that of L/C (which is proportional to k^-2), increasing k does not help us to increase of Zres. And that's the case.

This means "if we can put the LC network in the box of EOM, we can do better job!" as we can reduce Cp.

Quote:

scaling.png


   Loss for Capacitor :  R(C) = 0.5 (C / 10pF)^{-0.3} Ohm

   Loss for Inductor :    R(L) = 0.1 ( L / 1uH) Ohm

  2535   Thu Jan 21 10:09:27 2010 KojiSummaryIOOPhotos of the optical tables

I made a wiki page dedicated for the photos of the optical tables.
The current layouts were uploaded.

http://lhocds.ligo-wa.caltech.edu:8000/40m/Optical_Tables

  2536   Thu Jan 21 10:31:13 2010 KojiUpdateABSLSome preliminary results from measuring PRC's transmissivity for an amplitude modulated beam

Nice and interesting plot.

I suppose slight decrease of the Schnupp asymmetry (in your model) adjusts the discrepancy in the high freq region.
At the same time, it will make the resonance narrower. So you need to put some loss at the recombination (=on the BS)?

...of course these depends on the flatness of the calibration.

  2559   Tue Feb 2 13:14:09 2010 KojiHowToIOOAnatomy of New Focus Resonant EOM

Joe let me use the resonant EOM for GigE phase camera for a while.
Then, I immediately started to open it :)

it uses the MiniCIrcuits T5-1T transformer and a TOKO RCL variable inductor.

The photos are on the Picasa 40m album.

http://lhocds.ligo-wa.caltech.edu:8000/40m/40m_Pictures

  2564   Wed Feb 3 01:17:19 2010 KojiUpdatePSLIFO isn't playing nice tonight

I checked the situation from my home and the problem was solved.

The main problem was undefined state of the autolocker and the strange undefined switch states, being associated with the bootfest and burtrestore.

- MC UP/DOWN status shows it was up and down. So I ran scripts/MC/mcup and scripts/MC/mcdown. These cleared the MC autolocker status.

- I had a problem handling the FSS. After mcup/mcdown above, I randomly pushed the "enable/disable" buttons and others, and with some reason, it recovered the handling. Actually it acquired the lock autonomously. Kiwamu may have also been working on it at the same time???

- Then, I checked the PSL loop. I disconnected the loop by pushing the "test" button. The DC slider changes the PZT voltage only 0~+24V. This is totally strange and I started pushing the buttons randomly. As soon as I pushed the  "BLANK"/"NORMAL" button, the PZT output got back under the control.

- Then I locked the PMC, MZ, and MC as usual.

Alberto: You must be careful as the modulations were restored.

Quote:

[Jenne, Kiwamu]

It's been an iffy last few hours here at the 40m.  Kiwamu, Koji and I were all sitting at our desks, and the computers / RFM network decided to crash.  We brought all of the computers back, but now the RefCav and PMC don't want to lock.  I'm a wee bit confused by this.  Both Kiwamu and I have given it a shot, and we can each get the ref cav to sit and flash, but we can't catch it.  Also, when I bring the PMC slider rail to rail, we see no change in the PMC refl camera.  Since c1psl had been finicky coming back the first time, I tried soft rebooting, and then keying the crate again, but the symptoms remained the same.  Also, I tried burt restoring to several different times in the last few days, to see if that helped.  It didn't.  I did notice that MC2 was unhappy, which was a result of the burtrestores setting the MCL filters as if the cavity were locked, so I manually ran mcdown.  Also, the MC autolocker script had died, so Kiwamu brought it back to life.

Since we've spent an hour on trying to relock the PSL cavities (the descriptive word I'm going to suggest for us is persistent, not losers), we're giving up in favor of waiting for expert advice in the morning.  I suppose there's something obvious that we're missing, but we haven't found it yet......

 

  2587   Wed Feb 10 23:15:37 2010 KojiUpdateElectronicstriple resonant EOM ---- preliminary result

Hey, this looks nice, but can you provide us the comparison of rad/V with the resonant EOM of New Focus?

Quote:

I have made a prototype circuit of the triple resonant EOM.

The attached is the measured optical response of the system.

The measured gains at the resonances are 8.6, 0.6 and 7.7 for 11MHz, 29.5MHz and 55MHz respectively.

I successfully got nice peaks at 11MHz and 55MHz. In addition resultant optical response is well matched with the predicted curve from the measured impedance.

However there is a difference from calculated response (see past entry) (i.e. more gains were expected)

Especially for the resonance of 29.5MHz, it was calculated to have gain of 10, however it's now 0.6. Therefore there must a big loss electrically around 29.5MHz.

I am going to re-analyze the impedance and model the performance in order to see what is going on.

 

  2588   Wed Feb 10 23:44:56 2010 KojiSummaryCOCPhase Map Analysis

In the middle of the last month, Kiwamu and I went to Garilynn's lab to measure the phase maps of the new ITMs and SRMs.

Analysis of the phase map data were posted on the svn directory:
https://nodus.ligo.caltech.edu:30889/svn/trunk/docs/upgrade08/cocdocs/PhaseMaps/

The screen shots and the plots were summarized in a PDF file. You can find it here:
http://lhocds.ligo-wa.caltech.edu:8000/40m/Upgrade_09/Main_Optics_Phase_Maps

The RoCs for all of the PRMs are turned out to be ~155m. This is out of the spec (142m+/-5m) although the actual effect is not understand well yet..

