ID |
Date |
Author |
Type |
Category |
Subject |
738
|
Fri Jul 25 10:48:13 2008 |
Koji | Update | General | Abs. Len. Meas. ~ Realignment / beating / PLL trial |
Alberto and Koji
o We worked for the abs length measurement setup on Thursday night.
o At the last of the work Koji left the 40m lab at 2AM. "Last autoalignment" was restored. The flipper for the
inj beam was down. The shutter for the NPRO was closed.
----
o The alignment of the injection beam (NPRO) was re-adjusted.
o The laser crystal temp (LT) of the NPRO was scanned.
o After a long struggle the beat was found at about LT=61deg(!). I think this is almost at the maximum temp
for the NPRO. Note that this is not the diode temp, and therefore it will not damage the laser as far as the
TEC for the crystal works.
o Only the X arm was aligned.
o The alignment of the injection beam was adjusted such that the beating amplitude got maximum.
o At the faraday of the NPRO, we had 2.4V_DC and 1.8V_DC with and without the inj beam, respectively. The
beating amplitude was 200mVpp (at around 2.4V).
o With a simple calculation, the mode overlapping of tghe injection beam is only 0.0023. Ahhh. It is too weak.
In the modematching or something must be wrong.
o The position of the mode matching lens was tweaked a little. It did not help to increase the beat ampitude.
Even worse. (The lens was restored and the values above was obatined with the latest setting.)
o Then tried to build a PLL. It locks easily.
- Put the beat signal into the mixer RF input.
- Connect 10dBm @1MHz-10MHz from the marconi oscillator to the LO input. The supposed nominal LO level was
not checked so far. Just used 10dBm.
- The IF output was connected to an SR560 with 10Hz LPF (6dB/oct) with G=500 or so.We don't need to care
about the sign.
- The output of the SR560 was connected to FAST PZT input of the NPRO.
o The problem was that there was strong intermodulations because of 33MHz. No LPFwas used before the mixer.
Because of this spourious modulations, the PLL servo locks at the local zero crossings. These will be solved
next time.
o Eventually left the 40m lab at 2AM. "Last autoalignment" was restored. The flipper for the inj beam was
down. The shutter for the NPRO was closed. |
739
|
Fri Jul 25 13:30:53 2008 |
Sharon | Update | | Changes in ASS computer |
I editted the simulink diagram of the ASS computer so it now has 2 more channels reading 2 sets of the FIR coefficients to match Alex's changes in the C code.
The new simulink has already been compiled and can be found in /cvs/cds/caltech/users/alex/cds/advLigo/src/epics/simLink/ass.mdl
I backed up the old file and it's also in that folder under ass_BAK_24_jul.mdl
There is also a backup of the old ASS.ini file in caltech/chans/daq/C1ASS_BAK_24_jul.ini
Will update once it's all set and running |
740
|
Fri Jul 25 17:32:46 2008 |
Sharon | Update | | ASS computer |
So, it seems a bit too complicated getting the coefficients the way I wanted it to happen (simulink-.ini...).
I returned everything to the way it was and it's all working. The new plan is to choose the specific channel I want to find its instantanous coefficients, let the adaptive code run for a while, setting mu and tau to zero (freezing the coefficients), and exciting the noise signal channel taking the transfer function. This way I can find the filter I want to simulate with an IIR filter.
Once I have the mode cleaner to myself, I'll start posting results. |
741
|
Fri Jul 25 19:57:18 2008 |
Jenne | Update | PSL | Ref Cav & PMC |
"PMC is in, but is still being worked on. Leave it alone." ---Rana
Ref. Cavity is locked again. Still a work in progress. I think we're ready to mode match on Monday. ---Jenne |
742
|
Sat Jul 26 15:09:57 2008 |
Aidan | Update | Computers | Reboot of op440m |
I was reviewing the PSL Overview screen this afternoon and op440m completely froze when I center-clicked on the REF CAVITY TRANSMISSION indicator. It was unresponsive to any keyboard or mouse control. The moon button had no effect to shut the machine down.
Called Alberto in and we logged into op440m from rosalba. From there we logged in as 'root' and run a shutdown script '/usr/sbin/shutdown -i S -g 1'. The medm screens started disappearing from the op440m display and we were eventually asked to enter System Maintenance Mode. From here we selected RUN LEVEL 5: "state 5: Shut the machine down so that it is safe to remove the power". Following this the machine turned itself off.
We powered it back on, logged back in as controls and restarted the medm screens. Everything seems to be running fine now.
Aidan. |
745
|
Sun Jul 27 23:06:17 2008 |
rana | Update | PSL | PMC, MZ, MC-MMT, etc. |
With the new PMC now in I aligned the MZ to the new beam (there is sadly no steering
between the PMC and the MZ).
I also removed the pickoff that we had put before the MZ just in case we wanted to
move the FSS pickoff to there - its been 2 years now so I guess its not going to happen.
The new PMC's cavity axis seems to be a few hundred microns higher than the old one. So I
tried to move the MZ EOMs to compensate but ended up also steering all of the MZ's mirrors
to get the contrast good, the beam onto the ISS PDs, centered (sort of) onto the MMT lenses
and onto the periscope.
Along the way I also removed some of the vestigial squeezer stuff around the power control
PBS. The output of the PBS now goes directly into the high power dump with no steering. This
eliminated around a dozen clamps, bases, etc. and a couple of mirrors.
The MC is locked on the low power beam we have running through everything. I restored the
PSL launch beam just using the MC-WFS and it locked on a TEM00. So now we know that we
really don't need the PSL quads for this as long as the MC1 angle is stable.
The good news is that the PMC PZT voltage is now flat: the problem must have really been with
the PZT and not the cabling or notch box like I had wondered about.
Todo:
-----
1) Continue mode matching into the PMC. Its transmission now is around the same as the
old one.
2) Put a UHV foil covered lead brick onto the PMC to quiet it down.
3) Characterize the PMC loop and retune the body notch for the new body.
4) Tweak the MZ alignment to minimize the RFAM. We can use StochMon to do this as
long as we have the MC WFS turned off or we can put in a flipper to take the
beam before the MC and send it to the StochMon RFPD.
5) Re-align onto the ISS.
6) Install irises around the periscope for the beam. The old iris there is way off.
7) Fix PSL ANG and center both POS and ANG.
|
746
|
Mon Jul 28 11:20:13 2008 |
Jenne | Update | PSL | Work on the FSS and Reference Cavity |
[Yoichi, Jenne, Koji]
The Reference Cavity's saga continues....
Thursday, Yoichi and I worked to change the beam that we chose from the 2nd pass through the AOM, to the first order beam rather than the 2nd order beam (see elog #726). After choosing the correct beam, we get 29mW incident on the reference cavity (compared with 4mW before any work began). We adjusted the angle of the AOM in the plane of the table, and got up to 30.6mW. We adjusted the tip/tilt of the AOM and got to 30.7mW (the tip/tilt adjustment made a more significant difference in the work described in elog #726, but after that work, it was probably already pretty close to optimized). We noticed that for the above measurements, we had 2 beams through the Polarizing Beam Splitter and Waveplate (one very dim), so after excluding that beam, the power meter read 30.4mW. We adjusted the curved mirror a little, and got 30.8mW incident on the reference cavity.
