40m QIL Cryo_Lab CTN SUS_Lab TCS_Lab OMC_Lab CRIME_Lab FEA ENG_Labs OptContFac Mariner WBEEShop
  40m Log, Page 78 of 344  Not logged in ELOG logo
ID Date Authorup Type Category Subject
  11118   Sun Mar 8 01:27:01 2015 JenneConfigurationLSCCARM and DARM on RF signals!!!!!!!!!!!!!!!!!!!!

I have in my notebook that at 9:49pm CARM was no longer using ALS as an error signal, and at 9:50pm, DARM was no longer using ALS as an error signal.  It looks like I was locked for 3+ minutes after getting to RF-only signals.

The increase in power near the end of the lock stretch was me trying to improve the dark port contrast by touching the ETMX alignment.  DARM was definitely oscillating as I improved the dark port contrast, so I was trying to hand-lower the gain as I worked on the alignment.

Attachment 1: RFlock3min.png
RFlock3min.png
  11119   Sun Mar 8 03:27:48 2015 JenneUpdateLSCError signal blending for CARM/DARM transitions

This elog will be about work that happened yesterday.  I will write a reply to this with work from this evening's success.


[Rana, Jenne]

Work started with the plan of trying ALS fool, using the new triggering scheme (elog 11114).

The PRMI was having a bit of trouble holding lock with REFL165, so we checked its demod phase.  On Monday (elog 11095) we rotated the REFL165 phase from -91 deg to -48 deg while in PRFPMI configuration (I think the -91 was from PRMI-only phase setting).  However, Friday night we saw that MICH was super noisy, especially when the CARM and DARM offsets were near zero.  Rana rotated REFL165's phase until the MICH noise seemed to get lower (by at least an order of magnitude in the control signal), while we were at zero offset everywhere. We were not driving and looking at any lines/peaks, just the overall spectra.  The final REFL165 demod phase is -80. 

We tried engaging the fool path with no success. 

First, Rana moved the low frequency boost in the MC filter bank from 20:1 to 0.3:0.03.  This gave the whole loop at least 20 or 30 degrees of phase at all frequencies below the design UGF (a few hundred Hz?  Don't quite remember).  To check this, we put in a "plant" filter, and turned on the locking filter (3:3000^2) and the low freq boost and the plant, and the phase never touched 180 at any low freq.  This is so that we can ramp on this filter bank's gain without having an unstable unity gain crossing anywhere.  Also, I added two +10dB filters to the first two filter modules, so that we could ramp on the gain at the input rather than the output.

Last night we were actuating CARM on MC2 and DARM on the ETMs, and the MC filter bank was set to actuate on MC2.  Even with super duper low gain in the MC filter bank, so that the control signal was much less than one (1) count, it would make CARM unhappy.  The CARM filter bank's output was doing +/- a hundred or more counts, so why a few tenths of a count mattered, we couldn't figure out.  We were using the power trigger for the MC filter bank, but not the zero-crossing trigger.  Since the fool tuning was checked while actuating on the ETMs, we wonder if maybe the tuning isn't valid for MC2 actuation?  Maybe there's enough of a difference between them that the fool needs to be re-tuned for MC2 actuation?  Fool had the complex pair of poles at 1Hz, the "comp1" filter to give phase lag, and a gain of 22. 

I think that at some point we even turned off the fool path, but left the MC path on with a little bit of gain, and the audible noise over the speakers didn't seem to change in character at all. Weird. 


We ended up leaving the fool path for another time, and started working on error signal blending at the CARM filter bank input.  This is pretty similar to Kiwamu's self-locking principle.

Our goal was to ramp up the gain of the RF error signal at low frequency, while letting ALS keep hold of things at higher frequencies. 

CARM and DARM sweeps from earlier seemed to indicate that the RF signals are valid without normalization above transmitted powers of 50 or so, so we thought we'd give those a whirl for this error signal blending.

From doing a CARM sweep through resonance, we guessed roughly that the REFL11 (non-normalized) slope was about a factor of 10,000 larger than the ALS slope.  We put a 1e-4 into the input matrix element REFL11I -> CARM_B.  For some reason, REFL11 seemed to be centered around -250 counts, so we put an offset of +0.025 ( = 250*1e-4) into the CARM_B filter module to compensate for this. 

Since we thought that a gain of 1 in the CARM_B filter bank would make it equal to ALS, we tried some lower gains to start with.  0.3 kicked it out of lock, so we ended up liking and using 0.15.  With this low gain on, we tried turning on a low frequency boost, 20:1, but that didn't do very much.  We turned that off, and instead turned on an integrator, 20:0, which totally made things better.  The transmitted arm power was staying higher more of the time.

From a DARM sweep, we thought that AS55Q (non-normalized) should also have an input matrix element of 1e-4 for DARM.  We gave DARM_B a gain of 0.1, which seemed good and not too high.  Again, trying the gentle boost didn't do much, so we went with the integrator. 

At this point, since both RF signals were being used as error signals with integrators, we declared that at least at DC we were on RF signals.  Hooray!! 

After this, we started increasing the CARM_B gain a little, and decreasing the CARM_A gain.  When Rana finally set the CARM_A element to zero, we lost lock.  We realized that this is because we didn't include a zero to compensate for the arm cavity pole, which the IR signal will see, but the ALS won't. 

We decided that the plan of attack would be to get back to where we were (DC error signals on RF), and try to start engaging the AO path. 

 

  11120   Sun Mar 8 04:04:19 2015 JenneUpdateLSCError signal blending for CARM/DARM transitions

As I (very excitedly) reported in elog 11116, I was able to follow the error signal blending procedure from last night, and get CARM and DARM onto digital non-normalized RF signals.  The lock held for about 3 minutes after this transition (elog 11118 has plot of this). yes

I was then able to script what I did (in the carm_up script), and repeat the transitionyes. Q joined me in the control room, but we have not been able to complete the transition a third timeno.

Here's the sequence that worked the two times:

  • Go to zero CARM and DARM offsets 
    • CARM is locked on ALS comm through the CARM_A filter bank (CARM_A gain = 1)
    • DARM is locked on ALS diff through the DARM_A filter bank (DARM_A gain = 1)
  • Lower CARM servo gain to 5 (from 7)
  • Lower DARM servo gain to 5 (from 7)
  • Lower PRCL servo gain to -0.03 (from -0.04)
  • Lower MICH servo gain to 2.5 (from 3.0)
  • Set up _B error signals
    • CARM_B has 1e-4*REFL11I, no normalization
    • DARM_B has -1e-4*AS55Q, no normalization
  • Give CARM_B a gain of 0.15
  • Turn on CARM_B FM7 (integrator)
  • Give DARM_B a gain of 0.1
  • Turn on DARM_B FM7 (integrator)
  • Slowly increase CARM_B gain, lowering CARM_A gain when gain peaking happens
    • CARM_B to 0.3, sleep 2
    • CARM_B to 0.5, sleep 2
    • CARM_A to 0.8, sleep 2
    • CARM_B to 0.6, sleep 2
    • CARM_A to 0.6, sleep 2
    • CARM_B to 0.7, sleep 2
    • CARM_A to 0.4, sleep 2
    • CARM_A to 0.2, sleep 2
    • CARM_B to 0.8, sleep 2
    • CARM_A to 0
  • Slowly increase DARM_B gain, lowering DARM_A gain when gain peaking happens
    • DARM_B to 0.2, sleep 2
    • DARM_A to 0.8, sleep 2
    • DARM_B to 0.3, sleep 2
    • DARM_A to 0.6, sleep 2
    • DARM_B to 0.4, sleep 2
    • DARM_A to 0.4, sleep 2
    • DARM_B to 0.5, sleep 2
    • DARM_A to 0
  • This is where I started working on the ETMX alignment to improve dark port contrast.  DARM kept having gain peaking, so I was lowering the DARM servo gain as I worked on the ETMX alignment.  I didn't make note of what the final gain was when I lost lock, but whatever it was, it wasn't right.

After those two attempts, we ran the LSC offset script, since that hadn't been done since early yesterday.  We did a quick CARM sweep, and REFL11 seemed to be centered around 0 counts, so we removed the 0.025 count offset from the CARM_B filter bank.

For later attempts, we keep seeing oscillations in the lockloss plots around 50 Hz, as if we're seeing gain peaking at the low side of the phase bubble.  We have tried turning off various filters at various levels of RF gain, but none of the combinations seems to be excellent.  Turning off the FM6 bounce/roll filter in CARM was particularly bad (immediately lost arm transmitted power), but others weren't good either (eg turning off FM3 boost lost arm powers within a second or so).  When we lose arm powers, the RF signals aren't valid, so if you don't turn them off fast enough (and ALS is still on with enough gain), you'll lose the full IFO lock.  If you're fast though, you can turn off the CARM and DARM _B outputs and not have to start from scratch. 

There seemed to be a very fine line to walk between not enough gain (~50Hz oscillations), and too much gain (200-300Hz oscillations).  It has been pretty frustrating later in the evening.  We seem to only have about 3dB of gain margin on the low side, when all the boosts are on.  Not excellent. 

When the RF signals had a moderate amount of gain, but ALS was still holding CARM and DARM, Q checked the phases of REFL11 and AS55 with excitation lines.  He rotated AS55 from -55 deg to -30 deg (+25 deg) and REFL11 from 144 deg to 164 deg (+20 deg).


Prior to the all-digital attempts, I tried several times to turn on the AO path, without success.  I think that the best that I got was 0dB on the CM board input 1 gain, +14dB on the CM board's AO gain, and -30dB on the MC board's AO gain before the mode cleaner lost lock. 

I was hoping that I could get CARM entirely to RF signals, and that would make things more stable and less complicated, and I could try again to turn on the AO path, but we haven't been able to do this tonight.