These RoCs are almost independent from the radus of the assumed gaussian beam.
In deed, I have checked the dependence of the RoC on the beam spot position, and it turned out that the RoCs vary only little.
(In the SRMU01 case, for example, it varies from 153.5m to 154.9m.)
The beam radius of 3mm was assumed. The RoCs were calculated 20x20mm region around the center of the mirror with a 2mm mesh.
 

  2602   Sat Feb 13 13:21:53 2010 KojiUpdateElectronicstriple resonant EOM --- liniaryity test

Looks good. I just thought of the idea that we also can use Alberto's PLL setup to sense the modulation with more sensitivity.  ;-)

Quote:

I have measured the linearity of our triple resonant EOM (i.e. modulation depth versus applied voltage)

The attached figure is the measured modulation depth as a function of the applied voltage.

The linear behavior is shown below 4Vrms, this is good.

Then it is  slowly saturated as the applied voltage goes up above 4Vrms.

However for the resonance of 29.5MHz, it is difficult to measure below 7Vrms because of the small modulation depth.

Our triple resonant EOM looks healthy

 - - - - result from fitting - - -

11MHz: 910mrad/Vrms+20mrad

29.5MHz: 46mrad/Vrms+6.2mrad

55MHz:820mrad/Vrms+10mrad

 

  2611   Wed Feb 17 19:36:05 2010 KojiUpdateCOCArm visibility

I have measured the arm visibilities.
I did not see any change since the last wiping. Our vacuum is not contaminating the cavity in the time scale of 2 months.

It is very good.


Arm visibility measurement ~ latest (Feb. 17, 2010)

X Arm: 0.898 +/- 0.003
Y Arm: 0.892 +/- 0.006

Arm visibility measurement after the vent (Dec. 14, 2009)

X Arm: 0.897 +/- 0.005
Y Arm: 0.893 +/- 0.004

Arm visibility measurement before the vent (Nov 10, 2009)

X Arm: 0.875 +/- 0.005
Y Arm:
0.869 +/- 0.006

  2615   Fri Feb 19 02:38:32 2010 KojiConfigurationoplevsIntsant green oplevs for ITMs shooting from the ends

I set up instant green oplevs for ITMs.

A green laser pointer has been set on each end table. It illuminates the ITM center. The beam goea through the ETM substrate.
The reflected green beam returns to the ETM if the ITMs are aligned. Even though the reflected beam to the end is too big, this can
be a rough reference for each ITM.

Note: The green laser pointer at the ETMX were borrowed from Frank. We must return it to him when we finish the work.

  2617   Fri Feb 19 13:28:44 2010 KojiUpdateGeneralPrep for Power Supply Stop

- ETMX/ETMY oplev paths renewed. The nominal gain for ETMY YAW was reversed as a steering mirror has been put.
- Oplevs/QPDs cenrtered except for the MCT QPD.
- SUS snapshots updated
- QPD/Aligment screenshots taken

40m Wiki: Preparation for power supply stop

  2625   Mon Feb 22 11:42:48 2010 KojiUpdateGeneralPrep for Power Supply Stop

Turned on the power supply for the oplev lasers.
Turned on the power of the aux NPRO.
Turned on some of the Sorensen at 1X1.
Fixed the thermal output to round -4.0.
Locked PMC / MZ.

Waiting for the computers recovering.

  2630   Tue Feb 23 06:47:57 2010 KojiUpdateGeneralIFO situations / low power MC lock

Work on 22nd Monday:

[MC recovery]

- Tried to lock MC after the computer recovery by Joe.
- A lot of higher modes. I can touch the input periscope or the MC mirrors.
- First tried to align the MC mirrors. MC1 was aligned against the MC REFL PD. MC2/3 was aligned to maximize the transmitted power.
- After the alignment, I got the MC Trans Sum ~8V. Also I saw the flashing of the arm cavities. I decided to take this alignment although the beam looks little bit clipped by the faraday.

[IFO alignment recovery]

- Aligned the arms for TEM00 manually.
- Arm alignment script seems not working now. This could come from the move of the end QPDs
- PRMI/DRMI were aligned. All alignment values saved.

[Low power MC]

[Optical config]

- I fixed the MCT CCD camera. It is quite useful to align the MC.

- Inserted HWP+Cube PBS+HWP combo in the MC incident path.
- First HWP and PBS adjust the light power. The second HWP is fixed at 342deg such that it restores the poralization to S.
- The incident power was measured by the SCIENTECH power meter. Offset of 3mW was subtracted in the table below.

HWP1 angle P_MC_incident comment
126deg 1.03W Max
100 0.39  
90 0.098 Low power max
85 0.021 Low power nominal

- HWP1 85deg is the nominal.

- I needed to touch the steering mirror (indicated by the picture) to obtain TEM00.
  The alignment of the HWPs and the cube PBS didn't change the mode. Thermal lense of the cube?