We then put a triangle wave into the offset of the MC Servo Board using the "trianglewave <channel> <center> <amplitude> <period> <runtime>" command in a terminal screen. This changes the voltage to the VCO, and thus the frequency response of the AOM. We watch the diffracted spots from the second pass through the AOM, and confirm that the beam we have chosen is not moving, and all the others are. By symmetry, if we chose the first order beam after the first pass through the AOM, and then again chose the first order beam after the second pass, the resulting beam will not move with the frequency change of the AOM.
We saw 1.50V (Refl. PD, unlocked) on the 'scope after aligning the optics to make the newly chosen beam hit the input mirror of the reference cavity. Order of operations for this alignment:
- Recenter the beam on the 2 lenses that are just after the PBS and the waveplate
- Adjust pitch and yaw of the two steering mirrors until the beam reflected off the input mirror of the reference cavity is parallel to the incident beam
- Use a sensor card to check the alignment of the incident and reflected beams, and adjust the steering mirrors to get the alignment close
- Note the amplitude of the DC output of the Refl. PD with the iris completely open. Close the iris until the signal decreases by ~50%, then adjust the steering mirrors until the original amplitude is regained. Repeat until the iris can be almost completely closed but the Refl. PD signal doesn't change
- Watch the DC output of the Refl. PD, and maximize the signal on a 'scope
- Sweep the PZT of the laser using a function generator into the RAMP input on the FSS board (~10Vpp at ~1Hz), OR sweep the temperature of the laser using the trianglewave function on the SLOW FSS channel (amplitude~0.5, period~50)
- Watch the modes that resonate in the cavity, and adjust pitch and yaw of the steering mirrors to get closer to the TEM00 mode
- When the TEM00 mode appears in the sweep, stop the sweep, and lock the cavity
- Watch the DC output of the Transmitted PD, and maximize the signal on a 'scope
- Celebrate!
After all of this adjusting,
Refl. PD (unlocked) = 1.48V
Refl. PD (locked) = 680mV
Trans. PD (locked) = 6.28V
Power reflected (unlocked) = 26.28mW
Power transmitted (locked) = 13.89mW
Thus, 53% transmission
Next: check the amount of power transmitted by reducing the amplitude of the RF modulator. This reduces the amount of power used by the sidebands, and so should increase the transmission.
Power incident = 27mW
Power transmitted = 17.2mW
Thus, 64% transmission
We then put the RF modulator back where it was originally.
We then replaced the lens mounts for the f=802 and f=687 lenses between the AOM and the reference cavity, to the new mounts that Yoichi bought. Koji helped me realign into the reference cavity, and we got:
Refl. PD (unlocked) = 1.48V
Refl. PD (locked) = 880mV
Trans PD (locked) = 4.64V
Power incident = 26.97mW
Power transmitted = 10.39mW
39% transmission
Since more mode matching etc. is in the works, we left this for the night.
On Friday, we changed the setup of the cameras and PDs for both reflection and transmission, to avoid saturating the PDs and cameras.
On the Refl. side of the reference cavity, we put a W2-PW-1025-UV-1064-45P pickoff between the last mirror and lens before the camera and PD. We moved the camera to the pickoff side of the new optic. We then replaced teh 45UNP beam splitter that split the beam between the PD and the camera with a Y1-1037-45P highly reflective mirror, and put the PD in the old camera location.
On the Trans. side of the ref. cavity, we replaced the BSI-1064-50-1025-45S with a W2 pickoff, and replaced the Y1-1037-45-P highly reflective mirror with the 50/50 beam splitter that was replaced by the W2.
Now we have:
Refl. PD (unlocked) = 1.68V
Refl. PD (locked) = 640mV
Trans PD (locked) = 4.24V
Power incident = 25mW
Power transmitted = 14.48mW
58% transmission
Koji pointed out that when remounting, I had put the f=802 lens ~2cm away from its original position (along the z-axis), so I moved the lens back to where it should be, and realigned into the reference cavity. Since Rana was working on the PMC at the same time, the laser was turned down by about a factor of 100, so my starting measurements were:
Refl. PD (unlocked) = 23.6mV
Refl. PD (locked) = 10.2mV
Trans PD (locked) = 56mV
Power incident = 0.35mW
Power transmitted = 0.16mW
46% transmission
Since it was late on Friday by the time everything was realigned into the ref. cavity (I'm still working on my optics aligning skills), I forgot to measure the transmission after all of my work. I'll do that today (Monday) as soon as Sharon/Koji are done working with the IFO this morning. Also, I'll put up before/after pictures as soon as I find the camera...it seems to have walked off.
UPDATE:
Ref. Cav. measurements after Friday's alignment (and after turning the laser power back up to normal):
Refl. PD (unlocked) = 1.58V
Refl. PD (locked) = 304mV
Trans PD (locked) = 3.68V
Power incident = 24.96mW
Power transmitted = 16.45mW
66% transmission
To do: Start the actual mode-matching into the reference cavity. |
747
|
Mon Jul 28 12:02:32 2008 |
Sharon | Update | | accelerometers settings |
Jenne, Sharon
We looked again at the channels of the accelerometers and there are some updates. Last time when we reported, we crossed the ADAP channels and the accelerometer. Now that there is a new MEDM screen, with which you can control which channels goes to which adaptive channels, this has no meaning...
Therefore, the channels that go with the noise source channels are:
PEM 15 MC1_X
PEM 16 MC1_Y
PEM 17 MC1_Z
PEM 18 MC2_X
PEM 19 MC2_Y
PEM 20 MC2_Z
PEM 21 SEIS
disregard the last post regarding these channels by Jenne, since I am changing the ADAP channels all the time... |
748
|
Mon Jul 28 15:54:04 2008 |
Koji | Update | General | Abs. Len. Meas. ~ More on the beat / the PLL setup |
Alberto and Koji,
Last Friday evening, Koji found that the power adj setting (indicated by ADJ) of the NPRO was somehow set to be
ADJ=-45 and yielded the output power of about 200mW instead of 700mW. This is not good because too small pump power
varies thermal conditions of the crystal such as thermal lensing, thermal gradient, and os on. The ADJ setting and the
crystal temperature had been restored to ADJ=0 and LT=~48deg (nominal of the controller), respectively.
Today we tried the quest of the beating again and the above power setting helped a lot! The beating was immediately
found at LT=48.55deg that is very close to the laser's nominal temp. Also the beating got significantly bigger.
After the alignment adjustment 50%-intenisity modulated signal was obtained. From the power calculation it was
estimated that the power coupling of the injected beam is to be 12%~13%. This not so good yet, but something which we
can work.
This time the modulation structure of the PSL beam was clearly observed. I could obtain the beating of the injection
beam with the carrier, the upper/lower sidebands of the 33MHz and 166MHz modulations, and the 2nd order of the
33MHz. They were beautiful as if working with an OSA. Very nice.
In reality, those additional intenisty modulations as well as the residual 33MHz signal from the main IFO are
disturbing for the PLL to be locked at the proper frequency. So, now Alberto is working on a passive LPF with
notch at 33MHz. The design was already done. This allows us to work up to 20MHz and at the same time, provides
60dB attenuation at 33MHz (in principle). Very cool.
Koji, on the other hand, continued to work with the PLL servo with some ready-made passive filters. Owing to the
fillters, the error signal was cleaner and the PLL was locked at the proper frequency. The PLL setup is as attatched.
Sideband rejection filter will be replaced to Alberto's one. The photo is the display of the RF spectrum analyzer with
beat locked at 8MHz.
So the next step, we try to find the resonances of the arm cavity with the injection beam once the IFO comes back.