A few times in the later attempts we tried turning on the UGF servos for CARM or DARM.  I'm not sure if the lines kicked things out of lock, or if the UGF servos went a little crazy, or what, but we never survived for more than a few seconds after turning on the excitations.


There is a problem with the optical lever servos.  I had thought I'd been seeing it ever since Q re-did the models, and now I'm pretty sure that's what's up.  Q is hot on the trail of figuring out what may have changed that shouldn't have.  We may want to revert to an old Foton file, and re-copy the old filters into the new filter banks just in case.  The watchdog damprestore scripts have been tweaked to clear the oplev filter bank histories before turning on the oplevs, and this seems to solve the symptom of kicking the optic when oplevs are engaged. 


Although we haven't been able to make the transition to RF-only a third time, I think we're getting there.  Progress has certainly been made in the last 2 days!

  11122   Mon Mar 9 14:14:32 2015 JenneUpdateLSCError signal blending for CARM/DARM transitions

Here is a longer stretch of data, from the first RF-only lock on Saturday night.  Unfortunately daqd had died about 400 seconds before the lockloss, so I can't show the RF signals coming on.  

ALS was on the _A channels for CARM and DARM, so when those go to zero (about -300 seconds for CARM, and about -200 seconds for DARM), we're using RF signals only for the error signals.

CARM noise definitely improves, but holy smokes does DARM start to look good!  Although, right at the end it starts to look like REFL11I is getting bigger.  Not sure why, but we'll have to watch out for this.

 


Here's the equivalent plot for the second lock stretch. This is the one that was handled by the carm_up script. It looks like I had about 150 seconds of RF-only lock here. 

DARM error is getting bigger with time jnear the end, even though I wasn't working on alignment here.  Zooming in, DARM is oscillating at 16.4 Hz, which is the bounce frequency.  I thought I had my bounce/roll filters on, but somehow it still got a little rung up.  It just rings up to a steady state though, it's not getting huge, so I don't know that it was the cause of the lockloss.

 

Attachment 1: First-ever_RFonly_lock_7March2015.png
First-ever_RFonly_lock_7March2015.png
Attachment 2: Second-ever_RFonly_lock_7March2015.png
Second-ever_RFonly_lock_7March2015.png
  11125   Mon Mar 9 18:10:59 2015 JenneUpdateASCOplev filters re-copied

Back on Feb 20th (elog 11056) Q replaced all of our oplev parts with the aLIGO version. 

Unfortunately, after this it has seemed like there was something not quite right with the optical lever servos.

  • When we would restore kicked optics, after the osem rms values come down the scripts try to engage the optical levers.  This would often kick and ring up the optics (I've seen this with ETMX and ETMY, and once or twice with the beam splitter)  Not good.
  • Sometimes, if the optic wasn't kicked, it would oscillate.  I would see this in particular with ETMY, by seeing the green transmission at the PSL table oscillating.
  • Q noticed that sometimes when the oplevs' outputs were turned off, the outputs were railed at the limiter values.

Since, when the models were changed which gave us an extra underscore in the oplev names, Q did a find-and-replace in the foton text files, I was worried that this might have broken things.  I'm not entirely sure how it would have broken them (I didn't see any difference in a diff), but I've heard enough horror stories about the delicacy of the foton text files.

Anyhow, I opened the last archived foton files from just before Q made the change, and copy-and-pasted the design strings from the old filter banks to the new ones.  Hopefully this fixes things.

  11133   Wed Mar 11 18:02:02 2015 JenneUpdateLSCCARM and DARM loops marginal

I have looked at the CARM and DARM RF loops, assuming the loop shapes that we've been using, and it pretty much looks like a miracle that we were ever able to make the transition.  The CARM and DARM loops are very marginal.

The ALS CARM loop was already pretty close to marginal, but we lose an extra 12 degrees of phase with the REFL loop:

  • -4 deg because REFL has analog AA, but ALS does not.
  • -6 deg because FM1 is designed to have minimal phase loss at 100Hz, but the REFL integrator is not.
  • -2 deg because the cavity pole compensator must have a zero at finite frequency.

However, if our cavity pole compensator's zero frequency is too low, we get all of that phase back, at the sacrifice of 2dB of gain margin at both ends of the phase bubble.

I looked at an Optical simulation to check what the cavity pole frequencies are expected to be, with the losses that we've measured.  In both cases, I assume the Xarm has about 150ppm of loss.  The DARM cavity pole is about 4.5kHz no matter what the Yarm loss is.  The CARM cavity pole is about 172 Hz if the Yarm has 500ppm of loss, or 120 Hz if the Yarm has 200ppm of loss.

In the plots below, I use a CARM cavity pole frequency of 150 Hz, to roughly split the difference.

Edit, 13Mar2015, JCD:  Rana points out to me that I was using from Foton the analog design strings, without including the fact that these are actually digital filters. This means that I am missing some phase lag.  Eeek.

The ALS loop includes:

  • Actuator
    • 3 16kHz computation cycles (includes computer hops)
    • Pendulum
    • Analog anti-imaging
    • Digital anti-imaging
    • 1 64kHz computation cycle
    • Violin filters: ETM 1st, 2nd, 3rd order notches
  • Plant
    • Flat, not including the cavity pole at ~17kHz
  • Sensor
    • Closed loop response of phase tracker
    • Digital anti-aliasing
    • 1 64kHz computation cycle
    • 1 16kHz computation cycle
  • Servo (CARM filter bank)
    • FM1
    • FM2
    • FM3
    • FM5
    • FM6
    • 1 16kHz computation cycle

The REFL loop includes:

  • Actuator
    • 3 16kHz computation cycles (includes computer hops)
    • Pendulum
    • Analog anti-imaging
    • Digital anti-imaging
    • 1 64kHz computation cycle
    • Violin filters: ETM 1st, 2nd, 3rd order notches
  • Plant
    • 150 Hz cavity pole
  • Sensor
    • Analog anti-aliasing
    • Digital anti-aliasing
    • 1 64kHz computation cycle
  • Servo (CARM_B filter bank and CARM filter bank)
    • Cavity pole compensator
    • Integrator (20:0)
    • FM2
    • FM3
    • FM5
    • FM6
    • 1 16kHz computation cycle

The first plot is the case of perfectly matched cavity pole and compensating zero (150Hz, with compensator having 3kHz pole):

This next version is the case where the compensating zero is a little too low, which is the case I think we have now:

The last plot is a DARM loop.  Everything is the same, except that the RF plant has a 4.5kHz pole, and no compensation:

Attachment 1: CARMloop_ALSvsREFL_fcav150_fcomp150.png
CARMloop_ALSvsREFL_fcav150_fcomp150.png
Attachment 2: CARMloop_ALSvsREFL_fcav150_fcomp80.png
CARMloop_ALSvsREFL_fcav150_fcomp80.png
Attachment 3: DARMloop_ALSvsAS55_fcav4500_nocomp.png
DARMloop_ALSvsAS55_fcav4500_nocomp.png
  11136   Thu Mar 12 03:47:56 2015 JenneUpdateLSCCARM and DARM loop adjustments

No wins tonight.

I've tried playing with the shapes of the loops a little bit (mostly CARM so far), to no avail.  I think I made it to CARM RF-only only one time tonight.  I was able to turn on the REFL11 whitening, although I lost lock while about halfway through the DARM transition. 

I tried making a double integrator instead of a single integrator for CARM_B, since that would allow me to make a complex zero pair which could help win back some phase. I also tried just straight copying FM1 from CARM into CARM_B, so that it could be turned off for the ALS part of the loop, but left on for the REFL part, but that didn't work very well.  Like Rana and I saw last Friday, we really need the REFL signal to have a true integrator, to force the PDH signal toward zero, before we can complete the transition.

I moved the cavity pole compensator's zero back up to 120 Hz, since that was what had worked on Saturday night.  That helped me get farther before running into gain peaking problems at ~50Hz.  This is because, as seen in my simulation earlier tonight, I win back some gain margin by having the pole compensator more closely matched with the pole frequency.

I've been turning off both FM1 and FM2 in CARM and DARM.  I think this is helping a lot, when I can get far enough to do so.  I don't want to turn off the second boost until after I'm about 50/50 on REFL.  (When  I have that much REFL, with the true integrator, the PDH signal sticks to zero).

I tried once turning off the bounce/roll filters for CARM and DARM, rather than the FM1 boost, since the bounce roll filters eat lots of phase, but I got pushed off resonance.  I think not having that focused boost may have made my overall RMS larger, which caused me to randomly jump too far outside of the good PDH range.

Early on in the evening, I turned off the MC2 violin filters in the ETM LSC-SUS filter banks, since I am actuating on only the ETMs tonight. However, I saw a violin mode ring up at ~642, which showed up in POX but not POY.  This was causing up-conversion, beating against the 40-50Hz buzzing from the IR resonance.   The MC2vio1,2 filter covers this frequency (because it's an absurdly wide notch), but the EXYvio1 filter does not.  There seems to be some confusion on the wiki as to what the ETMX violin mode frequency is - it says 631 (638??).  The notch that is in the EXYvio1 filter is for 631 Hz, but this is not correct.  DAYTIME self: Make the MC2 violin filter smaller than 40Hz(!) wide, and move the ETMX notch up to the correct frequency.  For tonight, I just turned back on the MC2 filter, and the mode has rung down.

Idea:  MICH offset, or ETM misalignment, enough to keep the power recycling low-ish, so that the CARM cavity pole doesn't come down too far in frequency?  Daytime brain should think about this.

  11139   Fri Mar 13 03:10:35 2015 JenneUpdateLSC6+ CARM->REFL transitions, 1 DARM->AS transition

Much more success tonight.  I only started my tally after I got the CARM transition to work entirely by script, and I have 6 tally marks, so I probably made the CARM to RF-only transition 7 or maybe 8 times tonight in total.  Unfortunately, I only successfully made the DARM transition to AS55 once.    From the wall striptool, counting the number of times the transmitted power went high, I had about 40 lock trials total. 