- I could not lock the MC with the incident power below 100mW. So the BS in the MC REFL path was replaced by a total reflector (Y1-45S).
- This increased the power on the MC REFL PD x10 of the previous. NOW WE ARE CONSTRAINED BETWEEN 81deg~90deg. DON'T ROTATE FURTHER!
- The original BS was stored on the AP table as shown in the picture.
- This total reflector disabled the MC WFS QPDs. We can't use them.

[Lock of the MC with 20mW incident]
- Disable the MC autolocker.
- Disable the MC WFS.
- Run
  /cvs/cds/caltech/scripts/MC/mcloopson
- Turn on the MCL servo.
- Set the MCL gain to 1.5 (it was nominally 0.3 for the high power)
- Just wait until lock.

[Gain boost after the lock] ...If you like to have more gain
- There was almost no room to increase the MCL gain.
- MC_REFL_GAIN can be increased from +6dB to +20dB
  ezcawrite "C1:IOO-MC_REFL_GAIN" 20
- MC_VCO_GAIN can be increased from -3dB to +2dB
  ezcawrite "C1:IOO-MC_VCO_GAIN" 2
- Crank the FSS gains
  ezcawrite C1:PSL-FSS_MGAIN `ezcaread -n C1:PSL-STAT_FSS_NOM_C_GAIN`
  ezcawrite C1:PSL-FSS_FASTGAIN `ezcaread -n C1:PSL-STAT_FSS_NOM_F_GAIN`

[If lock is lost]
- Run
  /cvs/cds/caltech/scripts/MC/mcdown

  2637   Wed Feb 24 12:08:31 2010 KojiUpdateComputersRFM goes red -> recovered by the nuclear option

Most of the RFM went red this morning. I took the nuclear option and it seemed to be recovered.

  2639   Thu Feb 25 11:21:06 2010 KojiUpdateGeneralTanks opened

[Steve, Bob, Joe, Zach, Alberto, Kiwamu, Koji]

We opened the OMC-IMC access connector, ITMX North door, and ITMY West door.
We worked from 9:30-11:00.
The work was quite smooth thanks to the nice preparation of Steve as usual.

Thank the team for the great work!

 

  2641   Thu Feb 25 19:59:50 2010 KojiConfigurationSUSITMX OSEMs

Koji, Steve

ITMX OSEM CONFIGURATION

 

  2643   Fri Feb 26 11:48:36 2010 KojiUpdateGeneralMC incident beam shift

Last night I worked on the MC incident beam such that we can hit the center of the MC mirrors.

Steve and I checked the incident beam on MC1. We found the beam is ~5mm south.
This was not too critical but it is better to be realigned. I moved the steering mirror on the OMC
table (in vac). We kept the MC resonated. After the maximization of the resonance, I realigned the
MC1 and MC3 such that the resonance in dominated by TEM00.

Jenne, Kiwamu, and I then closed the light door on to the OMC/IMC.

I will make more detailed entry with photos in order to explain what and how I did.

  2651   Tue Mar 2 23:11:43 2010 KojiUpdateSUSITMX hung

Jenne and Koji

We successfully hung ITMX on the SOS. Side magnet is ~2mm off from the center of the OSEM. ITMX aligned using the QPD. The OSEMs changes the alignment. It looks that something magnetic is inside the OSEM PD or LED.

Reguled ITMY side magnet.

Cleaned up the lab for the safety inspection.

  2664   Tue Mar 9 09:32:31 2010 KojiSummaryGeneralWideband measurement of Fast PZT response

I have measured a wideband response of the fast PZT in the LWE NPRO 700mW in the Alberto's setup.
This is a basic measurement to determine how much phase modulation we can obtain by actuating the fast PZT,
primarily for the green locking experiment.

RESULT

  • Above 200kHz, there are many resonances that screws up the phase.
     
  • Modulation of 0.1rad can be easily obtained even at 10MHz if the modulation frequency is scanned.
     
  • Change of the laser frequency in DC was observed depending on the modulation frequency.
    i.e. At the resonance the laser frequency escaped from the RF spectrum analyzer.
    This may induced by the heat dissipation in the PZT causing the temperature change of the crystal.
     
  • Some concerns: Is there any undesired AM by the PZT modulation?

---

METHOD

1. Locked the PLL of for the PSL-NPRO beating at 20MHz.

2. Added the modulation signal to the NPRO PZT input.
I used the output of the network analyzer sweeping from 100kHz to 1MHz.

3. Measured the transfer function from the modulation input to the PLL error signal.
The PLL error is sensitive to the phase fluctuation of the laser. Found that the first resonance is at 200kHz.
The TF is not valid below 3kHz where the PLL suppresses the modulation.

4. Single frequency modulation: Disconnected the PLL setup.
Plug Marconi into the fast PZT input and modulate it at various frequencies.
Observing with the RF spectrum analyzer, I could see strong modulation below 1MHz.
It turned out later that the TF measurement missed the narrow peaks of the resonances due to the poor freq resolution.

Also the modulation depth varies frequency by frequency because of the resonances.
Scanned the frequency to have local maximum of the modulation depth. Adjusted the
modulation amplitude such that the carrier is suppressed
(J0(m)=0 i.e. m~2.4). As I could not obtain
the carrier suppression at above 1MHz, the height of the carrier and the sidebands were measured.

The modulation frequency was swept from 100kHz to 10MHz.