At the last of the experiment "Last autoalignment" was restored, the flipper for the
inj beam was down, and the shutter for the NPRO was closed. |
Attachment 1: PLL_setup.png
|
|
Attachment 2: beat_at_8MHz.jpg
|
|
749
|
Mon Jul 28 17:44:07 2008 |
rana | Update | PSL | PMC PZT v. temperature |
This plot shows that the PMC PZT has ~20 Vpp fluctuations on a 24 hour timescale
which is correlated to the 24 hour temperature fluctuations. By contrast, the MZ
has ~75 Vpp. |
Attachment 1: Untitled.pdf
|
|
750
|
Mon Jul 28 17:58:05 2008 |
Sharon | Update | | TOP screen changes |
I wanted to test the adaptive code with a downsampling rate of 32 instead of 16. To do this I entered a 32 Hz ((2048/32)/2 - match Nyquist Freq.) low pass filter on the ERROR EMPH, MC1 and the relevant PEM channels. |
754
|
Tue Jul 29 11:50:01 2008 |
Jenne | Update | Environment | 5.6 Earthquake |
Earthquake Details
Magnitude 5.6
Date-Time
* Tuesday, July 29, 2008 at 18:42:15 UTC
* Tuesday, July 29, 2008 at 11:42:15 AM at epicenter
Location 33.959°N, 117.752°W
Depth 12.3 km (7.6 miles)
Region GREATER LOS ANGELES AREA, CALIFORNIA
Distances
* 3 km (2 miles) SW (235°) from Chino Hills, CA
* 8 km (5 miles) SE (127°) from Diamond Bar, CA
* 9 km (5 miles) NNE (23°) from Yorba Linda, CA
* 11 km (7 miles) S (178°) from Pomona, CA
* 47 km (29 miles) ESE (103°) from Los Angeles Civic Center, CA
Location Uncertainty horizontal +/- 0.3 km (0.2 miles); depth +/- 1.3 km (0.8 miles)
Parameters Nph=144, Dmin=8 km, Rmss=0.42 sec, Gp= 18°,
M-type=local magnitude (ML), Version=1
Source
* California Integrated Seismic Net:
* USGS Caltech CGS UCB UCSD UNR
Event ID ci14383980
All the watchdogs tripped. I'll put them back after lunch, after the optics have had time to settle down. |
755
|
Tue Jul 29 13:54:08 2008 |
rana | Update | SUS | ETMY and PRM have EQ related problems |
The attached trend shows that ETMY and PRM both had large steps in their sensors
around the time of the EQ and didn't return afterwards. The calibration of the
OSEM sensors is ~0.5 mm/V. The PRM sensors respond when we give it huge biases
but there is very little change in the ETMY. Almost certainly true that the
optics have shifted in their wire slings and that we will have to vent to
examine and repair at least ETMY.
Jenne is looking at the spectra of the other suspensions to see if there is
other more subtle issues. |
Attachment 1: Untitled.png
|
|
756
|
Tue Jul 29 14:38:02 2008 |
rob | Update | SUS | ETMY and PRM have EQ related problems |
Quote: | The attached trend shows that ETMY and PRM both had large steps in their sensors
around the time of the EQ and didn't return afterwards. The calibration of the
OSEM sensors is ~0.5 mm/V. The PRM sensors respond when we give it huge biases
but there is very little change in the ETMY. Almost certainly true that the
optics have shifted in their wire slings and that we will have to vent to
examine and repair at least ETMY.
Jenne is looking at the spectra of the other suspensions to see if there is
other more subtle issues. |
Some additional notes/update:
ETMY, PRM, & MC2 had OSEM signals at a rail (indicating stuck optics). Driving the optics with full scale DAC output freed ETMY and MC2, so while these may have shifted in their slings it may be possible to avoid a repair vent. PRM is still stuck. One OSEM appears to respond with full range to large drives, but the other three face OSEMS remain disturbingly near the rail (HIGH, which is what would happen if a magnet fell off). |
757
|
Tue Jul 29 18:15:36 2008 |
rob | Update | IOO | MC locked |
I used the SUS DRIFT MON screen to return the MC suspensions to near their pre-quake values. This required fairly large steps in the angle biases. Once I returned to the printed values on the DRIFT screen (from 3/08), I could see HOM flashes in the MC. It was then pretty easy to get back to a good alignment and get the MC locked. |
758
|
Tue Jul 29 19:41:38 2008 |
Yoichi | Update | PSL | FSS loop transfer functions |
Last night I measured a bunch of transfer functions on the FSS loop.
All the loop gains were measured with the common gain = 30db and the fast gain = 18dB.
(1) The first attachment is the overall open loop transfer function of the FSS loop. I put a signal from the Test IN2 and observed signals from IN1 and IN2.
The UGF is about 180kHz.
By increasing the RF amplitude going to the EOM (i.e. increasing the sideband power), I can further increase the gain of the servo.
However, it made the PC drive immediately crazy. Probably it was some oscillation.
(2) Then I locked the ref. cav. with only the PZT actuator. I did so by simply unplugging the cable going to the PC.
Surprisingly, the cavity locked with the *same* gain setting as before. The second attachment shows the open loop transfer function measured in this configuration. It seems wrong, I mean, it should be unstable. But the cavity locked. A mystery.
(3) The third plot is the measured TF from the Test IN1 of the FSS board to the fast out (output to the PZT).
(4) By dividing the TF measured in (2) with the TF of (3), I got the response of the PZT times the cavity response. This is shown in the attachment 4.
(5) We can guess the open loop TF of the PC path by subtracting the TF in (2) from (1). It is shown in the attachment 5.
(6) The filter shape of the PC path is measured by injecting signal from the Test IN1 of the FSS board and observing it at the PC output. Since it is a high voltage output, I reduced the common gain to -8.5dB during the measurement. The attachment 6 is the measured filter shape. The gain is corrected to show what it should look like when the common gain = 30dB.
(7) By dividing (5) with (6), I plotted the response of the PC times the cavity response in the attachment 7. Since the 1/f cavity pole and the response of the PC, which is proportional to f, should cancel out, we expect a flat response above the cavity pole frequency (38kHz). You could say it is a sort of flat, if you have obscured eyes.
The measurement of the PZT open loop TF is very suspicious. According to this, the PC path has a very large gain even at very low frequencies (there is no cross over above 1kHz). This cannot be true. Maybe the cavity's optical gain was low when it was locked with only the PZT. I will re-measure it.
The plot (4) is also strange becaues it does not show the low pass feature expected from the cavity pole. |
Attachment 1: OverallOPLTF.eps
|
|
Attachment 2: OpltfPZTOnly.eps
|
|
Attachment 3: PZTFilter.eps
|
|
Attachment 4: PZTxCavityPole.eps
|
|
Attachment 5: OpltfPCOnly.eps
|
|
Attachment 6: PCFilter.eps
|
|
Attachment 7: PCxCavityPole.eps
|
|
759
|
Tue Jul 29 19:53:19 2008 |
Koji | Update | SUS | PRM photos from the south window |
Steve and Koji
We took some photos of PRM from the south window.
You can see one of the side magnets, a wire stand-off, and the wire itself from the round hole.
So, the wire looks OK.
