ID |
Date |
Author |
Type |
Category |
Subject |
818
|
Fri Aug 8 17:54:52 2008 |
Jenne | Update | SUS | Standoffs and Guide Rods |
After closer inspection of other small optics, it is clear that the guide rods should be above the standoffs on our small optics. Yoichi took a picture of the SRM that shows this clearly. This makes sense since the tension of the wire will make the standoff 'want' to go up during pre-epoxy adjustment, so the guide rod prevents the standoff from popping up and out.
Looking at the side of the PRM without the groove, it looks like there is lots of space between the guide rod and the alignment etch in the glass, so we can just place a standoff directly under the guide rod that is present.
A spare standoff is being shipped tomorrow morning, so we should have it by Monday for installation on the PRM. |
Attachment 1: SRM_Standoff_and_guide.JPG
|
|
820
|
Mon Aug 11 00:58:31 2008 |
rana | Update | PEM | 2 years of temperature trend |
The PSL RMTEMP alarmed again because it says the room temperature is 19.5 C. Steve said in
an earlier log entry that this is a false alarm but he didn't say why he thought so...
I say that either the calibration of the RMTEMP channel has drifted, the setpoint of the HVAC
has shifted, or there's a drift in the RMTEMP channel. I don't know what electronics exactly
are used for this channel so not sure if its susceptible to so much drift.
However, since the Dust Monitor (count_temp) shows a similar temperature decline in the
last two years I am inclined to blame the HVAC system.
The attached plot shows 2 years of hour-mean trend. |
Attachment 1: Untitled.png
|
|
821
|
Mon Aug 11 09:39:29 2008 |
rana | Update | PEM | 2 years of temperature trend |
Steve and I went around and inspected and then adjusted the thermostats and humidostats.
All the thermostats were set at 70F in 2005 by Steve. We adjusted the ones on the arms up to 72F
and set the one on the wall west of the framebuilder up to 74F (this area was consistently colder
than all the others and so we're over-correcting intentionally). |
827
|
Tue Aug 12 12:05:36 2008 |
Yoichi | Update | Computers | HP color printer is back |
I restarted the HP printer server (a little box connected to the HP color laser) so that we can use the HP LaserJet 2550.
After this treatment, the printer spat out a bunch of pages from suspended jobs, many of these were black and white.
I think people should use the black-and-white printer for these kind of jobs, because the color printer is slow and troublesome. |
829
|
Tue Aug 12 19:48:24 2008 |
Jenne | Update | IOO | PRM standoff is in....mostly |
Yoichi, Jenne
The missing PRM standoff is now partially installed. The standoff is in, and the wire is in the groove, but we have not finished adjusting its position to make the PRM stand up straight. It turns out to be pretty tricky to get the position of the standoff just right.
We have set up a HeNe laser as an oplev on the flow bench (which we checked was level) in the clean assembly room, and are using it to check the pitch of the mirror. We set a QPD at the height of the laser, and are looking at the single-reflected light. When the single-reflected light is at the same height as the center of the QPD, then the mirror is correctly aligned in pitch. (Actually, right now we're just trying to get the single-reflected light to hit the diode at all...one step at a time here).
We'll continue trying to align the PRM's standoff in the morning. |
830
|
Tue Aug 12 21:38:19 2008 |
John | Update | LSC | Accidental higher order mode resonances in the arms |
Recently we had been having some trouble locking the full IFO in the spring configuration (SRC on +166).
It was thought that an accidental higher order mode resonance in the arms may have been causing problems.
I previously calculated the locations of the resonances using rough arm cavity parameters(Elog #690). Thanks to Koji
and Alberto I have been able to update this work with measured arm length and g factors for the y arm (Elog #801,#802).
I have also included the splitting of the modes caused by the astigmatic ETM. Code is attached.
I don't see any evidence of +166MHz resonances in the y arm.
In the attached plot different colours denote different frequencies +33, -33, +166, -166 & CR.
The numbers above each line are the mn of TEMmn.
Solid black line is the carrier resonance. |
Attachment 1: HOMresonances.png
|
|
Attachment 2: HOMarms2.m
|
%Check for accidental resonances of HOM in the arms (maybe due to
%sidebands). At the moment there is only data for the y arm.
clear all
close all
clc
%Stuff one might change often
modeorder = 0:5; % Look for TEMmn modes where m,n run over modeorder
... 157 more lines ...
|
832
|
Wed Aug 13 20:13:35 2008 |
Yoichi | Update | SUS | PRM stand-off is glued |
Steve, Janne, Rob, Bob, Koji, Yoichi
We finally managed to balance the PRM and the stand-off is now glued.
The whole procedure was something like this:
(1) Measure the levelness of the optical table. It was done by a bubble level claiming that
the sensitivity is 60 arcsec (roughly 0.3 mrad).
There was no noticeable tilt along the longitudinal direction of the table.
(2) We put a He-Ne laser on one end of the table. Mounted a QPD on a X-Y-Z stage. Put the QPD very
close to the laser and centered it by moving the QPD.
Then we moved the QPD far away from the laser and centered the beam spot in vertical direction
by changing the tilt of the laser mount.
We then moved the QPD close to the laser again and adjusted the height to center it. By repeating
the centering at two locations (near and far) several times, we aligned the laser beam parallel to
the table.
(3) The PRM suspension tower was put on the other end of the optical table, i.e. far from the laser.
The QPD was moved next to the laser to form an optical lever. The height of the QPD is preserved from
the previous step.
(4) A stand-off was picked by a pair of tweezers. By gently lifting the mirror by the bottom earthquake stops,
the tension of the wire was relieved. Then the stand off was slid in below the guide rod.
(5) Using the microscope, it was confirmed that the wire is in the grooves on both sides.
(6) Without damping, it was too much pain to balance the mirror. So we put spare OSEMs in the suspension and
pulled a long cable from the suspension rack to the clean room with a satellite amp.