The one RF-only lock ended around 1:27am.

I think 2 things were most important in their contributions to tonight's success.  I modified the bounceRoll filters in the CARM and DARM filter banks to eat less phase.  Also, using Q's recipe as inspiration, I started engaging the AO path partway through the CARM transition which makes it much less delicate. 


Bounce roll filter

Koji and I added a ~29Hz resonant gain in the bounce roll filter several months ago, to squish some noise that we were seeing in the CARM and DARM ALS error signals.  This does a lot of the phase-eating.  I'm assuming / hoping that that peak won't be present in the CARM and DARM RF error signals.  But even if it is, we can deal with it later.  For now, that peak is not causing so much motion that I require it.  So, it's gone. 

This allowed me to move the complex zero pair from 30 Hz down to 26 Hz.  Overall I think this gained me about 10 degrees of phase at 100Hz, and moved the low end of the phase bubble down by about 10Hz. 


Prep for REFL 11 I through the CM board and CM_SLOW

In order to use Q's recipe (elog 11138), I wanted to be able to lock CARM on REFL11 using the CM_SLOW filter bank. 

I did a few sweeps through CARM resonance while holding on ALS, and determined that the REFL1 input to the CM board needed a gain of -20dB in order to match the slope of CM_SLOW_OUT to CARM_IN (ALS), leaving all of Q's other settings alone.  Q had been using a REFL1 gain of 0dB for the PRY earlier today.

I needed to flip the sign in the input matrix relative to what Q had (he was using +1 in the CM_SLOW -> CARM_B, I used -1 there).  To match this in the fast path, I flipped the polarity of the CM board (Q was using minus polarity, I am using positive).

The CM_SLOW filter bank had a gain of 0.000189733.  I assume that Q did this so that the input matrix element could be unity.  I left this number alone.  It is of the same order as the plain REFL11I->CARM input matrix element of 1e-4 from Saturday night, so it seemed fine.

During my sweeps through CARM resonance, I also saw that I needed an offset to make CM_SLOW's average about 0.  With the crazy gain number, I needed an offest of -475 in the CM_SLOW filter bank.  As I type this though, it occurs to me that I should have put this in the CM board, since the fast path will have an offset that isn't handled.  Ooops. 


Trying Q's recipe for engaging AO path

I am able to get the MC2 AO gain slider up to -10dB (-7 is also okay).  If I increase the digital CARM gain too much, I see gain peaking at about 800Hz, so something good is happening.  (That was with a CARM_B gain of 2.0 and CARM_A gain of 0.  Don't go to 2.0)

I tried once without engaging his 300:80 1/f^2 filter in the CM_SLOW filter banks to start stepping up the CM REFL1 and MC AO gains together, but I only made it 2 steps of 1dB each before I lost lock. 

I tried once or twice turning on that 300:80 filter that Q said over the phone really helped his PRY locking, but it causes loop oscillations in CARM.  Also, I forgot to turn it off for ~45 minutes, and it caused several locklosses.  Ooops.  Anyhow, this isn't the right filter for this situation.


AS55 whitening problem

Twice I tried turning on the AS55 whitening.  Once, I was only partly transitioned from ALSdiff to AS55, the other time was the one time I made the full transition.  It caused the lockloss from the only RF-only lock I had tonight :(

Unfortunately I don't have the time series before the whitening filters (not _DQ-ed), but you can see a giant jump in the _ERR signals when I turn on the whitening, just before the arm power dies:

AS55whitening_lockloss_12March2015.pdf

The AS55 phase is -30, I has an offset of 28.2 and Q has an offset of 6.4.  Both have a gain of 1.  This should give us enough info to back out what the _IN1 signals looked like before I turned on the whitening if that's useful.


Other random notes

Ramp times for CARM_A, CARM_B, DARM_A and DARM_B are all 5 seconds.  This is set in the carm_cm_up script.

carm_cm_up script freezes the arm ASS before it starts the IR->ALS transition, to make it more convenient to run the ASS each lockloss.

carm_cm_up script no longer has a bunch of stuff at the bottom that we're not using.  It's all archived in the svn, but the remnants from things like variable finesse aren't actively  useful.

carm_cm_down script turns off the CM_SLOW whitening (which gets set in the up script)

carm_cm_down script clears the history of the ETM oplevs, in case they went bad (from some near divide-by-zero action?), but the watchdog isn't tripped. This clears away all the high freq crap and lets them do their job.

FSS Slow has been larger than 0.55 all night, larger than 0.6 most of the night, and larger than 0.7 for the last bit of the night.  MC seems happy.

both carm_cm_up and carm_cm_down are checked into the svn.  The up script is rev 45336 and the down script is 45337.

Some offset (maybe the fact that the fast AO path had an un-compensated offset?) is pulling the arm powers down as I make the transitions:


Recipe overview

  • Lock PRMI with arms held on ALS at 3nm CARM offset.  Bring CARM offset to 0.
  • Turn on CARM_B and DARM_B a little bit, then turn on their integrators
  • Lower the PRCL and MICH gains a little.
  • Increase the CARM_B gain a bit, then turn off FM1 for both CARM and DARM.
  • Increase CARM_B gain, lowering CARM_A gain.
  • Increase DARM_B gain, lowering DARM_A gain.  Now the power should definitely be stable (usually ends up around 80).
  • Partly engage AO path.
    • CM board REFL1 gain = -20dB
    • CM board AO gain = 0dB
    • MC2 board AO gain starts at -32dB, stepped up to -20dB
  • Increase CARM_B gain a bit
  • More AO path:  MC2 board AO gain steps from -20dB to -10dB
  • Increase CARM_B gain to 1.5, turn CARM_A gain to zero
  • CM_SLOW whitening on

After that, I by-hand made the DARM transition on the 6th successful scripted CARM transition, and tried to script what I did, although I was never able to complete the DARM transition again.  So, starting where the recipe left off above,

  • Turn off DARM's FM2 boost to win some more phase margin.
  • Increase DARM_B gain to 0.5, lower DARM_A gain to 0.

Since DARM doesn't have an analog fast path, it is stuck in the delicate filter situation.  I think that I should probably start using the UGF servo once the arm power is stable so that DARM stays in the middle of its phase bubble.

Rather than typing out the details of the recipe, I am attaching the up script.

Attachment 1: AS55whitening_lockloss_12March2015.pdf
AS55whitening_lockloss_12March2015.pdf
Attachment 2: MoreDARMB_powerWentDown_12March2015.png
MoreDARMB_powerWentDown_12March2015.png
Attachment 3: carm_cm_up_zip.sh.gz
  11143   Sat Mar 14 01:14:09 2015 JenneUpdateLSCMore stable DARM transitions

[Jenne, Koji, Rana]

Thanks to turning off the AS55 analog whitening as well as the 1k:6k lead filter that Koji put into Darm's FM7, the DARM transition was more stable early in the evening.

The AS55 gain and offset did not change noticeably when we switched the AA on or off (switching happened while *not* using AS for any feedback).  Earlier in the evening, we did also check what happened with PRMI and REFL33 AA on vs. off, and REFL33 did have a many tens of counts offset on both the I and Q input channels.  I have turned the AA filters back on, but run LSCoffsets before trying to lock.

I'm not sure what was up, but somehow I couldn't lock the PRMI for about half an hour or so.  Very frustrating.  Eventually after futzing around, I was able to get it to lock with REFL33 in PRMI-only, and after that it worked again in PRFPMI with REFL165. 

With FSS slow around 0.5, MC has been a bit fussy the last hour.  Also frustrating.

Later on in the evening, I started taking out a bunch of the "sleep" commands from the up script, and many of the "press enter to continue" spots, but I think it might be moving too fast.  That, or I'm just not catching where I have too much gain.  Anyhow, near the middle/end of the CARM transition I am getting severe gain peaking at several hundred Hz.  I think I need to use a lower final gain.

So, progress on DARM, but maybe a little more fine-tuning of CARM needed.

Here's a DARM loop measurement, taken after both CARM and DARM were RF-only:

 

DARM_RF-only_13Mar2015.pdf

Attachment 1: DARM_RF-only_13Mar2015.pdf
DARM_RF-only_13Mar2015.pdf DARM_RF-only_13Mar2015.pdf
  11144   Sun Mar 15 18:49:57 2015 JenneUpdateLSCMore stable DARM transitions

I have modified the DARM model from elog 11133, to include the fact that these are digital filters.

I have also extracted the data from elog 11143, and it together with the model.

The modeled loop has an arbitrary gain factor, to make it have the same 234Hz UGF as the measured data.

The modeled loop includes:

  • Actuators
    • Pendulum (1Hz, Q of 4)
    • Violin filters
      • ETMs 1st, 2nd, 3rd order
      • MC2 1st, 2nd order
    • 3 16kHz delays for computation on the rfm model, transfer to the end sus models, and computation on end sus models.
    • Digital anti-imaging to get up to the IOP model
    • Delay of 64kHz for computation on IOP model
    • Analog anti-imaging
  • Plant
    • Single 4.5kHz pole
  • Sensor
    • Analog anti-aliasing
    • 64kHz delay for computation on IOP model
    • Digital anti-aliasing to get to LSC model rate
  • Loop Shape (digital filters extracted from Foton file using FotonFilter.m)
    • DARM B's integrator (FM7)
    • DARM's low freq boost (FM3)
    • DARM's locking filter (FM5)
    • DARM's bounceRoll filter (FM6)
    • DARM's new lead filter (FM7)
    • Delay of 16kHz for computation on LSC model (includes Dolphin hop to c1sus rfm model)

There is a 1.5 degree phase discrepancy at 100Hz, and an 11 degree phase discrepancy at 900Hz, but other than that, the modeled and measured loops match pretty well.