For the coils, we could see only one coil. The magnet is apparently too high. |
Attachment 1: PRM_from_South_Window1.jpg
|
|
Attachment 2: PRM_from_South_Window2.jpg
|
|
760
|
Tue Jul 29 21:04:55 2008 |
Sharon | Update | | OSEM's Power Spectrum |
From 16:30 this afternoon |
Attachment 1: ITMY2.JPEG
|
|
Attachment 2: ITMY.JPEG
|
|
Attachment 3: ITMX2.JPEG
|
|
Attachment 4: ITMX.JPEG
|
|
Attachment 5: ETMY2.JPEG
|
|
Attachment 6: ETMY.JPEG
|
|
Attachment 7: ETMX2.JPEG
|
|
Attachment 8: ETMX.JPEG
|
|
761
|
Tue Jul 29 23:04:34 2008 |
Yoichi | Update | PSL | FSS loop transfer functions |
Quote: |
The measurement of the PZT open loop TF is very suspicious. According to this, the PC path has a very large gain even at very low frequencies (there is no cross over above 1kHz). This cannot be true. Maybe the cavity's optical gain was low when it was locked with only the PZT. I will re-measure it.
|
I measured it again and found that the loop was oscillating at 13.5kHz. I think this oscillation prevented the ref. cavity from building up the power and consequently lowered the optical gain making it marginally stable. So the PZT path open loop TF posted in the previous entry is wrong.
I was able to stop the oscillation by lowering the gain down to CG=-7.6dB and FG=-8.78dB.
The first attachment shows the measured open loop transfer function.
Since the gain setting is different from when the over all open loop TF was measured, I scaled the gain (attachment 2).
However, this plot seems to have too much gain. Scaling it down by 20dB makes it overlap with the over all open loop TF.
Maybe the gain reading on the EPICS screen is wrong. I will measure the actual gain tomorrow. |
Attachment 1: OpltfPZTOnlyRaw.eps
|
|
Attachment 2: OpltfPZTOnly.eps
|
|
762
|
Wed Jul 30 00:42:04 2008 |
rana | Update | SUS | Trends and file formats |
I propose that we do not use .eps format but .pdf instead. For images like the plots Sharon
has below we should use only .png and for pictures like what Steve posted, use JPG or PNG.
PDF is a standard and light weight. PNG is very good for plots/lines and is lossless. JPG does
a good job with regular camera pictures because we don't really care about the compression
loss on those.
Here's a trend of the UL sensors for all the optics - conversion is 32768 cts / mm. You can see
that the quake was just before 19:00 UTC (noon our time). The events an hour after are when
Rob, Jenne, and I start exciting the optics to shake them loose - wanging the pit/yaw sliders
around is not violent enough and so I injected a 130000 count sine wave at 0.5 Hz so as to
create a high force square wave. This seems to have worked for ETMY but no such luck yet with
the others. |
Attachment 1: Untitled.png
|
|
765
|
Wed Jul 30 12:36:19 2008 |
Sharon | Update | | Weekly update |
This week included many computer's issues. I tested Alex's new C code (the one that saves the FIR coefficients and restores them when you start running the code again). Seems there is an improvement in the adaptation time, but not a significant one (more details on the coming report). I had to recompile simulink and the FB whenever I wanted to find a solution for taking the record of those coefficients. This is so I could simulate the adaptive filter with a regular IIR filter and compare the two.
After Rob tried to help and it seems to be an impossible to a huge hassle mission, we thought of a different method to do this. I re-compiled the old simulink file and restored the .ini file and all should be back in place. Instead of finding the FIR coefficients, I am going to use one noise source in the adaptive filter, stop the adaptation (by setting mu and tau to 0), and put excitation instead of the noise signal. The transfer function I will get between the exc. and MC1_IN1 is the filter I am looking for.
Also seems that whenever I get the MC unstable, and the adaptive code stops itself, it doesn't come back. Setting the reset flag to a different number (anything other than 0) and pressing the reset button will get it working again, but the CPU will always flip and the ASS computer needed a restart. Still haven't found a problem in the C code, but that's the plan. Moreover, I want to change Alex's code, so that instead of starting from zero like in Matt's code, or starting from the old coefficients like in Alex's, it is going to calculate a Wiener Filter as the first set of coefficients. This will hopefully reduce the adaptation time.
I have also been working on my progress report, and stood in line for the MC... Still standing... |
766
|
Wed Jul 30 13:08:44 2008 |
Max Jones | Update | Computer Scripts / Programs | Weekly Summary |
This week I've been working on the noise budget script. The goal is to add Siesmic, Darm, Mich, Prc and magnetometer noise. I believe I've added Seismic noise in a reasonable and 40m specific manner (please see the attached graph). The seismic noise in the noise budget at 100 Hz was 10 times higher than that predicted by Rana in elog #718. This could be due to the fact that graph is taken from data today when the device is unlocked and construction workers are busy next door. I am currently trying to fix the getDarm.m file to add the DARM source to the noise budget. I have run into several problems, the most pressing of which was that the C1:LSC-DARM_ERR channel is zero except with the interferometer is being locked. According to Rob, we only save data for approximately a day (we save trends for much longer but this is insufficient for the noise budget script) and sometimes we are not locked the night before. Rob showed me how I may introduce an artificial noise in the DARM_ERR signal but I'm having trouble making the script output a graphic. I'm still unsure how to make the getDarm function 40m specific.
Today I will start working on my second progress report and abstract. |
Attachment 1: C1_NoiseBudgetPlot.pdf
|
|
771
|
Wed Jul 30 15:28:08 2008 |
rob | Update | LSC | Y arm locked |
By using a combination of the SUS-DRIFT mon screen and the optical levers (which turned out pretty well) I steered the BS, ITMY, and ETMY back to their previous positions, and was able to lock the Y arm. The "Restore Y Arm" script on the IFO_CONFIGURE screen works. I couldn't test the alignment script, as a dump truck/construction vehicle showed up and started unlocking the MC. |
772
|
Wed Jul 30 16:35:56 2008 |
Eric | Update | PSL | PMC Scan Graphs |
Graphs of the PMC scan data that I got earlier today.
PMCLongScanWide.tiff shows the transmission intensity and PZT voltage plotted against time for a longer scan of the PMC (~120 seconds for one sweep).
PMCLongScanPeak.tiff is the same scan zoomed in on the primary peak. This scan was done with the laser power at around 1/3 its original value. However, scans done at around 1/6 the original value have peaks that are just as messy.
PMCShortScanWide.tiff shows the intensity and voltage for a more rapid scan (~30 second for one sweep). The black lines show how the peak positions are at very different PZT voltages (a difference of ~10 volts in both cases).
PMCShortScanPeak.tiff is zoomed in on the primary peak. The peak is much cleaner than for the long scan (less time for the laser's heat to expand the mirror?), though it is likely still too messy to reliably fit to a lorentzian. |
Attachment 1: PMCLongScanPeak.tiff
|
Attachment 2: PMCLongScanWide.tiff
|
Attachment 3: PMCShortScanPeak.tiff
|
Attachment 4: PMCShortScanWide.tiff
|
774
|
Thu Jul 31 10:24:32 2008 |
Koji | Update | General | IFO status |
Last night I used the Y-arm for the abs length measurement. The Yarm was aligned by the script.
I left the ifo with the Yarm locked as it is the only meaningful configuration so far. |
775
|
Thu Jul 31 10:27:17 2008 |
rana | Update | PSL | PMC Scan Graphs |
Quote: | Graphs of the PMC scan data that I got earlier today.
|
On the UNIX computers, one can use 'convert' to change these to PNG. A DC offset should be added to the transmitted
light so that the scan can be plotted with a log y-scale. And, of course, Acrobat can be used to make it into a
single PDF file.