5. Calibration. The TF measured has been calibrated using the modulation depth obtained at 100Hz,
where the resonance does not affect the response yet.

The responce of the PZT was ~10MHz/V below 30kHz. Looks not so strange although this valure is
little bit high from the spec (2MHz/V), and still higher than my previous experience at TAMA (5MHz/V).
Note that this calibration does not effect to the modulation depth of the single freq measurement as they are independent.

  2668   Thu Mar 11 17:51:04 2010 KojiUpdateSUSRecent status of SOSs

Jenne, Koji

Recent status of SOSs:

We completed one of the suspension (ITMY).

ITMX: 6 Magnets, standoffs, and guide rod glued / balance to be confirmed / needs to be baked
ITMY: 6 Magnets, standoffs, and guide rod glued / balance confirmed / needs to be baked
SRM: 6 Magnets, one standoff, and guide rod glued,  / waiting for the release from the gluing fixture.
PRM: one standoff, and guide rod glued / waiting for the magnet gluing. 

We think we solved all the problems for hanging the suspensions.

--- Magnet gluing fixture ---

  • There is the two kinds of fixtures. Neither does work propery in the original form!
  • The height of the side magnets should be finely adjusted by changing the teflon sheets beneath the optics in the fixture.
  • Be aware of the polarity of the fixture in terms of the side magnets
  • Wrongly glued magnets (and others) can be removed by a razor blade with some amount of acetone.
  • The pickle picker frequently knocks the magnets down during the release. Don't s be down in the dumps too much.

--- Suspending the mirror ---

  • The wire winches must be carefully attached to the suspension tower such that the wires are not streached during fastening the clamps.
  • There are a couple variations of the drawings for SOS. The one we have has #4-40 for the earthquake stops at the bottom.
    Zach and Mott made the EQ stops with the right size.
  2679   Thu Mar 18 10:46:51 2010 KojiUpdateABSLPLL reconstructed

Last night (Mar 17) I checked the PLL setup as Mott have had some difficulty to get a clean lock of the PLL setting.

  • I firstly found that the NPRO beam is not going through the Faraday isolator well. This was fixed by aligning the steering mirrors before the Faraday.
     
  • The signal from the RF PD was send to the RF spectrum analyzer through a power splitter. This is a waist of the signal. It was replaced to a directional coupler.
     
  • Tee-ing the PZT feedback to the oscilloscope was producing the noise in the laser frequency. I put the oscilloscope to the 600Ohm output of the SR560, while connectiong the PZT output to the 50Ohm output.
     
  • In addition, 6dB+6dB attenuators have been added to the PZT feedback signal.

Now the beating signal is much cleaner and behave straight forward. I will add some numbers such as the PD DC output, RF levels, SR560 settings...

Now I am feeling that we definitely need the development of really clean PLL system as we use PLL everywhere! (i.e. wideband PD, nice electronics, summing amplifiers, stop poking SR560, customize/specialize PDH box, ...etc)

  2681   Thu Mar 18 13:40:35 2010 KojiUpdateABSLPLL reconstructed

We use the current PLL just now, but the renewal of the components are not immediate as it will take some time. Even so we need steady steps towards the better PLL. I appreciate your taking care of it.

Quote:

Quote:

Last night (Mar 17) I checked the PLL setup as Mott had some difficulty to get a clean lock of the PLL setting.

  • I firstly found that the NPRO beam is not going through the Faraday isolator well. This was fixed by aligning the steering mirrors before the Faraday.
     
  • The signal from the RF PD was send to the RF spectrum analyzer through a power splitter. This is a waist of the signal. It was replaced to a directional coupler.
  • Tee-ing the PZT feedback to the oscilloscope was producing the noise in the laser frequency. I put the oscilloscope to the 600Ohm output of the SR560, while connectiong the PZT output to the 50Ohm output.
  • In addition, 6dB+6dB attenuators have been added to the PZT feedback signal.

Now the beating signal is much cleaner and behave straight forward. I will add some numbers such as the PD DC output, RF levels, SR560 settings...

Now I am feeling that we definitely need the development of really clean PLL system as we use PLL everywhere! (i.e. wideband PD, nice electronics, summing amplifiers, stop poking SR560, customize/specialize PDH box, ...etc)

I also had noticed the progressive change of the aux NPRO alignment to the Farady.

I strongly agree about the need of a good and robust PLL.

By modifying the old PDH box (version 2008) eventually I was able to get a PLL robust enough for my purposes. At some point that wasn't good enough for me either.

I then decided to redisign it from scratch. I'm going to work on it. Also because of my other commitments, I'd need a few days/1 week for that. But I'd still like to take care of it. Is it more urgent than that?

 

  2683   Thu Mar 18 19:00:04 2010 KojiSummaryElectronicsadvantege of our triple resonant EOM

Did you find what is the merit of their impedance matching technique?

Quote:

In this LVC meeting I discussed about triple resonant EOMs with Volker who was a main person of development of triple resonant EOMs at University of Florida.

Actually his EOM had been already installed at the sites. But the technique to make a triple resonance is different from ours.

They applied three electrodes onto a crystal instead of one as our EOM, and put three different frequencies on each electrode.