(7) It turned out that the pinout of the cable is flipped because of the vacuum feed through. So we asked Ben for help.
He made conversion cables. We also found UR OSEM was not responding. Ben opened the satellite box, and we found an op-amp was burnt.
Probably it was because we connected OSEMs wrongly at first and the LED current driver was shorted. We switched the satellite box
from the PRM one to the BS one. Ben will fix the PRM box.
Bob cleaned up some D-Sub converters for the interface with the clean OSEM pigtails.
(8) While waiting for Ben, we also tried to short the OSEM coils for inductive damping. We saw no noticeable change in the Q.
(9) After the OSEMs were connected to the digital control system, Rob tweaked the damping gains a bit to make it work efficiently.
(10) I pushed the stand-off back and forth to make the reflected beam spot centered on the QPD. I used the PZT buzzer to gently move the stand-off.
For fine tune, just touching it is enough. I found it useful to touch it without clamping the mirror, because if it is clamped, we can easily push
it too hard. When the mirror is freely hanging, once the tip of the buzzer touches the stand-off, the mirror escapes immediately. If the mirror
swings wildly by your touch, you pushed it too hard.
(11) After about an hour of struggle, I was able to level the mirror. We used about 1.5m optical lever arm. A rough calibration tells us that the
beam spot is within 0.6mm of the center of the QPD. So the reflected light is deflected by 0.4mrad. That means the mirror
is rotated by 0.2mrad. The OSEMs should have about 30mrad of actuation range. So this should be fine.
(12) We mixed the Vac Seal epoxy and put it under vacuum for 15min to remove bubbles. Actually 15min was not enough for removing bubbles completely. But
stopped there because we did not want the epoxy to be too stiff.
I dipped a thin copper wire into the epoxy and applied it on the top of the stand-off. I found the epoxy is already not fluid enough, so Steve made
another Vac Seal mixture. This time we put it under vacuum for only 3 min.
I also applied the epoxy to the sides of the stand-off.
While working on this, I accidentally touched the side of the PRM. Now there is a drop of epoxy sitting there (upper left of the attached picture).
We decided not to wipe it out because we did not want to screw up the levelness.
(13) We put an incandescent light about 1m away from the suspension to gently warm up the epoxy but not too much. We will leave it overnight to cure the
epoxy.
|
Attachment 1: img1.jpg
|
|
834
|
Thu Aug 14 11:39:06 2008 |
steve | Update | PEM | particle counter is out of order |
The 40m ifo paricle counter sensor failed last night. |
841
|
Fri Aug 15 16:45:43 2008 |
Sharon | Update | | Converting from FIR to IIR |
I have been looking into different techniques to convert from FIR to IIR. This is so we can see how effective the adaptive FIR filter is in comparison to an IIR one with fewer taps.
For now I tried 2 matlab functions: Prony and stmcb (which works on LMS method).
I used the FIR wiener code, MC1_X, (c1wino) and applied the FIR to IIR algorithm.
Seems like the stmcb one works a bit better, and that there isn't much effect for having 1000 and not 400 taps.
Will keep updating on more results I have, and hopefully have the MC in time to actually check this live. |
Attachment 1: fir2iir50.png
|
|
Attachment 2: fir2iir400.png
|
|
Attachment 3: fir2iir1000.png
|
|
842
|
Fri Aug 15 17:38:41 2008 |
Yoichi | Update | SUS | OSEM free swinging spectra before the pump down |
I ran an overnight measurement of the free swinging OSEM spectra.
The attm1 shows the results. Everything look ok except for the ITMY UL OSEM.
The time series from that OSEM was very noisy and had many spikes.
We suspected the cable from the satellite box to the computer rack because we disconnected the cable
when we tested a spare cable which was used to connect the spare OSEMs to the PRM suspension in the clean room.
Janne remembered when she put the cable back, she trusted the latch on the connector and did not push it in too hard.
However, Rob suggested the latch does not work well. So she pushed the connector again. Then the signal from
the ITMY UL OSEM got back to normal.
The second attachment shows the ITMY spectra after the cable push.
We decided to pump down after confirming this.
There are still a lot of extra peaks especially in the suspensions in the BS chamber.
These may be inter modulations (by the non-linearities of the OSEMs) of the modes of the multiple
suspensions sitting on the same stack. |
Attachment 1: 2008-8-15.pdf
|
|
Attachment 2: ITMY2.pdf
|
|
846
|
Mon Aug 18 11:50:29 2008 |
Yoichi | Update | SUS | In vacuum free swinging results |
The first attachment is the results of the free swinging spectra measurement performed in vacuum this morning.
They are freely swinging, but the suspensions in the BS chamber got even more extra peaks.
Especially, the SRM spectrum looks like a forest.
If those extra peaks are inter-modulations of the primary suspension modes, the heights of them should be
enhanced (compared to the in-the-air case) by the increased quality factors of the primary modes (due to the less air friction).
This might explain the observed increase in the extra peaks.
While doing the free swinging, we had two big spikes in the OSEM signals of the ETMs and only in ETMs.
Those spikes screwed up the spectra of the ETMs. So the ETM spectra were calculated using the time series
after the spikes.
The second attachment shows one of those spikes. It looks like a computer glitch. |
Attachment 1: 2008-8-18.pdf
|
|
Attachment 2: spike.pdf
|
|
848
|
Mon Aug 18 17:37:14 2008 |
rob | Update | Locking | recovery progress |
I removed the beam block after the PSL periscope and opened the PSL shutter.