The PMC scan always has this distortion and so the input power has to be decreased to a few mW to reduce the
thermal expansion effect; the expansion coefficient for SiO2 is ~5 x 10^-7 / K and we're worried about nm level
expansions. |
776
|
Thu Jul 31 11:19:30 2008 |
Koji | Update | General | Abs. Len. Meas. ~ Resonance search trial |
Last night, I tried to find the resonance of Yarm by sweeping the frequency of the injection beam.
A strong beat was present at LT_NPRO=48.7856[C_deg], the power coupling of the injection beam was estimated to be 35%.
(Vmax_beat = 1.060[V], Vmin_beat = 0.460[V], Vno_inject = 0.664[V])
The Yarm was locked and the alignment script was executed. The PLL between the PSL beam and the injection beam was
somehow locked.
I tried to scan the freq offset (f_PLL) at around 3.88MHz first, then at around 15.52MHz. They are supporsed to be the
first and fourth FSR of the Yarm cavity. The Yarm transmitted power (DC) was observed to find the resonance of the
injection beam. It would have been better to use the RF power, but so far I didnot have the RF PD prepared at the end
transmission. I just used the DC power.
I think I saw the increase of the transmitted power by 10%, at f_PLL = 15.517 +/- 0.003 [MHz]. This corresponds to the
arm cavity length of 38.640 +/- 0.007 [m]. The previous measurement was not so bad!
Y-arm length
e-log length [m]
-----------------------
556(2008-Jun-24) 38.70 +/- 0.08 Cavity swinging measurement
556(2008-Jun-24) 38.67 +/- 0.03 tape & photo
This 38.640 +/- 0.007
However, I had difficulties to have more precise measurement mainly because of two reasons:
o The PLL servo is too naive, and the freqency stability of the inj beam is not enough.
The injected beam should have the linewidth (=freq stability) narrower than the cavity linewidth.
o The PLL servo may experience change of the transfer function at around the resonance. The PLL works the other
frequencies. However, close to the resonance, it starts to be unstable.
So the next stuffs we should do is
o Build the PLL just using the incident beams to the ifo, not by the reflected beams.
o Build sophisticated servo to have better frequency stability.
o RF PD at the transmission.
Left the lab with Yarm locked, flipper down, shutter for the NPRO closed. |
782
|
Sat Aug 2 12:53:43 2008 |
Koji | Update | General | Abs. Len. Meas. ~ New PLL at the PSL table |
Report of the work last night:
The new heterodyne interferometer on the PSL table was built.
The length of the Yarm cavity was measured with better precision.
-------------
Yarm is locked. The injection beam was aligned. The beat was there at around LT=48.9 [C_deg] of the NPRO.
The new PLL setup on the PSL table has been built. The two beams from the MC incident beam and the injection beam are
mode-matched with lenses. I measured the Rayleigh ranges of the beams by a sensor card and my eyes, and then placed
appropriate lenses so that they can have 5~6 [m] Rayleigh range. They looks a bit too thick but just ok for an inch
optics. The new PLL setup shows ~70% intensity modulation which is enormous. The servo is still SR560-based so far.
Now the PLL has no singular frequency within its range. I could sweep the 4th FSR of the cavity with 500Hz interval. I
was still observing at the transmitted DC.
At each freqency from 15.51MHz to 15.52MHz, a timeseries data of the Yarm transmitted was recorded at sampling of 32Hz for 10
seconds. The figure shows the averaged values of the transmitted DC with errors. An increase of the transmitted power by
3-4% was found. If we consider the resonance is at f_PLL = 15.515 +/- 0.0005 [MHz], this indicates the
arm cavity length of 38.6455 +/- 0.0012 [m].
Y-arm length
e-log length [m]
-----------------------------
556 38.70 +/- 0.08 Cavity swinging measurement
556 38.67 +/- 0.03 tape & photo
776 38.640 +/- 0.007 Beam injection, poor PLL, Transmitted DC
this 38.6455 +/- 0.0012 Beam injection, independent PLL, Transmitted DC
-----------------------------
NEXT STEPS:
o RF detection at the transmitted
o Better PLL: PLL stability (in-loop / out-of-loop)
o Measurement for the 1st~3rd FSR
o Reproducibility of the measurement
o Higher order mode search
o Check the acuuracy and presicion of the Marconi |
Attachment 1: yarm_dc.png
|
|
785
|
Sat Aug 2 18:37:41 2008 |
rana | Update | SUS | OSEM Spectra |
The attached PDF file is from the .xml files that I found from 7/30. Looks like someone
took some free swinging data and even made nice plots but didn't elog it. Raspberry for you.
The data files are saved in Templates/FreeSwinging/{ETMX,ETMY,etc.}/2008_07_30.xml
The top left plot on the multi-page file all have the same scale so you can see what's happened.
The peaks should all be as measured by Busby in Sep '06
but instead they are as you see here. |
Attachment 1: free_080730.pdf
|
|
787
|
Mon Aug 4 00:37:58 2008 |
Koji | Update | General | Abs. Len. Meas. ~ RF PD at the Y end / Manual frequency scan |
Work log on August 2nd
o Just remind you:
The idea of the absolute length measurement was to detect an RF beat between the injection beam and the PSL beam by resonating both of the beams to the cavity at the same time, but on different londitudinal modes. From the frequency separation between the two beams, we get the FSR of the cavity. In order to have an injection beam with stable frequency separation, a heterodne interferometer was built at the PSL table, and the PLL servo is used to control and stabilize the frequency of the inj. beam.
----------
o An RF PD (Tholab PDA255) and a steering mirror were placed at the Yarm END. Fortunately, I found that an unused BS was already in the optical path. There was a beam block which dump the reflection of the BS and some stray lights of the OPLEV. I moved the beam block to make the BS reflection available, as well as to block the OPLEV stray light still (Photo1). In order to have the RF signal from the PD, a long BNC cable was laid along the Yarm. I did't know any better idea than this. Don't blame me.
o To have an intuitive interpretation of the beat frequency, the injection beam was set to be at higher frequency than the PSL beam. How did I confirm this? When the crystal temp (LT) of the NPRO was tuned to be higher, the beat frequency got lower.
o Frequency of the PLL was manually swept at around 15.51MHz where the 4th FSR was expected to be found. I could see strong RF peak at that frequency! When I tuned the PLL frequency, the peak height changes dramatically! Too cool!
o The amplitude of the RF peak was measured by an RF spectrum analyzer. I did all of this scan by my hands and eyes. The center frequency of the 4th FSR was 15.5149MHz. From the eye I would say the error is +/-150Hz. It is OK so far although I am not sure statistically this is correct or not. This corresponds to the length of 38.64575 +/- 0.00037 [m].
o All of the past measurements are fairly consistent.
Y-arm length
e-log length [m] Measurement Conditions
----------------------------------------------------------------------------------------
556(2008-Jun-24) 38.67 +/- 0.03 Cavity swinging measurement
776(2008-Jul-31) 38.640 +/- 0.007 Beam injection, poor PLL, Transmitted DC
782(2008-Aug-02) 38.6455 +/- 0.0012 Beam injection, independent PLL, Transmitted DC
this(2008-Aug-04) 38.64575 +/- 0.00037 Beam injection, independent PLL, Transmitted RF
---------------------------------------------------------------------------------------- |
Attachment 1: YEND_LAYOUT.png
|
|
Attachment 2: 4th_FSR1.png
|
|
Attachment 3: 4th_FSR2.png
|
|
789
|
Mon Aug 4 05:23:57 2008 |
Koji | Update | General | Abs. Len. Meas. ~ Measurement for Y-arm completed |
Finally, I have completed the abs length and g-factor measurements for Y-arm.