For our EOM, we put three frequencies on one electrode. You can see the difference in the attached figure. The left figure represents our EOM and the right is Volker's.

Then the question is; which can achieve better modulation efficiency ?

Volker and I talked about it and maybe found an answer,

 We believe our EOM can be potentially better because we use full length of the EO crystal.

This is based on the fact that the modulation depth is proportional to the length where a voltage is applied onto.

The people in University of Florida just used one of three separated parts of the crystal for each frequency.

 

  2684   Thu Mar 18 21:42:26 2010 KojiUpdateABSLPLL reconstructed

I checked the setup further more.

  • I replaced the PD from NewFocus 1GHz one to Thorlabs PDA255.
  • I macthed the power level of the each beam.

Now I have significant fraction of beating (30%) and have huge amplitude (~9dBm).
The PLL can be much more stable now.

Koji

  2691   Sun Mar 21 21:02:39 2010 KojiUpdatePSLEOM waist size
You don't need a lengthy code for this. It is obvious that the spot size at the distance L is minimum when L =
zR, where zR is the Rayleigh range. That's all.

Then compare the spot size and the aperture size whether it is enough or not.

It is not your case, but if the damage is the matter, just escape to the large zR side. If that is not possible
because of the aperture size, your EOM is not adequate for your purpose.
  2693   Mon Mar 22 10:07:30 2010 KojiSummaryElectronicsUPDH Box #17: Ready

For your reference: Voltage noise of LM7815/LM7915 (with no load)

  2698   Tue Mar 23 00:31:51 2010 KojiUpdateIOOMC realigned

This is the first touch to the MC mirrors after the earthquake on 16th.

  • I made an aluminum access connector so that we can work on the MC even the door is open. We still can be able to open the aluminum tube. The photos are attached. Steve, could you please look it at a glance whether the seal is enough or not.
  • MC resonances were flashing. Align MC2 and MC3 so that we have many TEM00s.
  • Found c1vmesus2 gone mad. Restarted remotely according to the wiki entry. 
  • Reset the MC coil output matrix to 1. (Previously, balance was adjusted so that A2L was minimized.)
  • Excite MC2 Pitch/Yaw at 8 and 9 Hz, looking at the peaks in the MC-MCL output. Move MC2 Pitch/Yaw so that the peak
    is reduced. (*)
  • MC1/MC3 were aligned so that we get the maximum transmission (or minimum reflection). (**)
  • Repeat (*) and (**)

So far, I have aligned in Yaw such that the yaw peak is minimized.

  2700   Tue Mar 23 09:55:20 2010 KojiUpdateIOOvac envelope has to be sealed as antproof for overnight

Roger.

Quote:

 This seal is good for daily use- operation only. The IFO has to be sealed  with light metal doors every night so ants and other bugs can not find their way in.

 

  2705   Wed Mar 24 02:06:24 2010 KojiUpdateIOOvac envelope has to be sealed as antproof for overnight

Matt and Koji:

We closed the light doors of the chambers.

Quote:

Roger.

Quote:

 This seal is good for daily use- operation only. The IFO has to be sealed  with light metal doors every night so ants and other bugs can not find their way in.

 

 

  2717   Sat Mar 27 16:23:10 2010 KojiUpdateSUSanother SRM sidemagnet glued

Kiwamu and Koji

Last night we have released PRM from the gluing fixture. All of the six magnets are successfully released from the fixture.

We put SRM on the fixuture and glued a side magnet which we had failed at the last gluing.

We let it cure in the Al house. This should be the last magnet gluing until ETMs are delivered.

[Current status]

ITMX (ITMU03): all of magnets/guiderod/standoffs glued, mirror baked; balance to be confirmed
ITMY (ITMU04): all of magnets/guiderod/standoffs glued, balance confirmed, mirror baked
SRM  (SRMU03): magnets/guiderod/standoff glued; a side magnet gluing in process, balance to be confirmed, last stand off to be glued, mirror to be baked
PRM  (SRMU04): magnets/guiderod/standoff glued; balance to be confirmed, last stand off to be glued, mirror to be baked

TT:            magnets/guiderod/standoff glued; balance to be confirmed, last stand off to be glued, mirror to be baked

  2726   Mon Mar 29 02:07:50 2010 KojiSummaryPSLFSS Work from Sunday: Open Loop Gain

Quote:

I measured the open loop gain of the FSS (as usual, I have multiplied the whole OLG by 10dB to account for the forward loop gain in the box). I used a source level of -20 dBm and made sure this was not saturating by changing the level.

Its clear that the BW is limited by the resonance at ~1.7 MHz. Does anyone know what that is?

 EO resonance in the RC path?

  2730   Mon Mar 29 18:41:34 2010 KojiConfigurationSUSStarted to build TTs

Steve and Koji

WE started to build 5 TTs. 4 of them are used in the recycling cavities. One is the spare.

We built the structure and are building the cantilever springs.

  2731   Mon Mar 29 18:50:14 2010 KojiUpdateSUSPRM sidemagnet glued

PRM was released from the fixuture without any trouble. This was the last magnet gluing until ETMs are delivered.

The below is the up-to-date Jenne stat table.

The clean room is getting too narrow. I am thinking that we should install ITMs to the chamber so that we can accommodate SRM/PRM suspensions.