There was no MC Refl beam on the camera, so I decided to trust the PSL launch
and aligned the MC to the PSL beam. Here are the old and new values for
the MC angle biases:
__Epics_Channel_Name______ __OLD_____ ___New___
C1:SUS-MC1_PIT_COMM 4.490900 3.246900
C1:SUS-MC1_YAW_COMM 0.105500 -0.912500
C1:SUS-MC2_PIT_COMM 3.809700 3.658600
C1:SUS-MC2_YAW_COMM -1.837100 -1.217100
C1:SUS-MC3_PIT_COMM -0.614200 -0.812200
C1:SUS-MC3_YAW_COMM -3.696800 -3.303800
After this, the beam looks a *little low* going into the Faraday Isolator.
Nonetheless, after turning on the IFO input steering PZTs, I was able to
quickly steer the PRM get a beam on the REFL camera and into the REFL OSA.
The PRM optical lever beam is also striking the quad.
I then used the ETMX optical lever as a reference for realigning. After
steering around the input PZTs and ITMX, I saw some flashes in Xarm trans, then got
it locked and ran the alignment script ~5 times. The arm power went
up to 0.9, so I tweaked the MC1 to put the MC refl beam back on MCWFS.
The XARM power then went up to .96. Good enough for now.
Then I started to try and re-align the YARM. Since the oplevs for both ITMY
and the BS are untrustworthy, I first tried to get the beam bouncing off ITMX
and the BS back into the AS OSA, to try and recover some BS alignment. This
didn't work, as the AS OSA may not be a good reference anyways. After
wandering around in the dark for a little while, I decided to try an automated
scan of the alignment space. I used the trianglewave script to scan
the angle biases of BS, ITMY, & ETMY, then looked at the trend of the transmitted
power to find the gps time when there were flashes. I then used
time_machine_conlog to restore the biases to that time. This was close
enough to easily recover the alignment. After several rounds of aligning &
centering oplevs, things look good.
Also locked a PRM. Will work on the DRM tomorrow.
I'm leaving the optics in their "aligned" states over night, so they can
start their "training."
Note: The MC is not staying locked. Needs investigation.
For tomorrow:
lock up the DRM
fix the mode cleaner
re-align mode cleaner to optimize beam through Faraday
re-align all optics again (will be much easier than today)
re-align beam onto all PDs after good alignment of suspended optics is established. |
Attachment 1: flatlissa.png
|
|
849
|
Mon Aug 18 22:47:12 2008 |
Yoichi | Update | IOO | MC unlock study |
As rob noted, the MC keeps unlocking in a few minutes period.
I plotted time series of several signals before unlocks.
It looks like the MC alignment goes wrong a few hundred msec before the unlock (the attached plot is only one example, but all unlocks
I've looked so far show the same behavior).
I will look for the cause of this tomorrow.
The horizontal axis of the plot is sec. The data values are scaled and offset-removed appropriately so that all curves are shown
in a single plot. Therefore, the vertical axis is in arbitrary units. |
Attachment 1: MC-Unlock.png
|
|
850
|
Tue Aug 19 10:36:34 2008 |
Sharon | Update | | Calibrating accelerometers |
I took apart the accelerometers near MC1 and MC2.
The 2 sets of 3 accelerometers are now covered by a box on the floor. Please try not to move them... I will place it all back once I am done calibrating. |
851
|
Tue Aug 19 13:12:55 2008 |
Jenne | Update | SUS | Diagonalized PRM Input Matrix |
NOTE: Use the values in elog #860 instead (20Aug2008)
Using the method described in LIGO-T040054-03-R (Shihori's "Diagonalization of the Input Matrix of the Suspension System"), I have diagonalized the input matrices for the PRM.
Notes about the method in the document:
- Must define the peak-to-peak voltage (measured via DataViewer) to be NEGATIVE for PitLR, PitLL, YawUR, YawLR, and POSITIVE for all others
- As Osamu noted in his 3 Aug 2005 elog entry, all of the negative signs in equations 4-9 should all be plus.
New PRM Input Matrices:
| POS | PIT | YAW
|
UL | 1.000 | 1.000 | 1.000
|
UR | 1.1877 | 1.0075 | -1.0135
|
LR | 0.8439 | -0.9425 | -0.9653
|
LL | 0.9684 | -1.0500 | 1.0216
|
|
853
|
Tue Aug 19 14:25:38 2008 |
Sharon | Update | PEM | Accelerometer's calibration - update |
Goal - Make sure the accelerometers are calibrated among themselves (have the same power spectrum when they are all together reading the same movements).
What I did - took the accelerometers off their usual X Y Z setting and set the 3 MC2's and 3 MC1's next to each other covered by a box.
Then I brought MC2 X to MC1 X and placed them in a box so I have a referance between the 2 groups.
Result - Seems MC1 accelerometers are much alike and have the same power spectrum when placed together for all frequencies. MC2 accelerometers seem to do the same until approximately 30 Hz. (decided not to correct for that since we don't really care about the accelerometers in such high frequencies).
When comparing the 2 X's, they also seemed to be almost perfectly correlated. I chose the gain by dividing the two and finding the mean of that in the range of 2 to 30 Hz. After correcting for all the accelerometers, I matched the gains of each group to its X accelerometer.
You can see the plots, taking into consideration that the groups were never together (pretty messy getting the cables all around).
Here are the numbers, when the MC2 and MC1 gains are calculated by comparing them to their X direction.
gain MC1 X_over_MC2 X=
1.0870
gain_MC2_Y =
0.9944
gain_MC2_Z =
0.9479
gain_MC1_Y =
1.0394
gain_MC1_Z =
0.9149 |
Attachment 1: acccalibafter.png
|
|
Attachment 2: acccalibbefore.png
|
|
854
|
Tue Aug 19 17:00:19 2008 |
Sharon | Update | | Wiener TF calibration - update |
This is an update for post 814
I added the calibration gains I got for the accelerometers (I realize I am just calibrating the accelerometers to themselves and this is not m/m exactly since we don't really know which accelerometer is doing exactly what we want it to do. However, since we are talking on relative small numbers, this shouldn't really change much).