>>>GO FOR THE VENT<<<
I will report the results later.
Some notes on the status:
o Y-arm was aligned at the end of the experiment by the script. The values were saved.
o At the AP table, the injection beam and the flipper were left aligned so that the inj. beam can be used as a reference of the SRM and the ITMs. But the shutter of the NPRO was closed.
o The experiment setup was mostly left at the side of the AP table. I tried not to disturb the walk as much as possible.
o The long cable from the Y-end was wound and placed at the Y-end. The knife-edge was left on the Y-end bench. It is not disturbing any beam. |
793
|
Mon Aug 4 21:48:24 2008 |
Koji | Update | General | Abs. Len. Meas. ~ Scan for TEM00/01/10 |
Work log on August 3rd - Part2
o I tried to measure the frequency of the FSRs using TEM00 resonances. Also search of TEM01/TEM10 resonances were tried.
-----------
Measurement for TEM00
o The frequency of the injection beam was scanned from 2MHz to 20MHz using the LabVIEW panel with GPIB. The 1st figure attached below is the result of the scan. Equispaced peaks were found as expected. The interval of the peaks are about 3.89MHz. Each peaks were measured with freq intervals of down to 50Hz. I will analyze the center frequency of the peaks precisely later in order to have a final result.
Measurements for TEM01/TEM10
o The beam injection technique is thought to be useful for measureing the frequency of the higher-order resonances. In order to measure the higher-order resonances the modifications of the experimental setup were applied as below.
1) For TEM10 (the beam like "OO" shape), a razor blade which blocked the horizontal half of the transmitted beam was placed. We needed to disturb half of the beam because the beat between the PSL TEM00 and the injection TEM01 cancels if the PD receives all of the light.
2) The injection beam is slightly misaligned in the horizontal direction in order to enhance the coupling of the injection beam to the cavity TEM01 mode.
3) For TEM01 (the beam like "8" shape), a razor blade cutting the vertical half and the misalignment of the inj beam in the vertical direction are applied.
o The frequency of the injection beam was scaned from 1st FSR of TEM00 in the upward direction. The alignment of the arm cavity was left untouched during the measurement. As shown in the 2nd figure attached below, the resonances were found about 1.19MHz away from the TEM00, but they are separated by about 19kHz(!). This could be split of the degenerated modes which corresponds to the difference of the mirror curvature in two directions! This difference is something like 56 m and 57 m. Can you believe this?
(To be continued to the next entry) |
Attachment 1: TEM00.png
|
|
Attachment 2: TEM01.png
|
|
Attachment 3: knife_edge.png
|
|
794
|
Mon Aug 4 22:31:10 2008 |
Koji | Update | General | Abs. Len. Meas. ~ Simple Test for TEM01/10 split |
Work log on August 3rd - Part3
Question:
o The TEM01 and TEM10 of the Yarm were found to split with 19kHz separation. Is this true?
o In which direction the eigenmodes are?
Thought:
o The separation of 19kHz is a kind of too big because the cavity bandwidth is several kHz.
o This means that "TEM01 and TEM10 can not resonate at the same time (by the PSL beam)".
Test:
o Imagine we are just using the PSL beam and playing with an arm cavity.
o Tilt the end mirror in pitch. Resonate the TEM01 mode (8-shaped).
o Then tilt the end mirror in yaw.
o a) If the resonances are degenerated within the bandwidth of the laser, it rotates freely.
o b) If the resonances splits, the tilt in yaw does not change the shape. Then suddenly jumps to TEM10 (by an accident).
Result:
o The shape does not change. Just jumps to the other mode. (The case above b.)
o The eigenmode looked like quite horizontal and vertical.
Conclusion: the mode really splits. |
Attachment 1: TEM01_10.png
|
|
795
|
Tue Aug 5 00:05:57 2008 |
Koji | Update | General | Abs. Len. Meas. ~ IFR2023A calibration |
Work log on August 4th
o IFR2023A (Marconi) was calibrated by the SR620 frequency counter which is locked to the GPS signal.
o The frequency of the IFR2023A was scanned from 1MHz to 20MHz with 1MHz interval. The readout of the frequency counter was recorded.
o The linear fit was taken.
f_freq_count = K0 + K1 * f_IFR [Hz]
K0 = 0.00 +/- 0.02
K1 = 0.999999470 +/- 0.000000001
o So, the IFR seems to have -0.5ppm systematic error. |
797
|
Tue Aug 5 10:23:00 2008 |
steve | Update | SUS | earthquake and venting effects |
atm 1, EQ
atm 2, vent 7 days later: venting kicks optic into place to be free,
PRM: LR magnet gets pushed in and it is stocked, side in free |
Attachment 1: eq4h.jpg
|
|
Attachment 2: vent4hr.jpg
|
|
799
|
Tue Aug 5 12:52:28 2008 |
Yoichi | Update | SUS | ITMX, SRM OSEM spectra |
Free swinging spectra of ITMX and SRM.
ITMX seems to be ok after yesterday's work, though the OSEM DC values are still a bit off from the normal value of 0.9.
(ITMX OSEM values: UL=1.12, UR=1.38, LR=0.66, LL=0.41, SIDE=0.66)
SRM is still clearly wrong. |
Attachment 1: ITMX-2008_08_05-morning.pdf
|
|
Attachment 2: SRM-2008_08_05-morning.pdf
|
|
801
|
Wed Aug 6 11:10:34 2008 |
Koji | Update | General | Abs. Len. Meas. ~ analysis of the TEM00 scan |
Analysis of the data on August 3th ~ Part 1
From the measurement of the 5 FSRs, the FSR frequency for the Yarm cavity was estimated as
f_FSR = 3878678 Hz +/- 30 Hz
and the Yarm length is
L_yarm = 38.6462 m +/- 0.0003 m
This is the precision of 8ppm. In my opinion, this is a satisfactory result for our purpose.Y-arm length
e-log length [m]
-----------------------------
556(2008-Jun-24) 38.70 +/- 0.08 Cavity swinging measurement
556(2008-Jun-24) 38.67 +/- 0.03 Tape & photo
776(2008-Jul-31) 38.640 +/- 0.007 Beam injection, poor PLL, Transmitted DC
782(2008-Aug-02) 38.6455 +/- 0.0012 Beam injection, independent PLL, Transmitted DC
787(2008-Aug-04) 38.64575 +/- 0.00037 Beam injection, independent PLL, Transmitted RF
this(2008-Aug-04) 38.6462 +/- 0.0003 Beam injection, independent PLL, Transmitted RF, five FSRs, freq calibrated
----------------------------- ----------------
o According to the entry 795, all of the scan frequency was calibrated.
o The five peaks of the scanned data for TEM00 were fitted. Each peak was fitted by the following formula:
V(f) = A / Sqrt(1 - ((f-f0)/fc)^2)
Variable
f: scan frequency
Parameters
A: peak amplitude
f0: center frequency
fc: half bandwidth of the peak for -3dB
o The results are shown in the attached figure 1. They look very similar each other but they are different plot! The fittings were extremely good. The center frequencies estimated were as follows:
FSR1: 3879251.9 Hz +/- 8.8 Hz
FSR2: 7757968.1 Hz +/- 10.8 Hz
FSR3: 11636612.9 Hz +/- 10.2 Hz
FSR4: 15515308.1 Hz +/- 8.7 Hz
FSR5: 19393968.7 Hz +/- 8.4 Hz
o The FSR frequencies were fitted by a line. The fitting and the residuals are shown in the attached figure 2.