For the measured frequencies, here are the residuals:

Attachment 1: DARM_modelVsmeas_15March2015.png
DARM_modelVsmeas_15March2015.png
Attachment 2: DARMresiduals.png
DARMresiduals.png
  11150   Fri Mar 20 12:42:01 2015 JenneUpdateIOOWaking up the IFO

I've done a few things to start waking up the IFO after it's week of conference-vacation.

PMC trans was at 0.679, aligned the input to the PMC, now it's up at 0.786.

MC transmission was very low, mostly from low PMC transmission.  Anyhow, MC locked, WFS relieved so that it will re-acquire faster.

Many of the optics had drifted away. AS port had no fringing, and almost every optic was far away from it's driftmon set val.  While putting the optics back to their driftmon spots, I noticed that some of the cds.servos had incorrect gain.  Previously, I had just been using the ETMX servo, which had the correct gain, but the ITMs needed smaller gain, and some of the optics needed the gain to be negative rather than positive.  So, now the script ..../scripts/SUS/DRIFT_MON/MoveOpticToMatchDriftMon.py has individually defined gains for the cds.servo. 

Next up (after lunch) will be locking an aligning the arms.  I still don't have MICH fringing at the AS port, so I suspect that the ASS will move some of the optics somewhat significantly (perhaps the input tip tilts, which I don't have DRIFT_MON for?)

  11153   Fri Mar 20 23:37:46 2015 JenneUpdateSUSWaking up the IFO

In addition to (and probably related to) the XARM ASS not working today, the ITMX has been jumping around kind of like ETMX sometimes does.  It's very disconcerting. 

Earlier today, Q and I tried turning off both the LSC and the oplev damping (leaving the local OSEM damping on), and ITMX still jumped, far enough that it fell off the oplev PD. 

I'm not sure what is wrong with ITMX, but probably ASS won't work well until we figure out what's up.

I tried a few lock stretches (after realigning the Xgreen on the PSL table) after hand-aligning the Xarm, but the overall alignment just isn't good enough.  Usually POPDC gets to 400 or 450 while the arms are held off resonance, but today (after tweaking BS and PRM alignment), the best I can get POPDC is about 300 counts. 

Den and I are looking at the ASS and ITMX now.

  11154   Sat Mar 21 05:19:49 2015 JenneUpdateLSCIFO awake

[Jenne, Den]

The problem with the ASS turned out to be a mode that was rung up at 1326Hz in ETMX.  It was rung up when the Xarm's overall gain was too high.  So, by turning down the digital gain we were able to prevent it ringing up, and then the ASS worked.  To circumvent this, we added a notch to the violin filter bank.  It turned out that, upon trying to check if this existed also for the Yarm by turning up the digital gain, the ETMY frequency was almost identical.  So, the same single notch is in both ETMs, and it covers the modes for both ETMs.

After that, we got back to locking.  We have made at least 9 transitions to all-RF (both CARM and DARM) tonight (I have lost track of how many Den has done while I've been writing this - maybe we're up to 10 or so.). We have changed the order of things a little bit, but they're mostly similar to last week.  There are some new notches in the CARM_B filter bank, as well as a 700Hz low pass.  We have not been using the lead filter in DARM from last week.  Script is checked in, and also zipped and attached.  At first CARM was actuating on ETMs, but the last half of the locks we've been using MC2.  The script is optimized for MC2 actuation.

While locked all RF, we phased REFL55 in preparation for transitioning PRMI over from REFL165. REFL55 phase was +125, now is +80, give or take 5 deg.  We have tried measuring the relative gain and sign between REFL55 and REFL165, but we keep losing lock, perhaps as a result of the TFs Den is taking.  He's being gentle though. 

Up next:

Transition PRMI

Measure CARM loop (why was SRmeasure not working?? is it plugged in??)

Turn on AO boosts, etc.

 

Attachment 1: carm_cm_up_zip.sh.gz
  11169   Wed Mar 25 03:31:18 2015 JenneUpdateLSCMeh

[Jenne, Den]

Overall a "meh" night for locking I think.  The script to all-RF worked several times earlier in the evening, although it was delicate and failed at least 50% of the time.  Later in the evening, we couldn't get even ~10% of the lock attempts all the way to RF-only. 

Den looked into angular things tonight.  With the HEPA bench at the Xend on (which it was found to be), the ETMX oplevs were injecting almost a factor of 10 noise (around 10ish Hz?) into the cavity axis motion (as seen by the trans QPD) as compared to oplevs off.  Turning off the HEPA removed this noise injection.

Den retuned the QPD trans loops so that they only push on the ETMs, so that we can turn off the ETM oplevs, and leave the ITMs and their oplevs alone. 

We are worried again about REFL55.  There is much more light on REFL55 than there is on REFL11 (a 90/10 beam splitter divides the light between them), and we see this in the DC output of the PDs, but there seems to be very little actual signal in REFL55.  Den drove a line (in PRCL?) while we had the PRMI locked with the arms held off resonance, and REFL55 saw the line a factor of 1,000 less than REFL 11 or REFL165.  The analog whitening gain for REFL11 is +18dB, and for REFL55 is +21dB, so it's not that we have significantly less analog gain (that we think).  We need to look into this tomorrow.  As of now, we don't think there's much hope for transitioning PRMI to REFL55 without a health checkup. 

  11172   Wed Mar 25 18:46:14 2015 JenneUpdateLSCREFL PDs get more light

After discussions during the meeting today, I removed the PBS from the REFL path, which gives much more light to REFL11, REFL33 and REFL55.  Also, the ND1.5 in front of REFL165 was replaced with ND1.1, so that REFL165 now gets 50mW of light.  REFL11 gets about 1.3mW, REFL33 gets about 13mW and REFL55 gets about 12mW. 

No locking, and importantly no re-phasing of any PDs has been done yet. 

Here is an updated diagram of the REFL branching ratios.

Attachment 1: AS_REFL_branchingRatios_25Mar2015.png
AS_REFL_branchingRatios_25Mar2015.png
  11176   Thu Mar 26 16:32:32 2015 JenneUpdateLSCREFL PDs get more light

Some more words on yesterday's REFL path work. 

The 90/10 BS that splits the light between REFL11 and REFL55 was placed back in August 2013, to compensate for the fact that REFL11 has a much larger RF transimpedance than REFL33.  See elog 9043 for details.

We had been operating for a long time with an embarrasingly small amount of light on the REFL PDs.  REFL11 used to have 80 uW, REFL33 used to have 400 uW and REFL55 used to have 700 uW.  REFL 165 was the only sane one, with about 15 mW of light.

After yesterday's work, the situation is now:

  Power incident [mW] PD responsivity [A/W] photocurrent [mA]
shot noise intercept
current [mA]
Ratio (photocurrent) /
(shot noise intercept current)
REFL 11 1.3 mW 0.7 0.91 mA 0.12 mA 7.6
REFL 33 13 mW 0.7 9.1 mA 0.52 mA 17.5
REFL 55 12 mW 0.7 8.4 mA 1.6 mA 5.3
REFL 165 50 mW 0.15 7.5 mA 1.06 mA 7.1

As an aside, I was foiled for a while by S vs. P polarizations of light.  The light transmitted through the PBS was P-pol, so the optics directing the beams to REFL11, 33 and 55 were all P-pol.  At first I completely removed the PBS and the waveplate, but didn't think through the fact that now my light would all be S-pol.  P-pol beam splitters don't work for S-pol (the reflection ratios are different, and it's just a terrible idea), so in the end I used the PBS to set the half waveplate so that all of my light was P-pol, and then removed the PBS but left the waveplate.  This means that all of the old optics are fine for the beams going to the 3 gold-box REFL PDs.  We don't have many S-pol beamsplitter options, so it was easier to use the waveplate to rotate the polarization. 

  11186   Tue Mar 31 22:27:43 2015 JenneUpdateModern ControlPreliminary PRMI angular Wiener results

Before locking for the evening, I wanted to try again implementing the Wiener filters that I had designed back in Jaunary (elog 10959). 

The problem then was that the newer version of Quack that I was using was doing weird things to me (elog 10993).  But, tonight I used the old quack3andahalf that we used to use for Wiener-related things, and that worked (for up to order 20 filters).  Actually, the pitch z-axis Wiener filter, when I copy the command string into Foton, says "Error" in the alternate box (the lower one).  I also get this error message if I try to put in filters that were greater than order 20, and have been split into several filters.  I'm not sure what's wrong, so for tonight I'm leaving out the pitch z-axis seismometer feed forward, and only using 20th order filters for all the rest.

So, pitch has feed forward signals from the T-240's x and y axes, and yaw has feed forward signals from all 3 seismometer channels.

At first, I just had the calculated Wiener filters, and a 10Hz lowpass, but the POP beam spot on the camera was getting slowly pushed away from the starting location.  So, I added a 0.01Hz cheby1 highpass filter, and that seems to have fixed that problem.  I need to go back to the simulations though, and see if this is going to cause extra noise to be injected (because of incorrect phase in the feed forward signal) at very low frequencies.  All 5 Wiener filter banks have a gain of -1.

I'm getting a factor of 4-5ish between 2Hz and 3Hz in both pitch and yaw.  What's interesting is that despite no direct angular suppression (as measured by the QPD) at higher frequencies, both POP22 and POPDC see improvement over a much broader range of frequencies.  I'll have to think about how to predict this RIN coupling in my budgets.

The time series data for these filters was collected 2 months ago, on the 29th of January.  So, it's nice to see that they work now too (although we have already seen that length feed forward signals are good over a many-month period).   