I also added another missing gain for the seismometer. Rana has previously installed a 4300 ohm resistor in the seismometer, which changed the gain to 4300/(4300+5000) = 0.46 (this is from the manual). Moreover, there is a gain of 100 on the SR560. This comes up to an extra gain of 46, meaning multiplying the seismometer's counts by 1/46. |
Attachment 1: m_per_m.png
|
|
855
|
Tue Aug 19 17:15:34 2008 |
Sharon | Update | | MEDM |
I plugged in the gains I got for the accelerometers in the accelerometers' filters in the PEM screen of the adaptive filter |
856
|
Tue Aug 19 18:55:41 2008 |
Yoichi | Update | IOO | MC unlock study update |
In entry 849, I reported that the MC transmitted power drops before the sudden unlocks.
However, because C1:IOO-MC_TRANS_SUM is a slow channel, we were not sure if we can believe the timing.
So I wanted to use C1:IOO-MC_RFAMPDDC, which is a fast channel, to monitor the transmitted light power.
However, this channel was broken. So I fixed it. Details of the fixing work is reported in another entry.
The attached plot shows a recent unlock event. It is clear that in the fast channel (i.e. C1:IOO-MC_RFAMPDDC),
there is no delay between the drop of the MC power and the crazy behavior of control signals.
So it was concluded that the apparent precedence of the MC power drop in the slow channels (i.e. C1:IOO-MC_TRANS_SUM)
is just an artifact of timing inaccuracy/offset of the slow epics channels.
Sometime around 5PM, the MC started to be unwilling to even lock. It turned out that the PC drive of the FSS was going
crazy continuously. So I changed the normal values of the common gain and the fast gain, which the mcup script uses.
Now with this new setting, the MC locks happily, but still keeps unlocking. |
Attachment 1: MC-unlock.png
|
|
860
|
Wed Aug 20 12:04:47 2008 |
Jenne | Update | SUS | Better diagonalization of PRM input matrix |
The values here should replace those in entry #851 from yesterday.
After checking the results of the input matrix diagonalization, I have determined that Sonia's method (described in LIGO-T070168) is more effective at isolating the eigenmodes than Shihori's method (LIGO-T040054).
So, the actual new PRM input matrices are as follows:
| POS | PIT | YAW
|
UL | 0.9678 | 1.000 | 0.7321
|
UR | 1.000 | 0.8025 | -0.9993
|
LR | 0.7235 | -1.1230 | -1.0129
|
LL | 0.6648 | -1.0452 | 1.0000
|
Attached are plots of the spectra of the eigenmodes, using both Shihori's and Sonia's methods. Note that there isn't a good way to get the side peak out of the eigenmodes.
I've put these into the SUS-PRM MEDM screen. |
Attachment 1: PRM_Eigmodes_shihori.png
|
|
Attachment 2: PRM_Eigmodes_sonia.png
|
|
862
|
Wed Aug 20 13:23:32 2008 |
rob | Update | Locking | DRMI locked |
I was able to lock the DRMI this afternoon. All the optical levers have been centered. |
863
|
Wed Aug 20 17:02:01 2008 |
Sharon | Update | | More FIR to IIR |
I tested another method for converting from FIR to IIR other than the 2 mentioned in post 841.
I got this one from Yoichi, called poles fitting, you can read about it more if you want at: http://www.rssd.esa.int/SP/LISAPATHFINDER/docs/Data_Analysis/DA_Six/Heinzel.pdf.
Seems it's not doing much good for us though.
I am attaching a PDF file with the plots, which have N=50,100,600,1000, respectivaly. |
Attachment 1: polefit1.pdf
|
|
864
|
Wed Aug 20 18:09:48 2008 |
Yoichi | Update | IOO | MC still unlocks |
Being suspicious of FSS PC path as the culprit of the MC unlocks, I opened the FSS box and connected a probe to the TP7,
which is a test point in the PC path (before high voltage amplifier).
The signal is routed to an unused fast DAQ channel in the IOO rack. It is named C1:IOO-MC_TMP1 and recorded by the frame
builder. You can use this channel as a generic test DAQ channel later.
By looking at the attachment, the PC path (C1:IOO-MC_TMP1) goes crazy at the same time as other channels. So probably
it is not the trigger for the MC unlock.
Then I noticed the WFS signals drift away just before the unlock as shown in the attached plot. So now the WFS is the
main suspect.
Rob tweaked MC1 pitch to center the WFS QPDs while the MC is not locked. It improved the shape of the MC reflection.
However, the sudden MC unlock still happens. We then lowered the WFS gain from 0.5 to 0.3. Did not change the situation.
It looks like the MC length loop starts oscillating after the WFS signals drift away.
We will measure the WFS and MC OPLTF to see the stability of the loops tomorrow.
|
Attachment 1: MC-unlock.png
|
|
868
|
Thu Aug 21 18:13:24 2008 |
rana | Update | IOO | MC WFS Control signals not responsible for lock losses |
This is a 4 hour, second-trend of the MC WFS error and control signals.
There is no sign that the MC loses lock because of feedback signal saturations. |
Attachment 1: Untitled.png
|
|
869
|
Fri Aug 22 10:39:41 2008 |
Jenne | Update | SUS | Taking Free Swinging spectra of PRM, SRM, ITMX, BS |
I'm taking free swinging spectra of PRM, SRM, ITMX and BS, so I've turned off their watchdogs for now. I should be done around 11:15am, so I'll turn them back on then. |
871
|
Fri Aug 22 16:06:29 2008 |
steve | Update | PEM | particle counter replaced, flowbenches & HEPAs checked |
MetOne #2 counter was swapped in (on the top of IOC, facing SW direction, at ~75 deg upwards)
with channel one size 0.3 micron and channel two size 1.0 micron.