The fitting results were
f_FSR(n) = 586.4 + 3878678 * n
This means that:
o FSR frequency was 3878678 [Hz].
o The lock of the carrier had detuning of 586 [Hz].
The detuning of the carrier from the resonance can be explained by the alignment drift. In deed, at the end of the measurement, decrease of the transmitted power by -15% was found. Then, the frequency of the 1st FSR was measured before and after the alignment adjustment. This changed the frequency of the FSR1 by 350Hz. This change could not be explained by the cavity length change as this is too big (~3.5mm).
Actually, the spacing of the cavity length is more stable. The residual is rather scattered with in 20-30Hz. So, I took the error of 30Hz as the whole precision of the frequency measurement that includes the fluctuation of the alignment, the cavity length itself, and so on. This yields the FSR and the cavity length of
f_FSR = 3878678 Hz +/- 30 Hz
L_yarm = 38.6462 m +/- 0.0003 m . |
Attachment 1: TEM00fit.png
|
|
Attachment 2: TEM00FSRfit.png
|
|
802
|
Wed Aug 6 11:43:52 2008 |
Koji | Update | General | Abs. Len. Meas. ~ analysis of the TEM01 scan |
Analysis of the data on August 3th ~ Part 2
o I already have reported that the resonant freq of TEM10 and TEM01 split.
o Again, note that TEM10/01 were arranged almost in the horizontal/vertical by the observation of the video.
o The peaks of TEM10 and TEM01 were fitted with the same method as of TEM00.
o The peak freqs were:
f_TEM10: 5087040 Hz +/- 20 Hz
f_TEM01: 5068322 Hz +/- 15 Hz
The split is 18.7kHz.
o The additional parameter from the previous entry:
f_TEM00: 3879252 Hz +/- 9 Hz
L_yarm: 38.6462 m +/- 0.0003 m
o Radius of curvature
Rx = L /(1-Cos^2(Pi (f_TEM10 - f_TEM00) / (c/L/2) ))
Ry = L /(1-Cos^2(Pi (f_TEM01 - f_TEM00) / (c/L/2) ))
from these formula we get the value
Rx = 56.1620 +/- 0.0013 [m]
Ry = 57.3395 +/- 0.0011 [m] |
Attachment 1: TEM01fit.png
|
|
803
|
Wed Aug 6 13:15:57 2008 |
Yoichi | Update | SUS | SRM ETMX freeswing spectra |
After yesterday's work on the SRM, I took free swinging spectra of SRM.
The eigen modes look ok. But there are many other peaks which were not present in vacuum.
Some of those peaks may be resonances of the air inside the chambers and the pipes.
However, the peaks around 0.2Hz are too low frequency for those air compression modes.
I took the ETMX spectra at roughly the same time. I chose ETMX because we have not touched it after the vent.
ETMX also shows some extra peaks but the frequencies are different. |
Attachment 1: SRM-ETMX-freeswing.pdf
|
|
805
|
Wed Aug 6 19:01:15 2008 |
Alberto | Update | General | ITMX and SRM OSEM post-earthquake diagnostic |
Koji, Yoichi, Alberto
Today we reset the OSEMs on ITMX and SRM in order to be centered when the mirrors are aligned to the IFO beam. Since the PRM is still out of order, we used the beam from NPRO laser of the absolute length measurement experiment as it is injected through the AS port.
That’s how we did it:
1) We aligned the SRM so that the reflected beam from the NPRO was at the camera after at the AS port.
2) We traded off the alignment of SRM in order for the reflected beam at the camera to have a nice shape, avoiding any clipping from the optics, and for the optical lever to be not too far from zero. The final alignment for SRM, as read on the sliders on the MDM screen, is: Pitch=1.1650, Yaw=1.4674.
3) We aligned ITMX checking out by an IR card that the incoming and the reflected main beam in between ITMX and the BS matched. The alignment of the two beams was improved checking the matching after the SRM. The final alignment for ITMX, as read on the sliders on the MDM screen, is: Pitch=-1.2937, Yaw=-0.9890.
4) After the alignment of SRM and ITMX these were the voltages at the OSEMs:
SRM
UL=0.957
UR=1.254
LR=0.768
LL=0.620
Side=0.958
ITMX
UL=1.144
UR=1.360
LR=0.591
LL=0.325
Side=-----
5) Finally we centered the OSEMs on both mirrors and we read these voltages:
SRM
UL=0.939
UR=0.994
LR=0.782
LL=0.938
Side=0.953
ITMX
UL=0.918
UR=0.891
LR=0.887
LL=0.875
Side=0.883 |
806
|
Wed Aug 6 22:19:07 2008 |
Yoichi | Update | SUS | BS alignment |
Koji, Yoichi
We realized that we did not pay attention to the BS alignment while working on the alignment of the ITMX today. Because we were injecting the ALM laser (absolute length measurement laser) from the AS port, the ITMX alignment depends on the BS alignment.
The BS optical lever was not centered and the sum was about 2000cnt, which is low compared, for example, to the SRM oplev.
So we were not sure if the BS was in a good alignment or not.
So we decided to move the BS to center the QPD.
In doing so, we also moved the ITMX so that we do not lose the ALM laser beam coming back to the AS port.
When the BS oplev was centered, the sum of the QPD was still about 2000. So it was not far off centered.
After the tweaking, we were able to see some interference between the light reflected by the ITMY and ITMX at the AS port (actually this is the bright port for the ALM laser). By tweaking the ITMY, we were able to see Michelson fringes at the AS port.
If we believe the ALM laser alignment is still good after the vent, the ITMX, ITMY, BS and SRM should be now in a good alignment condition.
The OSEM values for the ITMX, BS, SRM seem to be ok (0.9+/-0.2). The ITMY LL is a bit low (~ 0.45). |
807
|
Thu Aug 7 10:07:13 2008 |
Yoichi | Update | SUS | Free swinging OSEM spectra |
Looks like there are more extra peaks in the SRM than other optics.
Maybe because it is closer to the door ? |
Attachment 1: FreeSwingSpectra.pdf
|
|
808
|
Thu Aug 7 10:27:59 2008 |
rana | Update | SUS | Free swinging OSEM spectra |
Sometimes we see extra peaks in the OSEM spectra coming from a beat between the regular eigenmodes.
This probably comes from the OSEM shadow sensor not being entirely linear - the nonlinearity is
greatly increased if the magnet is not perfectly centered in the LED beam. So the beats are
probably there at some level in all of them; usually below the noise. |
810
|
Thu Aug 7 12:20:52 2008 |
Yoichi | Update | SUS | PRM stand-offs and wire |
We removed the side OSEM of the PRM so that we can see the stand-off on the farther side.
Attachment 1: Farther side stand-off from an angle before removing the OSEM
Attachment 2: Farther side stand-off through the empty OSEM hole.
Attachment 3: Near side stand-off
The wire is definitely in the near side stand-off groove.