  2736   Tue Mar 30 22:13:49 2010 KojiSummaryGreen Lockingconversion efficiency of PPKTP

Question:

Why does the small spot size for the case (A) have small efficiency as the others? I thought the efficiency goes diverged to infinity as the radius of the cylinder gets smaller.

Quote:

With a 30mm PPKTP crystal the conversion efficiency from 1064nm to 532nm is expected to 3.7 %/W.

Therefore we will have a green beam of more than 2mW by putting 700mW NPRO.

Last a couple of weeks I performed a numerical simulation for calculating the conversion efficiency of PPKTP crystal which we will have.

Here I try to mention about just the result. The detail will be followed later as another entry.


The attached figure is a result of the calculation.

The horizontal axis is the waist of an input Gaussian beam, and the vertical axis is the conversion efficiency.

You can see three curves in the figure, this is because I want to double check my calculation by comparing  analytical solutions.

The curve named (A) is one of the simplest solution, which assumes that the incident beam is a cylindrical plane wave.

The other curve (B) is also analytic solution, but it assumes different condition; the power profile of incident beam is a Gaussian beam but propagates as a plane wave.

The last curve (C) is the result of my numerical simulation. In this calculation a focused Gaussian beam is injected into the crystal.

The numerical result seems to be reasonable because the shape and the number doesn't much differ from those analytical solutions.

 

  2747   Thu Apr 1 07:17:15 2010 KojiUpdateGeneralPZT response for the innolight

The shape of the TF looks nice but the calibration must be wrong.

Suppose 1/f slope with 10^-4 rad/V at 100kHz. i.e. m_pm = 10/f rad/V
This means m_fm = 10 Hz/V. This is 10^6 times smaller than that of LWE NPRO.

(Edit: Corrected some numbers but it is not significant)

Quote:

Kiwamu and I measure the PZT response of the Innolight this evening from 24 kHz to 2MHz.  

We locked the PLL at ~50 MHz offset using the Lightwave NPRO and and swept the Innolight with the network analyzer (using the script I made; it has one peculiar property, but it does work correctly).  

We will post the plot of the Lightwave PZT response tomorrow morning.

 

  2749   Thu Apr 1 10:47:48 2010 KojiUpdateGeneralPZT response for the innolight

Innolight: 100rad/V @ 100kHz  => 1e7/f rad/V => 10MHz/V

LWE: 500rad/V @ 100kHz =>  5e7/f rad/V => 50MHz/V

They sound little bit too big, aren't they?

  2753   Thu Apr 1 17:35:24 2010 KojiUpdateSUSWorking on ITMX/Y

Steve and Koji

- We removed old ITMX/Y from the chambers. Now they are temporarily placed on the flow table at the end. Steve is looking for nice storages for the 5inch optics.

- We wiped new ITMX/Y by isopropanol as they were dusty.

- We put them into the corresponding towers. Checked the balancing and magnet arrangements with the OSEMs. They were totally fine.

- We clamped the mirrors by the EQ stops. Wrapped the towers by Al foils.

Tomorrow we will put them into the chambers.

 

  2755   Thu Apr 1 18:44:40 2010 KojiUpdateGeneralPZT response for the innolight

Innolight 10 rad/V @ 100kHz => 1e6/f rad/V => 1MHz/V

LWE 30 rad/V @ 100kHz => 3e6/f rad/V => 3MHz/V

---------

BTW, don't let me calculate the actuator response everytime.

The elog (=report) should be somewhat composed by the following sections

Motivation - Method - Result (raw results) - Discussion (of the results)

Quote:

  We realized that we had measured the wrong calibration value; we were using the free-running error signal with the marconi far from the beat frequency, which was very small.  When we put the Marconi right at the beat, the signal increased by a factor of ~12 (turning our original calibration of 10 mV/rad into 120 mV/rad).  The re-calibrated plots are attached. 

 

  2766   Mon Apr 5 09:48:57 2010 KojiUpdateSUSITMs placed on the tables in the chambers

Steve and Koji (Friday, Apr 02)

Summary

Intsallation of ITMs are going on. Two new ITMs were placed on the optical table in the vacuum chambers. ITM for the south arm was put at the right place in accordance to the CAD drawing. ITM for the east arm is still at a temporaly place.


Tower placement (10:30-11:30)

- Put the tower on the table at a temporary place such that we can easily work on the OSEMs.

ITM (South arm) (14:00-16:30)

- Put the tower on the table at a temporary place such that we can easily work on the OSEMs.

- Leveled the table approximately.

- Released the EQ stops

- Removed anchors for the OSEM cables as it was too short. The wire distribution will be changed later.

- Put the OSEMs. Adjust the insertion to the middle of the OSEM ranges.

- Clamped the EQ stops again

- Placed the tower to the right place according to the CAD drawing.

- Released the EQ stops again.

- Check the OSEM values. The LL sensor showed small value (~0.5). Needs to be adjusted.

 


ITM (South) damping adjustment

- Found the signs for the facing magnets are reversed.

- Otherwise it damps very well.

 

  2771   Mon Apr 5 13:20:16 2010 KojiOmnistructureElectronicssoldering iron broken

Albeto and Koji

We took the tip replacement from the blue tower.