Sampling time was reduced from 60s to 6 sec at 0.1 cf/min at 25 min rate.
This means that displayed number needs to be multiplied by x100 to get particles/cf/min
HEPA filters and flow benches were checked:
PSL enclosure closed, HEPA speed at 60% 0-0 particles on optical table NW corner
AP covered optical table 1,000 particles of 0.3micron and 10 of 1.0 micron at NE corner
Flow bench at SE 0-0 particle (p)
on the top of SP cover at SE corner 60,000 p of 0.3 micron and 530 p of 1.0 micron
Mobile HEPAs 10cm from output screen in the center 800 p of 0.3 micron and 0 p of 1 micron
These filters will be replaced.
Clean assembly room:
both flow benches 0-0 p for 0.3-1.0 micron
east side bench 520 p of 0.3 micron and 210 p of 1.0 micron
Large hood in baking room with fan on 1.7 million p of 0.3 micron
and 16,000 p of 1.0 micron
Pasadena air just outside of main entrance:
3 million p of 0.3 micron and 30,000 p of 1.0 micron
My desk 743,000 p of 0.3micron, 63,000 p of 0.5 micron and 5,500 p of 1.0 micron cf/min
NOTE: existing COCHECKLIST.adl PEM displays needs to be corrected so it shows the 10 fold increase
and change particle size on this screen to 0.3 micron |
872
|
Fri Aug 22 17:03:41 2008 |
Yoichi | Update | IOO | MC open loop TF |
I measured the open loop TF of the overall MC loop using the sum-amp A of the MC board.
I used the Agilent 4395A network analyzer and saved the data into a floppy disk. However, the data was corrupted when
I read it with my computer. I had the same problem before. The floppy is not reliable. Anyway, I have to re-measure the TF.
From what I remember, the UGF was around 25kHz and the phase margin was less than 15deg.
Above this frequency, the open loop gain was almost flat and had a small bump around 100kHz.
This bump has a gain margin of less than 4dB (the phase is more than 180deg delayed here).
So the MC is marginally stable and either decreasing or increasing the gain will make it unstable easily.
Probably, the broken FSS is responsible for this. We have to fix it.
During the measurement, I also found that the input connectors (IN1 and IN2) of the MC board are freaky.
These are TNC connectors directory mounted on the board. Gently touching the cables hooked up to those connectors
caused a large offset change in the output.
When Rana pulled the board out and pushed it in firmly, the strange behavior went away. Probably, the board was
not correctly inserted into the backplane.
This could have been the reason for the MC unlocks. |
873
|
Sat Aug 23 09:39:51 2008 |
rana, jenne | Update | PSL | PMC Survey |
Jenne, Rana
We scoped out the PMC situation yesterday.
Summary: Not broke. UGF ~ 500 Hz. Needs some electronics work (notches, boosts, LPFs)
Ever since we swapped out the PMC because of the broken PZT of the previous one, the UGF has been
limited to a low value. This is because the notches no longer match the mechanical resonant
frequencies of the body. The old one had a resonance at 31.3 kHz which we were notching using
the LC notch on the board as well as a dangling Pomona box in the HV line to the PZT. The one
has a resonance at ~14.5 kHz which we don't yet have a notch for. Jenne has all the real numbers and
will update this entry with them.
Todo:
- Implement the 4th order Grote low pass after the mixer.
- Replace the AD797 with an OP27.
- Change servo filter to have a boost (need DC gain)
- Make a 14.5 kHz notch for the bode mode.
- Put a 20 lb. gold-foil wrapped lead brick on the PMC.
Here's the link about the modified PMC board which we installed at LHO:
LHO PMC elog 2006 |
874
|
Mon Aug 25 10:07:35 2008 |
Jenne | Update | PSL | Numbers for the PMC servo board (Re: entry # 873) |
Jenne, Rana
These are the numbers that go along with Rana's entry #873:
The existing notch in the PMC servo is at 31.41kHz.
The power spectrum of the PMC has a peak at 14.683kHz when it is just sitting on the PSL table (no extra mass). When we put a pile of steel and aluminum (~20lbs) on top of the PMC, the body resonance moves to 14.622kHz, but is decreased by about 40 dB!
Rana has ordered a lead brick + foil that should arrive sometime this week. To complete the mechanical part of this installation, we need to extend the earthquake mounts around the PMC so that the lead brick can't fall off of the PMC onto the rest of the table. |
876
|
Mon Aug 25 10:51:06 2008 |
steve | Update | PSL | psl headtemp is coming down |
The laser water cooler was overflowing this morning.
I removed 500 cc water from the chiller.
The 4 days plot shows clearly:
that the capacity of the chiller is depending on the water level.
Overflowing water is a heat load for the chiller, so laser head temp goes up. |
Attachment 1: ht4dw.jpg
|
|
878
|
Mon Aug 25 12:13:49 2008 |
Jenne | Update | PSL | Broken PMC Servo Board |
I broke the PMC servo board (on accident).
I was trying to measure the resistance of the extra resistor that someone put between the board and the HV OUT connector, since this is part of an RC filter (where C is the capacitance of the PZT on the PMC) that I need to know the values of as part of my mission to make a 14.6kHz notch for the PMC body mode. The resistance is 63.6k. I had to pull the board to get in to measure this resistance.
This resistor between the board and the center pin of the panel-mount HV OUT connector made a rigid connection between the board and the panel. When I was putting the board back in, I must have strained this connection enough that it broke. We don't have any of the same kind of resistor here at the 40m, so I'm waiting until after lunch to go to Wilson house and see if they've got any. The IFO is down until I get this sorted out. |
879
|
Mon Aug 25 14:18:36 2008 |
Jenne | Update | PSL | PMC servo board is fixed |
The PMC servo board is back in place, all fixed up with a shiny new resistor. The PMC locks, and the MC locks (I'm not saying anything either way about how long the MC will stay locked, but it is locked for now). The resistor is connected to the connector using a short piece of wire, so this problem won't happen again, at least with this connector on this board. |
892
|
Wed Aug 27 13:55:43 2008 |
rana,jenne | Update | PSL | PMC Servo Board |
Board is back in. PMC is locked.