In uncalibrated units (I need to calibrate the QPD to microrad, and should probably quote the PD signals in RIN), here is the plot.  Blue trace (taken first) was with the feed forward on. Red trace (taken immediately afterward) was with feed forward off. This data is all PRMI-only, locked on REFL165 using Koji's recipe from elog 11174, including changing REFL165 phase to -14deg (from the -110 I found it at) for the no-arms case.

PRMI_31Mar2015.pdf

Attachment 1: PRMI_31Mar2015.pdf
PRMI_31Mar2015.pdf
  11187   Wed Apr 1 03:54:15 2015 JenneUpdateLSCPRMI to 1f twice

I got the PRMI transitioned from REFL165 over to REFL55 two times tonight.  Also, I had 2 long-ish locks, one 9 minutes, and one 6 minutes.  All the other locks were short - less than a minute or two.

I've done some shuffling around of the point in the CARM transition when the anti-boosts (1:20 filters) come on in the CARM A filter bank.  I've moved the turn-on of these filters a several gain steps earlier, but I'm not sure that they're in the best place yet.  Fiddling with the turn-on of the anti-boosts makes the big CARM oscillations last for longer or shorter - if they last too long, they blow the lock, so we don't want them to get too big.

The PRMI angular feedforward has helped a lot tonight, I think.  I've added a line to the up script to enable the output of the OAF after the PRMI is locked, and the down script turns it off again.  It's not so great when the PRM isn't aligned, since it's designed to work when the oplev is on, so it should be off unless the PRM is aligned.  I tried to get a comparison of off vs. on PRC powers with the arms resonating, but I can't hold the lock for long enough when the OAF is not on to get even one average on my 0.01Hz bandwidth spectrum. 

I've turned the arm ASC on a few times, but not every lock.  Around 12:34am, I set the offsets when CARM and DARM were on RF signals, and I had hand-aligned the ETMs to minimize the power at the AS port.  But, this wasn't a good spot for the next lock - the AS port was much darker with the ASC off for that lock.  It would be nice to think about trying some dither alignment, and then maybe resetting the setpoints every lock.  I'm using Q's original loop shapes, but as he left them yesterday, only actuating on the ETMs (with Yarm Yaw gain 0.7 rather than 0.9).

The CARM crossover might need more tuning.  There's some gain peaking around 400 Hz that goes mostly away if I turn the digital CARM gain down by 2dB.  (I'm not using any filters in the CM_SLOW filter bank).

I think that the CARM/DARM transition is more likely to be successful if the FSS slow DC is greater than 0.55ish.  So far this is pretty anecdotal, but I think I have more success when it's higher.  We should pay attention, and see if our trouble locking later in the nights correlates with smaller FSS slow DC values. 

I got the PRMI over to 1f two times, at 1:54am and at 2:25am.  I did not re-phase "POP"55 (which is the REFL55 signal), but I did check the values for the input matrix.  I needed MICH = 0.01*POP55Q and PRCL = 0.008*POP55I.  The first time I lost lock because I turned down the CARM digital gain too much.  The second time I forgot to turn down the PRCL gain (I was *actually* using 0.01*POP55I for the PRCL input matrix, but needed to lower the gain from -0.08 to -0.07, which is about the same as just using 0.008 in the input matrix).  Anyhow, I think PRCL loop oscillations were the cause of the second lockloss.


Here's a strip chart of my first lock of the night, which was the 9 minute lock.  Up until about -6 minutes, I was hand-aligning (including the dip around -7.5 minutes, where I was figuring out which direction to move the ETMs).  Around -3.5 minutes there is a significant dip down, that corrected itself.  By the time I realized that the power had gone down, and was trying to figure out why, it came back.  Maybe the same thing happened at the end of the lock, but it kept getting worse?  Self, re-look at this time (around 11:50pm) to find out why the power dips. 

My tummy feelings (without any data) make me think that this could be something with ITMX, like Q saw earlier today.  Or, maybe ETMX, like we've seen for ages.  Anyhow, my tummy feeling says this is an optic pointing problem.  I certainly think this might be the same thing we see at the end of many locks, the power going low suddenly.  So, it might give a big clue to our locklosses.  Maybe.

RXA: I've changed the above text into pink Comic Sans to lend it the appropriate level of gravitas, given its scientific justification.

Attachment 1: FirstLock_9min_arms150_1154pm.png
FirstLock_9min_arms150_1154pm.png
  11190   Wed Apr 1 16:52:02 2015 JenneUpdateLSCList of measurements

I'd like to get a concrete list of measurements written down, so that it's clear what needs to be done before I graduate.

Noise couplings:

  • Laser amplitude noise coupling to DARM
    • We don't have an AOM for ISS right now, but we should be able to just stick it back in the beam path, right?  I think Koji checked that the AOM was all okey-dokey recently.
    • AOM calibration should tell me how much the single-pass amplitude changes as a function of input signal.
  • Laser frequency noise coupling to DARM
    • Inject signal at the CM board input, which should be calibrated by looking at response to calibrated MC2 motion.
  • Marconi phase noise coupling to DARM
    • Marconi can produce internally or accept via BNC 0-10 rad of phase modulation.  Marconi spec sheet should give me rad/V for the input calibration.
  • Marconi amplitude noise coupling to DARM
    • Using external input of Marconi.  Marconi spec sheet should give me input calibration.
  • MICH err to DARM
    • Compare with Optickle model
  • PRCL err to DARM
    • Compare with Optickle model

Noise cancellation:

  • PRC angle
  • MICH noise removed from DARM (compare flat gain FF vs. Wiener FF)
  • PRCL noise removed from DARM (compare FF shape from model vs. Wiener FF)
  • MC length noise (equiv. to laser freq noise) removed from CARM & DARM

Are there things that I'm missing?  I've never had an IFO to characterize before.

  11192   Thu Apr 2 01:28:34 2015 JenneUpdateLSCX Green Power drifting

Have you tried a different set of laser temperatures?  I don't remember the value for the Xgreen, but whatever the value that matches PSL of 0.62ish and above seems to put the Xgreen laser at a bad temperature.  I think this is the mode-hopping region, and we sometimes lock to the wrong mode. 

So, FSS values of above 0.5ish are good, but they should be below 0.61ish. 

  11193   Thu Apr 2 01:45:44 2015 JenneUpdateLSCX Green Power drifting
Quote:

Have you tried a different set of laser temperatures?

Yep, that is how I got back to stable powers. 

  11197   Fri Apr 3 05:17:36 2015 JenneUpdateLSCPRMI to 1f twelve times

I have 12 tick marks for times I got all the way to 1f for all 4 degrees of freedom in the PRFPMI.  The CARM / DARM transitions now succeed more than they fail, which is nice. 

At Q's suggestion, I am turning off all the violin filters in the MC2 path during the CARM transition.  This also means that I don't need any of the notches that Den and I put into the CARM_A and CARM_B filter banks last week, which were right at the edges of the violin notches.  Anyhow, this seems to make the transition much more likely to succeed.  I don't ever use the CM_SLOW FM10 "crossover helper" that Q had to use last night.  The violin filters are turned back on after the CARM transition is complete.  We don't ever need those other notches.

I checked the REFL165 vs. REFL55 transfer functions for PRCL and MICH, and they are mostly flat.  REFL55 seems like it'll give us extra phase for some reason.

I tried setting offsets for PRMI, but they seem to be strongly dependent on arm alignment.  I ended up being pretty confused, and since all the REFL signals are pretty close to zero (when CARM/DARM on RF, PRMI on 3f), I have given up on that avenue for tonight. 

I think many of my locklosses tonight (lost from the all 1f state) have been fast things, faster than the ADCs can handle.  On the lockloss plots that I've looked at, the FSS PC drive is railed at 10V about 200msec before I lose lock.  So, something (presumably in the fast CARM path) is making the MC/FSS loop unhappy.  I have plugged in the Agilent to the Out2 of the CM board, so that it looks at REFL11.  Unfortunately, this is after the input gain slider, so we don't see much until we're locked, but that seems fine.  A video camera is pointed at the screen, so that I get real time spectra.  It's hard to watch the TV at the same time as everything else, so I haven't witnessed the moment of lockloss in the fast spectrum yet.  Be careful when walking down the Yarm.  The tripod is partly in the walkway.

Q, I took a few TFs of the total CARM loop, although none of them are particularly good below a few kHz.  I can't push hard enough to get coherence, without blowing the lock.  TF data is in /users/jenne/PRFPMI/CM_TFs/CM_TFs_2Apr2015/ . 

I was worried for a while that, after I transition PRMI to 1f, I hear lots of low frequency rumbling.  However, watching the spectra (relative to references taken with CARM and DARM on RF, but PRMI on 3f), the low frequency error and control signals are staying the same for all 4 DoFs, but the high frequency for PRCL and MICH goes down significantly, so it's probably just that the low frequency stuff sounds more obvious, since it's not drowning in high frequency fuzz. 

 

  11201   Fri Apr 3 19:35:14 2015 JenneUpdateSUSBS oplev centered

I think that this happens when the beam gets too close to the edge of the QPD.  We see this regularly in the ETMs, if they've been kicked a bit, but not enough to trip the watchdogs.  I think it might be the step/impulse response of the RES3.3 filter, which rings for almost 20 seconds. 

Anyhow, I've just recentered the BS oplev.  It was at -21urad in pitch, and had more than 400 counts on the top two quadrants, but only about 100 counts on the bottom two.  Now it's around 300 counts on all 4 quadrants.

As a totally unrelated aside, I have installed texlive on Donatella, so that I could run pdflatex.

  11205   Tue Apr 7 04:17:42 2015 JenneUpdatePEMjackhammering at ETMX

Q is writing the locking elog for the night, but just to reply to this thread:  The IFO worked well tonight, so things are at least not broken.