I am looking at http://www.cooperhandtools.com/brands/weller/ for ordering the tips.

The burnt one seems to be "0054460699: RT6 Round Sloped Tip Cartridge for WMRP Pencil" We will buy one.

The replaced one is "0054460299: RT2 Fine Point Cartridge for WMRP Pencil" We will buy two.

I like to try this: "0054460999: RT9 Chisel Tip Cartridge for WMRP Pencil" We will buy one.

Quote:

This morning the pencil soldering iron of our Weller WD2000M Soldering Station suddenly stopped working and got cold after I turned the station on. The unit's display is showing a message that says "TIP". i checked out the manual, but it doesn't say anything about that. I don't know what it means. Perhaps burned tip?

Before asking Steve to buy a new one, I emailed Weller about the problem.

 

  2777   Tue Apr 6 22:54:34 2010 KojiUpdateSUSITMY (south) aligned

Kiwamu and Koji

ITMY (south) was aligned with regard to the 40m-long oplev with the green laser pointer. Now the cavity is waiting for the green light injected from the end table

The OSEMs were adjusted with the aligned optics, but still a bit off from the center. They need to be adjusted again.
One round-shaped counter-weight removed from the table. Some counter weights are moved.

Some tools and the level gauge were removed from the table.

BAD news: I could clearly see scatter of the green beam path because of the dusts in the arm tube. Also many dusts are seen on the ITM surface.

 

Picture of the ETM - reflection from the ITM is hitting the mirror and the suspension structures.

IMG_2362.jpg

 


1. Shoot the ITM center with the green beam.

- Two persons with walkie-talkies required for this work.

- Turn on the end green pointer. We could see the long trace of the beam sliced by the beam tube wall.

- Look at the tube peeping mirror for the CCD.

- Adjust yaw such that the beam trace on the tube wall is parallel to the arm.

- Adjust pitch such that the beam trace on the tube gets longer. This means that spot gets closer to the ITM.

- Continue pitch adjustment until some scatter appears on the ITM tower.

- Once the spot appears on the tower, you can easily adjust it on the mirror

2. Adjust pitch/yaw bias such that the reflection hits the ETM.

- Initially the ITM alignment is totally bad. ==> You clealy see the spot on the wall somewhere close to the ITM.

- Adjust pitch/yaw bias such that the spot goes farther as far as possible.

- Once you hit the suspension tower, the scatter is obviously seen from the peeping mirror.

- You can match the incident beam and the scattering of the reflection. You also can see the reflection from the ETM towards the ITM as the spot size gets huge (1/2 tube diameter).

- We found that the bias is ~-2 for pitch and ~-6 for yaw.

3. Go into the chamber. Check the table leveling.

- Open the light door.

- I found that the table is not leveled. Probably it drifted after the move of the weight (i.e. MOS removal).

- Removed one of the round-shaped weight. Moved the other weights such that the table was leveled.

4. Remove the bias for yaw and rotate suspension tower such that the reflection hit the center of the ETM.

- Removed the yaw bias. This makes the reflected spot totally off from the ETM.

- Rotate suspension tower so that the beam can approximately hit the ETM.

- Look at the peeping mirror, the beam is aligned to the ETM.

5. Adjust OSEMs

- Push/pull the OSEMs such that we have the OSEM outputs at the half of the full scale.

6. Adjust alignment by the bias again.

- Moving OSEMs changes the alignment. The pitch/yaw biases were adjusted to have the beam hitting on the ETM.

- Bias values at  the end of the work: Pitch -0.8159 / Yaw -1.2600

7. Close up the chamber

- Remove the tools and the level gauge.

- Close the light door.

  2780   Wed Apr 7 10:58:15 2010 KojiUpdateElectronicsREFL11 Noise Simulation

What??? I don't see any gray trace of Rs in the plot. What are you talking about?

Anyway, if you are true, the circuit is bad as the noise should only be dominated by the thermal noise of the resonant circuit.

Quote:
LISO simulations confirm the estimate of ~15nV for the noise of REFL11.
The largest contribution comes from the output resistor (Rs in the schematic below).
See attached plot.

 

  2784   Thu Apr 8 20:53:13 2010 KojiUpdate40m UpgradingREFL11 Noise Vs Photocurrent

Something must be wrong. 

1. Physical Unit is wrong for the second term of "Vn = Vdn + Sqrt(2 e Idc)"

2. Why does the fit go below the dark noise?

3. "Dark noise 4 +/- NaN nV/rtHz"   I can not accept this fitting.

Also apparently the data points are not enough.

Quote:

From the measurements of the 11 MHz RFPD at 11Mhz I estimated a transimpedance of about 750 Ohms. (See attached plot.)

The fit shown in the plot is: Vn = Vdn + sqrt(2*e*Idc) ; Vn=noise; Vdn=darknoise; e=electron charge; Idc=dc photocurrent

The estimate from the fit is 3-4 times off from my analsys of the circuit and from any LISO simulation. Likely at RF the contributions of the parassitic components of each element make a big difference. I'm going to improve the LISO model to account for that.

2010_04_05_REFL11_ShotnoiseVsPhotocurrent.png

The problem of the factor of 2 in the data turned out to be not a real one. Assuming that the dark noise at resonance is just Johnson's noise from the resonant circuit transimpedance underestimates the dark noise by 100%.