Nominal gain is now 15 dB with brick. We need to do more studies:
- Find out why there is still 35 MHz signal at the error point. Order some low pass filters to cut off above 35 MHz.
- Explore brick + no-brick loop shapes and error spectra.
- Measure and set the OLG.
We've left the copper-wrapped lead brick installed to let it slowly conform to the glass better. |
895
|
Fri Aug 29 02:40:43 2008 |
rana,jenne | Update | PSL | PMC Servo Board |
Quote: | Board is back in. PMC is locked.
|
This entry has details about the low pass filter after the PMC mixer. This filter has a few purposes:
1] Remove the beat signal (at 2*f_mod) between the PD RF signal at f_mod and the LO signal at f_mod.
2] Remove the beat signal (at f_mod) between the PD RF signal at 2*f_mod (which comes from the
beating of the upper and lower RF sidebands) and the LO signal at f_mod.
3] Remove other RF signals from non-ideal behavior of the LO drive signal and distortion in the RF PD pre-amp.
So its important to have a very good rejection at 35 MHz and higher. I used the Hartmut LC network design which is
installed on H1, H2, & L1. Since there is a high gain in the audio amps right after the mixer we have to get rid of
the RF or else we'll get slew rate limited or otherwise rectified downconversion of the RF signal into our audio band.
Of course, what everyone immediately realizes from the above 3 points, is that this filter can't protect the PMC
noise performance from homodyne mixing (e.g. 2*f_mod in the LO and 2*f_mod in the RF PD). To get around that, we're
ordering some filters from Mini-Circuits to remove the 2f from those signals by ~30 dB. As long as we install
the same filters on the RF and LO legs, there should be no significant phase shift in the demodulated signal.
The attached 2 page PDF shows the calculated before and after TFs of this filter. The 2 attached .m files
calculate the TF's and have ascii art which shows how the filter works.
Here's a comparison of the attenuation (in dB) of 2 candidate Mini-circuits filters:
f(MHz) | SLP-30 | SLP-50
|
31 | 0.5 | 0.4
|
35 | 1.3 | 0.4
|
38 | 6.1 | 0.4
|
40 | 10.8 | 0.42
|
61 | 46.3 | 14.8
|
71 | 60 | 29
|
91 | 76.9 | 48
|
107 | 80 | 60
|
We don't have tabulated data at the same frequencies for both filters so I just made up some of the points by eye-balling the
plots from the catalog - but you get the idea: we can get away with using the SLP-30 at 35 MHz since it only attenuates the
signals by ~1.5 dB. So if someone can find 4 of these then Steve doesn't have to order any from Mini-Circuits. |
Attachment 1: pmclp-07.pdf
|
|
Attachment 2: pmclp_40m_080824.m
|
% PMCLP is a TF of the IF filter after the PMC mixer
%
% Mixer_Voltage -- Rs -- L1 --- L2 ---------Vout
% | | |
% C1 C2 Rl
% | | |
% GND GND GND
%
... 58 more lines ...
|
Attachment 3: pmclp.m
|
% PMCLP is a TF of the IF filter after the PMC mixer
%
% Mixer_Voltage -- Rs -- L1 --- L2 ---------Vout
% | | |
% C1 C2 Rl
% | | |
% GND GND GND
%
... 57 more lines ...
|
901
|
Fri Aug 29 15:01:45 2008 |
steve | Update | PSL | MOPA_HTEMP in increasing |
The laser chiller temp is 21.9C ( it should be 20.0C )
Control room temp 73F ok, no obvious block
Ops, there is a piece of paper blocking the intake of the chiller
This is a four day plot. The paper was blocking the air flow all day. |
Attachment 1: htcl.jpg
|
|
905
|
Fri Aug 29 22:57:48 2008 |
Yoichi | Update | PSL | FSS loop transfer functions |
I've been measuring a bunch of transfer functions of the FSS related stuffs.
There are a lot to be analyzed yet, but here I put one mystery I'm having now.
Maybe I'm missing something stupid, so your suggestions are welcome.
Here is a conceptual diagram of the FSS control board
TP3 TP4
^ ^
| |
RF PD -->--[Mixer]-----[Sum Amp]------>--[Common Gain]--->----[Fast Gain]----[Filter]--> NPRO PZT
^ | ^ | |
| V | V |
LO ---->------- TP1 IN TP2 -->---[Filter]--[High Volt. Amp.] --> Phase Corrector
What I did was first to measure a "normal" openloop transfer function of the FSS servo.
The FSS was operated in the normal gain settings, and a signal was injected from "IN" port.
The open loop gain was measured by TP1/TP2.
Now, I disconnected the BNC cable going to the phase corrector to disable the PC path and locked the ref. cav.
only using the PZT. This was done by reducing the "Common Gain" and "Fast Gain" by some 80dB.
Then I measured the open loop gain of this configuration. The UGF in this case was about 10kHz.
I also measured the gain difference between the "normal" and "PZT only" configurations by injecting
a signal from "IN" and measuring TP3/TP2 and TP4/TP3 with both configurations (The signal from the Mixer was
disconnected in this measurement).
The first attachment shows the normal open loop gain (purple) and the PZT only open loop gain scaled by the
gain difference (about 80dB). The scaled PZT open loop gain should represent the open loop gain of the PZT
path in the normal configuration. So I expected that, at low frequencies, the scaled PZT loop TF overlaps the normal
open loop TF.
However, it is actually much larger than the normal open loop gain.