Quote:

Unfortunately, this kind of trend plot is not detailed enough to know if something has gone bad in a quantitative way. But at least we can tell that the suspension wire didn't break.

 

  11207   Wed Apr 8 03:44:48 2015 JenneUpdateLSCMediocre locking night

It was only a mediocre locking night.  I was foiled for a long time by 2 things, both of which are now taken care of in the scripts, so I don't waste so much time again.

  • Somehow FM4 (LP700) in the CARM_A filter bank was turned off.  It took me a long time to figure this one out. 
    • At first, I had a 2056Hz oscillation, and then if I notched that, I would have problems at the edges of my notch.
    • I turned on the LP1000 in CARM_B (which we don't usually use) to fight the 2k resonances, but then I had violin mode problems. 
    • I couldn't turn off the violin mode filters on MC2 for the transition, so the edges of these notches were causing instability.
    • Anyhow, in the end, I realized that FM4 of CARM_B wasn't on, but it usually is.
    • It is now turned on in the carm_cm_up.sh script.
  • After that fiasco, I had trouble turning on the ASC loops.
    • Turns out we had left the offsets in place from last night in the ASC loops, so that when I zeroed the outputs of the transmission QPDs, the offsets in the ASC loops didn't make any sense, and they pushed the IFO severely out of alignment.
    • Now the ASC down script (which is run by the carm down script) zeros the filter bank offset values

Scripts are checked into the svn.


I used Q's handy-dandy 2D histogram plotter (..../scripts/general/dataHist, which I have taken the liberty of adding to the svn) to set the PRCL offset when I was locked on REFL165.  Here is a version of the plot, when I had an offset of +10 in the PRCL filter bank. There was so much noise on the PRCL input that I quit bothering to try and put in an excitation or ramp the offset value.  Note that I have since moved this offset to PRCL_A's offset instead, so taking this plot again should have PRCL_IN1 centered around zero.

I had trouble doing something similar for PRCL when I was locked on REFL55.  At first, the offset was so poor that POP110 was only about half the value it was when locked on REFL165, and it had a huge amount of RIN.  I tried just doing a z avg of the PRCL_B_IN1 (REFL55I) while locked on REFL165, and that said that REFL55I had an offset of +33.8 counts, so I tried an offset of -33.8 counts to get to zero.  But, that was still terrible for POP110 power.  As I increased the offset, eventually up to +30 counts, POP110 kept getting better and better.  I lost lock at that point (while trying to get 10 sec of histogram data), so I'm not sure that +30 is the final value.  I want to also get equivalent histograms with POP22 and POPDC (and maybe arm transmissions?) as the X-axis on these plots.  There's no excitation, so all of these can be collected at once.


By babysitting the ITM alignment (looking at the rough DC values of the optical lever error siganls), and doing a little adjustment of the ASC differential offset, I was able to keep lock a few times for more than 2 or 3 minutes while all 1f.  Not a whole lot longer than that though, even if I wasn't "poking" the interferometer other than maintaining alignment.

Attachment 1: PRCL_R165_offsetplus10.png
PRCL_R165_offsetplus10.png
  11212   Fri Apr 10 03:44:51 2015 JenneUpdateLSCSome small progress, may have DAC problem?

Small steps tonight, but all in the forward direction.

On one of my better locks, I saw a kind of weird phenomenon with the PRMI sideband powers versus the carrier powers:

For the last 100 seconds of this plot, I'm all 1f.  Alignment is being handled mostly by Q's DC coupled ITM oplevs, and the transmission QPD ASC loops, although I was trying to adjust the offsets in the ASC loops to improve transmission for a bit.

At the very end, the last 10 seconds or so, the POP110 power goes down, and sits at about half it's maximum value.  POP22 isn't quite as bad, in that it still touches the max, but the RIN is about 50%.  The carrier DC signals (TRX, TRY, POPDC) don't see this huge jump.  I don't think I was touching anything the last few tens of seconds.  I'm not sure yet how I can so significantly lose sideband power, without losing a similar amount of carrier power. 

The ring-ups at about -70sec in the CARM and DARM outs are the bounce mode. 

I tried looking at 2D histograms of different combinations of channels, for the time around -30 seconds where things looked pretty clean.  It looks like the offsets that Q put in last night (+1 for MICH_B and -3 for PRCL_B) are still about right.  The PRCL_IN1 and MICH_IN1 were centered around zero at the maximum power points.  CARM and DARM had small offsets, which I put into the DARM_B and CARM_B filter banks (0.0066 for DARM_B, and 0.027 for CARM_B), although these are small enough that I don't know that they really do anything.


As a break from locking for a little while, I tried to see if I could get the TT3 and TT4 DAC channels to work for me.  I had hoped it would be a quick and easy task, but I'm not seeing signal out.  Since it wasn't working, I decided to go back to locking for the night, and look into the DAC in the daytime.  I want to use one channel as the IN2 input of the CM board, and another as the external modulation input to the Marconi for transfer functions, so I need them to work. 

As a side note on the input to the Marconi situation, it occurred to me that instead of laying a new cable, I can borrow the POP55 heliax.  We don't have a POP55 diode right now, and the other end comes out across the hall from the Marconi, so it would be pretty easy to have a medium-length cable go from ITMX table to the Marconi.  Objections to this? 

Attachment 1: PRMI_sb_powers_9Apr2015.png
PRMI_sb_powers_9Apr2015.png
  11221   Wed Apr 15 20:54:18 2015 JenneUpdateComputer Scripts / ProgramsCDSutils upgrade bad

The SUS align/misalign scripts don't work after the new CDS utils upgrade. 

I don't know if it's looking for the _SWSTAT channel to confirm that the offset has been turned on/off, or if it is trying to set that channel, to do the switching, but either way, the script is failing.  Recall that our version of the RCG still has _SW1R and _SW2R, rather than the newer _SWSTAT for the filter banks. 

ezca.ezca.EzcaConnectError: Could not connect to channel (timeout=2s): C1:SUS-PRM_OL_PIT_SWSTAT

Q, can you please (please, please, pretty please) undo this upgrade, and then hold off on any further changes to the system for a few weeks?

  11222   Wed Apr 15 21:00:56 2015 JenneUpdateLSCDAC fine

The DAC was fine.  I realized tonight that the digital filter bank outputs were off, so I wasn't actually sending signals out.  Oooops.  blush

 

  11223   Wed Apr 15 23:29:08 2015 JenneUpdateComputer Scripts / ProgramsCDSutils upgrade undone

Q remotely reverted this change.  Scripts seem to work again.

Quote:

The SUS align/misalign scripts don't work after the new CDS utils upgrade. 

I don't know if it's looking for the _SWSTAT channel to confirm that the offset has been turned on/off, or if it is trying to set that channel, to do the switching, but either way, the script is failing.  Recall that our version of the RCG still has _SW1R and _SW2R, rather than the newer _SWSTAT for the filter banks. 

ezca.ezca.EzcaConnectError: Could not connect to channel (timeout=2s): C1:SUS-PRM_OL_PIT_SWSTAT

Q, can you please (please, please, pretty please) undo this upgrade, and then hold off on any further changes to the system for a few weeks?

 

  11225   Sun Apr 19 15:03:26 2015 JenneUpdateElectronicsLow noise pre-amps?

Does anyone know where the Busby or Rai low noise pre-amp boxes are? 

I think I need one in order to measure the noise of the Marconi.  Right now, I am trying to measure the amplitude noise, but I'm not seeing anything on the SR785 above the analyzer's noise level.

  11226   Mon Apr 20 16:18:29 2015 JenneUpdateElectronicsLow noise pre-amps: returned

The Rai box was in the Cryo lab, and the Busby box was in the TCS lab.  Neither had been signed out.  Lame.  Anyhow, thanks to Evan and Zach's memories of having seen them recently, they have been returned to the 40m where they belong.  (Also, I grabbed a spare Marconi while I was over there, for the phase noise measurement).

  11229   Tue Apr 21 01:17:13 2015 JenneUpdateModern ControlT-240 self-noise propagated through stack and pendulum

Going back to Wiener filtering for a moment, I took a look at what the T-240 noise level looks like in terms of pitch motion on one of our SOS optics (eg. PRM).

The self-noise of the T-240 (PSD, in dB referenced to 1m^2/s^4/Hz) was taken by pulling numbers from the Users Guide.  This is the ideal noise floor, if our installation was perfect.  I'm not sure where Kissel got the numbers from, but on page 13 of G1200556 he shows higher "measured" noise values for a T-240, although his numbers are already transformed to m/rtHz.

To get the noise numbers to meters, I use:  \left[ \frac{\rm m}{\sqrt{\rm Hz}} \right] = \frac{\sqrt{10^{\frac{[\rm dB/\sqrt{Hz}]}{10}}}}{(2 \pi f)^2}.  The top of that fraction is (a) getting to magnitude from power-dB and (b) getting to asd units from psd units.  The bottom of the fraction is getting rid of the extra 1/s^2.

 

Next I propagate this seismometer noise (in units of m/rtHz) to effective pendulum pitch motion, by propagating through the stacks and the transfer function for pos motion at the anchor point of the pendulum to pitch motion of the mirror (see eq 63 of T000134 for the calculation of this TF).   This gives me radians/rtHz of mirror motion, caused by the ground motion:

.

I have not actually calibrated the POP QPD, so I will need to do that in order to compare this seismometer noise to my Wiener filter results.

 

Attachment 1: T240selfnoise.png
T240selfnoise.png
Attachment 2: Limits.tar.gz
  11242   Fri Apr 24 01:16:30 2015 JenneUpdateASCBroken Xass?

I ran the "off" script for the Xarm ASS, followed by the "on" script, and now the Xarm ASS doesn't work.  Usually we just run the freeze/unfreeze, but I ran the off/on scripts one time. 