 

  2787   Sun Apr 11 19:05:34 2010 KojiOmnistructureComputersWhere are the laptops?

One dell is in the clean room for the suspension work.

Quote:

I can't find the DELL laptop anywhere in the lab. Does anyone know where it is?

Also one of the two netbooks is missing.

 

  2795   Mon Apr 12 22:44:30 2010 KojiUpdate40m UpgradingREFL11 Noise Vs Photocurrent

Data looks perfect ... but the fitting was wrong.

Vn = Vdn + Z * sqrt( 2 e Idc ) ==> WRONG!!!

Dark noise and shot noise are not correlated. You need to take a quadratic sum!!!

Vn^2 = Vdn^2 + Z^2 *(2 e Idc)

And I was confused whether you need 2 in the sqrt, or not. Can you explain it?
Note that you are looking at the raw RF output of the PD and not using the demodulated output... 

Also you should be able to fit Vdn. You should put your dark noise measurement at 10nA or 100nA and then make the fitting.

Quote:

 Here's another measurement of the noise of the REFL11 PD.

This time I made the fit constraining the Dark Noise. I realized that it didn't make much sense leaving it as a free coefficient: the dark noise is what it is.

2010-04-09_REFL11NoiseMeasurements.png

Result: the transimpedance of REFL11at 11 MHz is about 4000 Ohm.

Note:
This time, more properly, I refer to the transimpedance as the ratio between Vout @11Mhz / Photocurrent. In past entries I improperly called transimpedance the impedance of the circuit which resonates with the photodiode.

 

  2796   Mon Apr 12 22:51:31 2010 KojiUpdateSUSITMX installed and aligned

Koji

ITMX was aligned with regard to the 40m green oplev.
Now both cavities are aligned.

Next thing we are going to do is to remove PRM and SRM towers.

As well as the oplev construction for ITMs.

We anticipate the drift of the stack. So we need to revisit the alignment again.

Some tools and the level gauge were removed from the table.

Picture of the ETMX - reflection from the ITMX is hitting the mirror and Jamie's windmill.

 IMG_2381.jpg

 


0. The suspension tower had been placed on the table close to the door.

1. Brought the OSEMs from the clean room. Connected the satellite box to the ITMX suspension.

2. Went into the chamber. Leveled the table.

3. Released the mirror from the clamp. Put and adjust the OSEMs.

- Note that the side OSEM is located to the south side of the tower
  so that we can still touch it after the placement of the TT suspension at the north side of the SOS tower.

4. Clamped the mirror. Moved the SOS tower according to the CAD layout.

5. Leveled the table again.

6. Released the mirror again and adjusted the OSEMs.

7. Turned on the end green laser pointer.

- The spot was slightly upside and left of the mirror. Adjusted it so that the spot is at the center.

8. Align ITMX in Pitch

- The spot was hitting the tube. Moved the pitch bias such that the beam get horizontal.

9. Align ITMX in Yaw

- Moved the SOS tower such that the approximate spot is on the ETMX. If I hit the right spot I could see the tube get grown green because of the huge scatter.

10. Adjusted the OSEMs again and check the alignment again. Repeated this process 2~3 times.

- Bias values at  the end of the work: Pitch 0.7800 / Yaw 0.270

11. Close up the chamber

- Remove the level gauge. Some of the screws are still in the Al ship in the chamber.

- Close the light door.

  2800   Tue Apr 13 20:02:02 2010 KojiUpdateSUSBS chamber opened, PRM/SRM SOS removed from the table

Bob, Steve, and Koji

We opened North heavy door of the BS chamber in the afternoon.

In the evening, Koji worked on the PRM/SRM removal.

- Cleaned up the OPLEV mirrors to create some spaces near the door.

- Clamped PRM/SRM.

- Removed OSEMs. Made a record of the OSEMs. The record is on the wiki (http://lhocds.ligo-wa.caltech.edu:8000/40m/Upgrade_09/Suspensions)

- Found the SOSs are quite easy to remove from the table as they are shorter than the MOSs.

- Put a new Al sheet on a wagon. Put the SOSs on it. Wrapped them by the Al foils.

- Carried it to the clean room. They are on the right flow bench. Confirmed the wires are still fine.

- Closed up the chamber putting a light door.

  2803   Fri Apr 16 17:46:54 2010 KojiUpdateVACPeeting mirrors aligned

Steve and Koji

We aligned the peeping mirrors to look at the surface of the ITMs.
They had been misligned as we move the positions of the ITMs, but now they are fine.

  2821   Tue Apr 20 19:37:02 2010 KojiUpdateGreen Locking1W NPRO output profile

Beautiful fitting.

Quote:

EDIT: I used an IFIT (inverse fast idiot transform) to change the x-axis of the plot from Hz to m. I think xlabel('Frequency [Hz]') is in my muscle memory now..

I have redone the beam fit, this time omitting the M2, which I believe was superfluous. I have made the requested changes to the plot, save for the error analysis, which I am still trying to work out (the function I used for the least squares fit does not work out standard error in fit parameters). I will figure out a way to do this and amend the plot to have error bars.

 
profile_fit_4_19_10.png

 

ELOG V3.1.3-