When I scale the PZT only TF by -30dB, it looks like the attachment #2.
The PZT loop gain and the total open loop gain match nicely between 20kHz and 70kHz.
Closer look will show you that small structures (e.g. around 30kHz and 200kHz) of the two
TFs also overlap very well. I repeated measurements many times and those small structures are always there (the phase is
also consistently the same). So these are not random noise.
I don't know where this 30dB discrepancy comes from. Is it the PC path eating the PZT gain ?
I have measured many other TFs. I'm analyzing these.
Here is the TO DO list:
* Cavity response plot from AOM excitation measurements.
* Cavity optical gain plot.
* Reconstruct the open loop gain from the electric gain measurements and the optical gain above.
* Using a mixer and SR560(s), make a separate feedback circuit for the PZT lock. Then use the PC path
to measure the PC path response.
* See the response of the FSS board to large impulse/step inputs to find the cause of the PC path craziness.
etc ... |
Attachment 1: OPLTFs.pdf
|
|
Attachment 2: OPLTFsScaled.pdf
|
|
907
|
Mon Sep 1 04:34:00 2008 |
rana | Update | PSL | FSS loop transfer functions |
I started from 6th item in Yoichi's todo list.
1) Increased the setpoint of the thermostat next to the framebuilder from 73F to 79F. Its freezing over there
in the room with the drill press. Steve's illegal mercury thermometer is reading 19 C.
2) Looked the RFPD's output spectrum using the 20 dB coupled output from the coupler that's in-line.
The first attached PDF file (n.pdf) has several plots:
page 1: 0-500 MHz anomolous peaks at 138 & 181 MHz but nothing too crazy
page 2: 0-100 MHz 80 MHz peak is RF pickup from the VCO Driver - not on the light
page 3: 10-30 MHz totally nuts
page 4: 18-25 MHz that's just wrong
The RF spectrum should only have some action around 21.5 MHz and a little peak at 2x 21.5 MHz. All that extra
junk means that something is broken!
3) To see if I could rid of any of the 80 MHz signal or any of that other trash from 18-25 MHz, I wound the RF cable
around a large toroidal ferrite core. This should have given us many uH of inductance for any signals common to
both the center and shield of the cable with no effect on the differential RF signals. There was no effect.
4) Next went to look at the 21.5 MHz Crystal Oscillator Reference card (D980353...I bet you can't figure out how
this one works). These have the Mini-Circuits SMA 30 MHz low pass (SLP-30) filters on both the LO and EOM outputs.
FSSLO.PNG shows the waveform after 20 dB attenuation going into a scope terminated with 50 Ohms.
FSSLO-Spec.png shows the spectrum of this signal - its pretty distorted. Here's the levels
f (MHz) | before filter (dBm) | after filter (dBm)
---------------------------------------------------
21.5 | -12.8 -13.1
43 -24 -46
64.5 -50 < -80
86 -64 < -80
This would be OK after the filter, but the level is very low. Only 7dBm (accounting for my 20 dB att) !!
The FSS uses a JMS-1H mixer which needs, as everyone knows, a +17 dBm LO signal. Que lastima.
There seems to be something wrong already, but wait...
5) PC25.PNG shows the output signal going to the EOM from 0 - 25 MHz. The step that's visible there at
around 10 MHz is just something inherent to the analyzer (??). But see all that crap there down below
5 MHz ? That is NOT supposed to be there.
pc.pdf shows on the first page the comparison in EOM drive with 2 different slider values on the
RF AM adjust screen for the FSS. But page 2 is the punchline of this long entry: There is a bunch of
excess junk on the drive signal going to the FSS's phase modulator. The FSS is then trying to handle
this extra frequency noise and getting into trouble.
We have to fix this board. I have also ordered a few SBP-21.4 from mini-circuits (SMA bandpass around 21.4 MHz)
just in case. Another option is to just replace this thing with a Marconi and an RF amp.
|
Attachment 1: n.pdf
|
|
Attachment 2: FSSLO.PNG
|
|
Attachment 3: FSSLO-Spec.png
|
|
Attachment 4: PC25.png
|
|
Attachment 5: pc.pdf
|
|
911
|
Tue Sep 2 10:09:03 2008 |
steve | Update | PSL | head temp is cooling down |
The chiller was over flowing this morning.
800 cc of water was removed.
PSL-126MOPA_HTEMP peaked at 20.7 C (normal is 18.7 C) |
912
|
Tue Sep 2 14:28:41 2008 |
Yoichi | Update | PSL | FSS EOM driving signal spectra |
Rich advised me to change the +10V input of the FSS crystal frequency reference board from whatever voltage supply we use now to a nice one.
This voltage is directory connected to the signal lines of both LO and RF output amps. Therefore, fluctuations in the voltage directly appear
in the outputs, though DC components are cut off by the AC coupling capacitors.
I changed the source of this voltage from the existing Sorensen one to a power supply sitting next to the rack.
The attached plots shows the difference of the RF output spectra between the two 10V sources.
The low frequency crap is almost gone in the new 10V spectrum.
I tried to increase the FSS gain with the new 10V, but still it goes crazy. I suspect it is because the LO power is too low. |
Attachment 1: RFDrive1.png
|
|
Attachment 2: RFDrive2.png
|
|
918
|
Thu Sep 4 00:38:14 2008 |
rana | Update | PSL | c1iovme power cycled |
Entry 663 has a plot of this using the PSL/FSS/SLOWscan script. It shows that the SB's were ~8x smaller than the carrier.
P_carrier J_0(Gamma)^2
--------- = ------------
P_SB J_1(Gamma)^2
Which I guess we have to solve numerically for large Gamma? |
919
|
Thu Sep 4 07:29:52 2008 |
Yoichi | Update | PSL | c1iovme power cycled |
Quote: | Entry 663 has a plot of this using the PSL/FSS/SLOWscan script. It shows that the SB's were ~8x smaller than the carrier.