Koji, if you have some time tomorrow, can you please look at it?  I am sorry to ask, but it would be very helpful if I could keep working on other things while the ASS is taken care of.

Steve, can you please find a cable that goes from the LSC rack to the IOO rack (1Y2 to 1X2), or lay a new one?  It must be one single long cable, without barrels sticking it together.  This will help me actuate on the Marconi using the LSC rack's DAC. 

Thank you!!

  11243   Fri Apr 24 17:30:32 2015 JenneUpdateVACPressure watch script broken
Quote:

I made a script that checks the N2 pressure, which will send an email to myself, Jenne, Rana, Koji, and Steve, should the pressure fall below 60psi.

The script checking the N2 pressure is not working.  I signed into the foteee account to look at some of the picasa photos, and there are thousands of emails (one every 10 minutes for the past month!) with error messages.  Q, can you please make it stop (having errors)?

The error looks like it's mad about a "caget" command.  I don't have time to investigate further though.

  11254   Sun Apr 26 14:17:40 2015 JenneUpdateLSCPOXDC, POYDC unplugged for now

I have unplugged POXDC and POYDC from their whitening inputs.  They have labels on them which whitening channel they belong to (POY=5, POX=6) on the DCPD whitening board.

TT3_LR's DAC output is Tee-ed, going to the POYDC input and also to an SR560 near the Marconi.

TT4_LR's DAC output is Tee-ed, going to the POXDC input and also to the CM board's ExcB input.

  11255   Sun Apr 26 15:05:35 2015 JenneUpdateASCunBroken Xass?

Thank you both.

I have updated the .snap file, so that it'll use these parameters, as Rana left them.  Also, so that the "unfreeze" script works without changes (since it wants to make the overall gain 1), I have changed the Xarm input matrix elements from 1 to 0.1, for all of them.  This should be equivalent to the overall gain being 0.1.

  11256   Sun Apr 26 15:34:34 2015 JenneUpdateSUSPRM oplev centered

After last week's work on the BS/PRM oplev table, I think the PRM oplev got centered while the PRM was misaligned.  With the PRM aligned, the oplev spot was not on the QPD.  It has been centered.

  11258   Mon Apr 27 01:13:08 2015 JenneUpdateLSCPRCL angular FF not working, no locking :(

I'm sad.  And frustrated. 

The PRCL angular feed forward is not working, and without it I am having a very difficult time keeping the PRMI locked while the arms are at high power (either buzzing, or the one time I got stable high power partway through the transition).  Obviously if the PRMI unlocks once CARM and DARM are mostly relying on the REFL signals, I lose the whole IFO. 

Q and I had been noticing over the last few weeks that the angular feed forward wasn't seeming quite as awesome as it did when I first implemented it.  We speculated that this was likely because we had started DC coupling the ITM optical levers, which changes the way seismic motion is propagated to cavity axis motion (since the ITMs are reacting differently).

Anyhow, today it does not work at all.  It just pushes the PRM until the PRMI loses lock. I am worried that, even though Rana re-tuned the BS and PRM oplev servos to be very similar to how they used to be, there is enough of a difference (especially when compounded with the DC coupled ITMs) that the feed forward transfer functions just aren't valid anymore.

Since this prevents whole IFO locking, I spent some time trying to get it back under control, although it's still not working. 

I remeasured the actuator transfer function of how moving PRM affects the sideband spot at the QPD, in the PRMI-only situation.  I didn't make a comparison plot for the yaw degree of freedom, but you can see that the pitch transfer function is pretty different below ~20Hz, which is the whole region that we care about.  In the plot below, black is from January (PRMI-only, no DC-coupled ITMs) and blue is from today (PRMI-only, with DC-coupled ITMs, and somewhat different BS/PRM oplev setup):

Pitch_oldVsNew.pdf

I calculated new Wiener filters, and tried to put them in, but sometimes (and I don't understand what the pattern is yet) I get "error" in the Alternate box, rather than the zpk version of my sos filter.  It seems to go away if you use fewer and fewer poles for fitting the Wiener filters, but then the fit is so poor that you're not going to get any subtraction (according to the residual estimation plot that uses the fitted filters rather than the ideal Wiener filters). The pitch filters could only handle 6 poles, although the yaw filters were fine with 20.

The feed forward just keeps pushing the PRM away though.  I flipped the signs on the Wiener filters, I tried recalculating without the actuator pre-filtering, I don't know why it's failing.  But, I'm not able to lock the interferometer.  Which sucks, because I was hoping to finally get most of my noise coupling measurements done today.

 

Attachment 1: Pitch_oldVsNew.pdf
Pitch_oldVsNew.pdf
  11366   Fri Jun 19 16:54:20 2015 JenneUpdateComputer Scripts / ProgramsWiener scripts in scripts directory

I have put the Wiener filter scripts into  /opt/rtcds/caltech/c1/scripts/Wiener/  .  They are under version control. 

The idea is that you should copy ParameterFile_Example.m into your own directory, and modify parameters at the top of the file, and then when you run that script, it will output fitted filters ready to go into Foton.  (Obviously you must check before actually implementing them that you're happy with the efficacy and fits of the filters). 

Things to be edited in the ParameterFile include:

  • Channel names for the witness sensors (which should each have a corresponding .txt file with the raw data)
  • Channel name for the target
  • Folder where this raw data is saved
  • Folder to save results
  • 1 or 0 to determine if need to load and downsample the raw data, or if can use pre-downsampled data
    • This should probably be changed to just look to see if the pre-downsampled data already exists, and if not, do the downsampling
  • 1 or 0 to determine if should use actuator pre-weighting
  • Data folder for measured actuator TFs (only if using actuator pre-weighting)
    • Actuator TFs can be many different exported text files from DTT, and they will be stitched together to make one set of measurements, where all points have coherence above some quantity (that you set in the ParameterFile)
  • Coherence threshold for actuator data (only use data points with coherence above this amount)
  • Fit order for actuator transfer function's vectfit
  • 1 or 0 to decide if should use preweighting filter
  • zeros and poles for preweighting filters
  • 1 or 0 to decide if should use lowpass after Wiener filters (will be provided corresponding SOS coefficients for this filter, if you say yes)
  • Lowpass filter parameters: cuttoff freq, order and ripple for the Cheby filter
  • New sample rate for the data
  • Number of Wiener filter taps
  • Decide if use brute force matrix inversion or Levinson method
  • Calibrations for witnesses and target
  • Fit order for each of the Wiener filters

I think that's everything that is required.

  •  
  11507   Fri Aug 14 17:20:01 2015 JenneUpdatePEMGur interface box is wonky

IIRC, the Guralp box's 3rd set of channels do not have all of the modifications that were made on channels 1 and 2.

  11639   Wed Sep 23 12:51:03 2015 JenneUpdateLSCDRMI + ALS Arms

Nice!!

  11677   Fri Oct 9 11:24:06 2015 JenneUpdateLSCDRFPMI Progress

I hope the grappa was already cold, and ready to drink! 

  7677   Wed Nov 7 00:10:38 2012 Jenne UpdateAlignmentAlignment- POY and oplevs. photos.
Can we have a drawing of what you did, how you confirmed your green alignment as the same as the IR (I think you had a good idea 
about the beam going to the BS...can you please write it down in detail?), and where you think the beam is clipping? Cartoon-level, 20 
to 30 minutes of work, no more. Enough to be informative, but we have other work that needs doing if we're going to put on doors 
Thursday morning (or tomorrow afternoon?).

The ETMs weren't moved today, just the beam going to the ETMs, so the oplevs there shouldn't need adjusting. Anyhow, the oplevs I'm 
more worried about are the ones which include in-vac optics at the corner, which are still on the to-do list.

So, tomorrow Steve + someone can check the vertex oplevs, while I + someone finish looking briefly at POX and POP, and at POY in 
more detail.

If at all possible, no clamping / unclamping of anything on the in-vac tables. Let's try to use things as they are if the beams are getting to 
where they need to go.  Particularly for the oplevs, I'd rather have a little bit of movement of optics on the out-of-vac tables than any 
changes happening inside.

I made a script that averages together many photos taken with the capture script that Rana found, which takes 50 pictures, one after 
another. If I average the pictures, I don't see a spot. If I add the photos together even after subtracting away a no-beam shot, the 
picture us saturated and is completely white. I'm trying to let ideas percolate in my head for how to get a useful spot. 
  10528   Tue Sep 23 17:56:13 2014 Jenne, EricQUpdateGeneralVent prep for SRC length change

As Q mentioned in elog 10527, (prompted by Koji's email this afternoon) we are prepping the IFO for vent.  Here is a copy of the pre-vent checklist from the wiki, updated as we work:

 

Pre-vent checklists

 
  1. Center all oplevs/IPPOS/IPANG
  2. Align the arm cavities for IR and align the green lasers to the arms.
  3. Make a record of the MC pointing
  4. Align the beam at the PSL angle and position QPDs
  5. Reduce input power by adjusting wave plate+PBS setup on the PSL table BEFORE the PMC. (Using the WP + PBS that already exist after the laser.)
  6. Replace 10% BS before MC REFL PD with Y1 mirror and lock MC at low power.
  7. Close shutter of PSL-IR and green shutters at the ends
  8. Make sure the jam nuts are protecting bellows

Notes:

1 & 2:  Locked arms on IR, ran ASS.  Unlocked IFO, aligned PRM for good POP flashes, aligned SRM for symmetric AS flashes.  Aligned all oplevs.  Used PZTs to align Xgreen to arm. Used knobs to align Ygreen to arm.  With PS:L green shutter closed, Xgreen  = 0.520, Ygreen = 0.680.