Probably the wire is in the groove also on the farther side. |
Attachment 1: IMG_1456.JPG
|
|
Attachment 2: IMG_1478.JPG
|
|
Attachment 3: IMG_1470.JPG
|
|
811
|
Thu Aug 7 17:32:23 2008 |
Jenne | Update | SUS | Afternoon PRM activities |
Rana, Jenne, Yoichi, Dmass
After Yoichi confirmed this morning that the wire was in both grooves, Rana attempted to lift the PRM a tiny bit, and twist it around (very gently of course) to see if we could make the wire slip back to its nominal position underneath the optic. On the first attempt, the wire ended up slipping the wrong way, causing slightly more tilt. On another attempt, the wire came out of the groove nearest the chamber door by about 0.5mm. We got the wire back in the groove by slightly lifting the optic, and pushing the wire back in. Then, on further attempts at making the wire slip back to its nominal position, the wire came out of the groove farthest from the chamber door. It is very difficult to get at that side of the PRM, because the table is crowded, and it is on the far side of the optical table from the chamber door. We decided to pull the PRM out of the chamber. Rana clamped the mirror into its cage using the earthquake stops and removed the OSEMS, and then we pulled the mirror out. We put it on a cart that was covered with foil and had a little foil house for the optic cage. We rolled the mirror+cage over to the flow bench at the end of the y-arm.
We saw that the wire is no longer even on the standoff (~3mm away from the groove) on the side that was farthest from the chamber door.
Since we have not confirmed that we have spare wire and spare magnets (and due to the time of day), we have decided to cover the cage with some foil, while it is sitting on the flow bench, and we'll fix the wire in the morning. |
812
|
Fri Aug 8 09:54:10 2008 |
rana | Update | Cameras | New code + gstreamer allows for easy saving and compression of images |
Quote: | Modified the CamSnap code to output the image data stream to standard out. This can then be piped into a gstreamer plugin and then be used |
Didn't work; Prosilica has only 1 "l". Even so, sshing from op440m to mafalda, I got this:
mafalda:SnapCode>CamSnap -F 'Mono8' -c 44058 -E 5000 -X 0 -Y 0 -H 480 -W 752 -l 0 -m 300 | gst-launch-0.10 fdsrc fd=0 blocksize=360960 ! video/x-raw
-gray, height=480, width=752, bpp=8,depth=8,framerate=30/1 ! ffmpegcolorspace ! theoraenc ! oggmux ! filesink location="./testVideo.ogm"
Setting pipeline to PAUSED ...
Pipeline is PREROLLING ...
** (gst-launch-0.10:27121): WARNING **: Size 60 is not a multiple of unit size 360960
Caught SIGSEGV accessing address 0x487c
ERROR: from element /pipeline0/ffmpegcsp0: subclass did not specify output size
Additional debug info:
gstbasetransform.c(1495): gst_base_transform_handle_buffer (): /pipeline0/ffmpegcsp0:
subclass did not specify output size
ERROR: pipeline doesn't want to preroll.
Setting pipeline to NULL ...
#0 0xffffe410 in __kernel_vsyscall ()
#1 0xb7deddae in __lll_mutex_lock_wait ()
#2 0xb7de9aac in _L_mutex_lock_51 () from /lib/tls/i686/cmov/libpthread.so.0
#3 0xb7de949d in pthread_mutex_lock ()
#4 0xb7e452e0 in g_static_rec_mutex_lock () from /usr/lib/libglib-2.0.so.0
#5 0xb7f1fa08 in ?? () from /usr/lib/libgstreamer-0.10.so.0
#6 0x080c1220 in ?? ()
#7 0x00000001 in ?? ()
#8 0x0809586c in ?? ()
#9 0x00000001 in ?? ()
#10 0x08095868 in ?? ()
#11 0xb7f7a2a8 in ?? () from /usr/lib/libgstreamer-0.10.so.0
#12 0xb7e8da80 in ?? () from /usr/lib/libglib-2.0.so.0
#13 0xb7f7a2a8 in ?? () from /usr/lib/libgstreamer-0.10.so.0
#14 0xb7f7a2a8 in ?? () from /usr/lib/libgstreamer-0.10.so.0
#15 0x00000000 in ?? ()
Spinning. Please run 'gdb gst-launch 27121' to continue debugging, Ctrl-C to quit, or Ctrl-\ to dump core.
Caught interrupt --
|
814
|
Fri Aug 8 11:04:34 2008 |
Sharon | Update | | MCL Wiener filter |
I took some old data from Rana and converted the units of the Weiner filter to m/m so to make the effect of the seismometer and accelerometers more obvious.
The data is in counts, and so to convert to m this is what I did:
%%% MC_L calibration
v_per_counts = 5/32768;
v_per_v = 3;
amp_per_N = 1/0.064;
%%% Accelerometers calibration
v_per_counts_acc = 61.045e-6;
g_per_v = 9.8/100;
%%% Seismometer calibration
v_per_counts_seis = 61.045e-6;
m_per_s_per_s_per_volt = 9.8/100;
m_per_v_per_s = 1/345;
for jj=1:6
hfmatm(:,jj)=hfmat(:,jj).*(v_per_counts.*v_per_v.*amp_per_N.*f)./(v_per_counts_acc*g_per_v); %%% accelerometers' data
end
hfmatm(:,7)=hfmat(:,7).*(v_per_counts.*v_per_v.*amp_per_N)./(v_per_counts_seis*m_per_v_per_s); %%% Seismometer data |
Attachment 1: m_per_m.png
|
|
816
|
Fri Aug 8 13:29:54 2008 |
Yoichi | Update | SUS | No groove in the stand-off ... wait, it is not even a stand-off ! |
Yoichi, Steve, Seiji
We took magnified pictures of the stand-offs of the PRM.
Attm1: North side stand-off.
Attm2: South side stand-off.
Attm3: Zipped file of the full pictures.
We found no groove in the south side stand-off.
After some discussion, we concluded that it is actually a guide rod. You can see it from the size difference (the magnification is the same for the two pictures).
The stand off on the south side is missing (fell off, ran away, evaporated or whatever ...).
Also we noticed that the guide rod on the north side is missing.
We have to find a stand-off and place it on the south side.
Seiji suggested that it is better to put a guide rod next to the north side stand-off, otherwise the stand-off itself is too weak to hold the load.
He also said that the PRM was installed after he left, so it was not his fault. |
Attachment 1: north-standoff-preview.jpg
|
|
Attachment 2: south-standoff-preview.jpg
|
|
Attachment 3: No-groove.zip
|
817
|
Fri Aug 8 15:10:35 2008 |
Yoichi | Update | SUS | No groove in the stand-off ... wait, it is not even a stand-off ! |
I tried to find the missing stand-off and the guide rod in the BS chamber, but I couldn't. |
818
|
Fri Aug 8 17:54:52 2008 |
Jenne | Update | SUS | Standoffs and Guide Rods |
After closer inspection of other small optics, it is clear that the guide rods should be above the standoffs on our small optics. Yoichi took a picture of the SRM that shows this clearly. This makes sense since the tension of the wire will make the standoff 'want' to go up during pre-epoxy adjustment, so the guide rod prevents the standoff from popping up and out.
Looking at the side of the PRM without the groove, it looks like there is lots of space between the guide rod and the alignment etch in the glass, so we can just place a standoff directly under the guide rod that is present.
A spare standoff is being shipped tomorrow morning, so we should have it by Monday for installation on the PRM. |
Attachment 1: SRM_Standoff_and_guide.JPG
|
|