P_carrier J_0(Gamma)^2
--------- = ------------
P_SB J_1(Gamma)^2
Which I guess we have to solve numerically for large Gamma? |
P_carrier/P_SB = 8 yields gamma=0.67. |
920
|
Thu Sep 4 07:46:10 2008 |
Yoichi | Update | IOO | MC is now happy |
The MC has been locked for more than 12 hours continuously now !
Changes I made yesterday were:
(1) Removed the 20dB attenuator before the EOM.
(2) Reduced the Fast Gain from 21dB to 16dB, which made the PC to be a little bit more loaded (~0.6Vrms).
As Rana pointed out in the meeting, setting the Fast Gain a bit lower may have put the FSS in a stabler state. |
Attachment 1: MC-lock.png
|
|
921
|
Thu Sep 4 10:13:48 2008 |
Jenne | Update | IOO | We unlocked the MC temporarily |
[Joe, Eric, Jenne]
While trying to diagnose some DAQ/PD problems (look for Joe and Eric's entry later), we unlocked the PMC, which caused (of course) the MC to unlock. So if you're looking back in the data, the unlock at ~10:08am is caused by us, not whatever problems may have been going on with the FSS. It is now locked again, and looking good. |
923
|
Thu Sep 4 13:48:50 2008 |
Yoichi | Update | PSL | FSS modulation depth |
I scanned the reference cavity with the NPRO temperature (see the attached plot).
The power ratio between the carrier and the sideband resonances is about 26.8.
It corresponds to gamma=0.38.
The RF power fed into the EOM is now 14.75dBm (i.e. 1.7V amplitude). The NewFocus catalog says 0.1-0.3rad/V. So
gamma=0.38 is a reasonable number.
|
Attachment 1: RCScan.png
|
|
924
|
Thu Sep 4 14:43:58 2008 |
Jenne | Update | PSL | PMC Open Loop Gain |
I have measured the PMC's open loop gain. UGF is 629.7Hz, with a phase margin of 53 degrees.
I injected into FP2 on the front panel, and measured MixOut/Source from 100Hz to 100kHz using the SR785. I did this both when the loop was open, and when the loop was closed (open the loop by enabling FP1, which breaks the loop).
We have 2 transfer functions involved: The actual open loop gain of the PMC servo loop (G1), and the gain between FP2 and the MixerOut monitor point (G2). This gives us:
TF(closed loop) = G2*(1+G1)
TF(broken loop) = G2
G1 = TF(closed)/TF(broken) - 1
This G1 is the final open loop gain, and it is plotted below. |
Attachment 1: OpenLoopTF04Sept2008.png
|
|
926
|
Thu Sep 4 17:03:25 2008 |
Yoichi | Update | PSL | RF oscillator noise comparison |
I measured current spectra of the RF signal going to the FSS EOM.
The attachment compares the spectra between a Stanford signal generator and a Marconi.
I borrowed the Marconi from the abs. length measurement experiment temporarily.
The measurement was done using the signal going to the EOM. That means the spectra include
noise contributions from the RF amp., splitter and cables.
21.5MHz peak was not included because that would overload the ADC and I would have to use a large attenuation.
This means the measurement would be totally limited by ADC noise everywhere except for 21.5MHz.
I noticed that with the Marconi, the FSS is a little bit happier, i.e. the PC path is less loaded
(0.9Vrms with Stanford vs. 0.7Vrms with Marconi). But the difference is small.
Probably the contribution from the 77kHz harmonics in the laser light is more significant (see entry #929).
Also the peaks in the Stanford spectrum are not harmonics of 77kHz, which we see in the FSS error signal.
I returned the Marconi after the measurement to let Alberto work on the abs. length measurement. |
Attachment 1: RFSpectra.png
|
|
927
|
Thu Sep 4 17:12:57 2008 |
Yoichi | Update | PSL | FSS open loop TF |
I changed the gain settings of the FSS servo.
Now the Common Gain is 5dB (the last night it was 2dB) and the Fast Gain is 12dB (formerly 16dB).
I measured the open loop TF with this setting (the attachment).
I also plotted the OPLTF when CG=2dB, FG=20.5dB. With this setting, the MC looses lock every 30min.
You can see that the OPLTF is smoother with FG=12dB.
When the FG is high, you can see some structure around 250kHz. This structure is reproducible.
This may be some interruption from the fast path to the PC path through a spurious coupling. |
Attachment 1: FSS-OPLTFs.png
|
|
928
|
Thu Sep 4 17:17:03 2008 |
Yoichi | Update | IOO | MC open loop TF |
I measured open loop transfer functions of the MC servo.
The UGF was about 30kHz. Since there was some gain margin at higher frequencies, I increased
the input gain of the MC servo board from 19dB to 22dB. Now the UGF is 40kHz and we have more
phase margin (~30deg). |
Attachment 1: MC-OPLTF.png
|
|
929
|
Thu Sep 4 17:44:27 2008 |
Yoichi | Update | PSL | FSS error signal spectrum |
Attached is a spectrum of the FSS error signal.
There are a lot of sharp peaks above 100kHz (the UGF of the servo is about 200kHz).
These are mostly harmonics of 77kHz. They are the current suspects of the FSS slew rate saturation.
I remember when I blocked the light to the PD, these peak went away. So these noises must be
in the light. But I checked it a few weeks ago. So I will re-check it later.
One possible source of the lines is a DC-DC converter in the NPRO near the crystal.
We will try to move the converter outside of the box. |
Attachment 1: FSS-Error-Spe.png
|
|
931
|
Fri Sep 5 08:34:03 2008 |
steve | Update | PSL | MZ locked |
The MC is happy.
The MZ can be locked if you move the slider by hand. |
Attachment 1: mzhv.jpg
|
|