3:  Moved MC servo output cable that goes to ADC from OUT2 (which we had been using for monitoring AO path signals) back to its usual OUT1 (which is MC_L).  This is used in the spot position measurement script.  Spots at:  [2.32, -0.50, 1.97, -1.11, 0.26, -1.86] mm.

4: Done -Q

5:  Removed a PD that was monitoring the light coming backwards through the Faraday that sits just after the laser, just in case (confirmed that beam dump behind PD was catching beam).  Other port of PBS just had regular black hole dump.  Adjusted half wave plate until we had ~90mW just before injection into the vacuum.

6: Completed. Locked MC manually at transmission of ~1150, but low power autolocker isn't working. This isn't a critical thing, and can be fixed at any point during the vent. -Q

7: Shutters closed. Ready for Steve to check nuts and begin venting! -Q

  10529   Wed Sep 24 08:39:32 2014 Jenne, EricQUpdateGeneralVent prep for SRC length change

Quote:

As Q mentioned in elog 10527, (prompted by Koji's email this afternoon) we are prepping the IFO for vent.  Here is a copy of the pre-vent checklist from the wiki, updated as we work:

 

Pre-vent checklists

 
  1. Center all oplevs/IPPOS/IPANG
  2. Align the arm cavities for IR and align the green lasers to the arms.
  3. Make a record of the MC pointing
  4. Align the beam at the PSL angle and position QPDs
  5. Reduce input power by adjusting wave plate+PBS setup on the PSL table BEFORE the PMC. (Using the WP + PBS that already exist after the laser.)
  6. Replace 10% BS before MC REFL PD with Y1 mirror and lock MC at low power.
  7. Close shutter of PSL-IR and green shutters at the ends
  8. Make sure the jam nuts are protecting bellows

Notes:

1 & 2:  Locked arms on IR, ran ASS.  Unlocked IFO, aligned PRM for good POP flashes, aligned SRM for symmetric AS flashes.  Aligned all oplevs.  Used PZTs to align Xgreen to arm. Used knobs to align Ygreen to arm.  With PS:L green shutter closed, Xgreen  = 0.520, Ygreen = 0.680.

3:  Moved MC servo output cable that goes to ADC from OUT2 (which we had been using for monitoring AO path signals) back to its usual OUT1 (which is MC_L).  This is used in the spot position measurement script.  Spots at:  [2.32, -0.50, 1.97, -1.11, 0.26, -1.86] mm.

4: Done -Q

5:  Removed a PD that was monitoring the light coming backwards through the Faraday that sits just after the laser, just in case (confirmed that beam dump behind PD was catching beam).  Other port of PBS just had regular black hole dump.  Adjusted half wave plate until we had ~90mW just before injection into the vacuum.

6: Completed. Locked MC manually at transmission of ~1150, but low power autolocker isn't working. This isn't a critical thing, and can be fixed at any point during the vent. -Q

7: Shutters closed. Ready for Steve to check nuts and begin venting! -Q

 

  8379   Mon Apr 1 09:05:09 2013 Jenne, GabrieleConfigurationLSCPOP22 configuration

On Friday we modified the POP22 set up: now the PD output goes to a bias tee. The DC output goes to the ADC board, while the RF output goes to an amplifier (Mini-circuits ZFL-1000LN+), to a band pass filter at 21.4 MHz and then to the ADC

  3093   Mon Jun 21 14:21:34 2010 Jenne, KiwamuUpdatePhotosInspection of Magnets for the TTs

Some pictures of "magnet inspection" from Picasa.

The coating of some magnets are chipped...

  1823   Mon Aug 3 22:54:53 2009 Jenne, Koji, ranaUpdateIOOMC_trans is now better, but not best

Jenne, Koji, Rana

After fixing up the Mode Cleaner a bit more (fiddling more with the MC_align sliders to get the alignment before locking, making sure that it is able to lock), we noticed that the MC Trans path could use some help. To align the MC, we put MC1 and MC3 back into the position where Rob left it on Thursday and then maximized the transmission with MC2. Then we went back and maximized with MC1/3 keeping in mind the Faraday. We got a good transmission and the X-arm had a transmission of 0.8 without us touching its alignment.

Upon looking at the AP table portion of the MC_trans path, we decided that it was all pretty bad.  The light travels around the edge of the AP table, then out the corner of the table toward the PSL table.  A periscope brings it down to the level of the PSL table, and then it travels through a few optics to the MC_trans QPD. 

The light was clipping on the way through the periscope, and so the MC_trans QPD was totally unreliable as a method of fine-tuning the alignment of the Mode Cleaner.  Ideally we'd like to be able to maximize MC_trans, and say that that's a good MC alignment, but that doesn't work when the beam is clipped.

 

Things done:

1. The first turning mirror on the AP table after the beam comes out of the vacuum was changed from a 1" optic to a 2" optic, because the spot size is ~4-6mm.  We were careful to avoid clipping the OMCT beam, by using a nifty U200 mount (C-shaped instead of ring-shaped). 

2.  We placed a lens with a RoC of 1m (focal length for 1064nm is ~2m), a 2" optic, between the first two mirrors, to help keep the beam small-ish when it gets to the periscope, to help avoid clipping.

3. Rana adjusted the angle of the upper periscope mirror, because even when the beam was centered on the steering mirror directly in front of the periscope and the spot was centered on the first periscope mirror, the beam wouldn't hit the bottom periscope mirror. 

4. We noticed that the bottom periscope mirror was mounted much too low.  It was mounted as if the optics after it were 3" high, which is true for all of the input optics on the PSL table.  However, for the MC_trans stuff, all the optics are 4".  We moved the periscope up one hole, which made it the correct height.

5. We removed the skinny beam tube which guided/protected the beam coming off the periscope after a steering mirror since it (a) wasn't necessary and (b) was clipping the beam. We cannot use such skinny tubes anymore Steve.

6. There was a lens just before the 2nd steering mirror on the PSL table portion, which we removed since we had placed the other lens earlier in the path.  2 lenses made the beam too skinny at the QPD.

7.  After this 2nd steering mirror, there had been a pickoff, to send a bit of beam at a crazy angle over to the RFAM mon, which we removed.  This results in a much brighter beam at the MC_trans QPD, and at the camera.  The QPDs readouts are now a factor of ~3.5 higher than they used to be.  These (especially the camera) could use some ND-filtering action.

8.  The steering optic directly in front of the MC_trans QPD is a beamsplitter, and instead of dumping the light which doesn't go to the MC_trans QPD, we used this to go over to the RFAM mon (instead of the pickoff which we had removed). 

9.  Koji fixed up the optics directly in front of the RFAM mon, accomodating the new position of the input light (now at a much more reasonable angle, and about 15cm farther back from the PD). Note the beam dump which is preventing the cables from the FSS board from entering the beam path. This included removing an ND filter wheel, so the RFAM mon values will all be higher now.  Koji also has the beam going to the PD going at a slight angle, so that the beam isn't directly reflected on itself, so that it can be dumped.

10. We aligned the beam onto the MC_trans QPD using the first steering mirror on the PSL table.

11. We also removed the giant wall of beam dumps separating the squeezing section of the table from the rest of the table.

Alberto will elog things about the RFAM mon, including different values of the PD output, etc.

 

Still on the to-do list:

A.  Replace the second steering mirror on the AP table after the MC_trans light leaves the vacuum with a 2" optic, since the lens we placed isn't tight enough to make the spot small there yet.  Us a U200A mount if possible, because they are really nice mounts.

B.  Put an ND filter in front of the MC_trans camera, because the image is too bright.

C.  Normalize the MC_trans QPD - the horz and vert are pretty much direct voltage readouts, with no normalization.  They should be divided by the DC value.  This lack of normalization results in higher sensitivity to input pointing.

D.  Long term, next time someone wants to optimize the MC_trans path, move all the optics, including the MC_trans QPD and the camera closer to the periscope on the PSL table.  There's no reason for the beam to be traveling nearly the full width of the PSL table when we're not manuvering around squeezing stuff.

E. Never, ever purchase these horrible U100 or U200 mounts with the full ring and the little plastic clips. They are the "AC28" version. Bad, bad, bad.

 

Image 1:  The new setup of the AP table, Mc_trans portion. 

Image 2:  New setup of the MC_trans part of the PSL table.

Attachment 1: P8030099_copy.JPG
P8030099_copy.JPG
Attachment 2: P8030102_copy.JPG
P8030102_copy.JPG
  7370   Mon Sep 10 18:42:33 2012 Jenne, Mike J.UpdateCamerasXY beam scan tomorrow

We tweaked the mirror on the AP table to go through the center of the lens in order to get a more circular beam, but it seemed ineffective. So we put an IR card in front of the lens and behind the lens to see if the beam was circular or ovacular, but could not tell. We also moved the camera to see, but still couldn't see a distinct circle or oval. So Mike and Q will do a beam scan tomorrow in both the X and Y directions to see if the beam is circular or not.

  1172   Wed Dec 3 20:10:09 2008 Jenne, RanaUpdatePEMComparing Wiener subtraction with different seismometers
Attached is a plot of MC_L, and then the residual MC_L after static Wiener filtering, using different combinations of our accelerometers and seismometers.

This is the same type of plot that Rana has included in the past few weeks, using Wiener filters calculated with c1wino.m

This data is from GPS 912312914, duration = 7200 sec, sometime during the night last night.

Unfortunately, it doesn't look like adding the Guralp seismometer to the Accelerometers and the Ranger did much, especially at low frequencies (all sensors = black curve). We'll have to investigate why this is true, and what we can do to get some low-frequency subtraction going on.

In the legend, "Residuals Accels, Guralp, Ranger" implies that the residual has been calculated using all of the sensors listed.
Attachment 1: Dec032008_c1wino_seisCombos.png
Dec032008_c1wino_seisCombos.png
ELOG V3.1.3-