40m QIL Cryo_Lab CTN SUS_Lab TCS_Lab OMC_Lab CRIME_Lab FEA ENG_Labs OptContFac Mariner WBEEShop
  40m Log, Page 66 of 344  Not logged in ELOG logo
ID Date Author Typeup Category Subject
  13996   Thu Jun 21 14:23:22 2018 Udit KhandelwalSummaryGeneralA summary of the Tip-TIlt Mirror Holder design changes

Here’s a quick summary of the Tip-Tilt Design updates (all files are in the dropbox in [TipTiltSus>TT_New]) that I have been working on with Koji and Steve's help.

1. Plate on top to hold mirror in place:

The plate is 0.5 mm thick. I did a rough FEA with 10 N force on the point of pressure on it, and it bent easily.

2. Weighted screw rod at the bottom for tilting the mirror-holder:

I did a very simplified free body analysis to calculate the required length of the rod to achieve a +/- 15 mRad tilt, and got around 1.5 inches.

3. Set-screws on both side of wire clamp to adjust its horizontal position:

  • Front view (showing set screws on either side of the clamp to push it into the desired position, and the clamp in the middle with screws on top and bottom to fix its position):

  • Exploded view showing protrusion in clamp that sits in the mirror holder inset:

 

  • Exploded view showing inset in the mirror holder to slide protrusion in:

 

 

Comments:

1. Used the same screw size in most places to reduce complexity.

2. The mirror holder I have worked on is a little different from the actual piece I have on my table. Which one do you prefer (Koji)?

  13997   Thu Jun 21 14:57:59 2018 KojiSummaryGeneralA summary of the Tip-TIlt Mirror Holder design changes

> 2. Weighted screw rod at the bottom for tilting the mirror-holder:

Too long. The design of the holder should be check with the entire assembly.
We should be able to make it compact if we heavier weights.
How are these weights fixed on the shaft?
Also can we have options for smaller weights for the case we don't need such a range?
Note the mass of the weights.

> 3. Set-screws on both side of wire clamp to adjust its horizontal position:

How much is the range of the clamp motion limited by the slot for the side screws and the slot for the protrusion? Are they matched?
Can you show us the design of the slot made on the mirror holder?

>>

Where is the center of mass (CoM) for the entire mirror holder assy and how much is the height gap between the CoM and the wire release points. Can you do this with 3/8" and 1/2" fused silica mirrors?

  14014   Mon Jun 25 19:14:02 2018 UditSummaryGeneralRe: A summary of the Tip-TIlt Mirror Holder design changes

2. Weighted screw rod at the bottom for tilting the mirror-holder:

The screw length selected here (2") is not interfering with any part of the assembly.

The 'weights' I have here are just thumb nuts from Mcmaster, so their weight is fixed (1.65g each, btw).

Problem I'd like to solve: Find an assortment of weighted, symmetric nuts with caps on one end to fix position on shaft. 

3. Set-screws on both side of wire clamp to adjust its horizontal position:

Thanks for pointing out the mismatch in travel distance of protrusion and clamp screws. To match them, the clamp screw slot now sticks out of the profile (by 1.5mm). The range of the clamp motion is +/- 3 mm.

Also, here's a screenshot of the slot in the mirror holder:

--

- Excluding the weighted screw rod assembly, the height gap between assembly COM and wire release point is 3.1 mm.

Quote:

> 2. Weighted screw rod at the bottom for tilting the mirror-holder:

Too long. The design of the holder should be check with the entire assembly.
We should be able to make it compact if we heavier weights.
How are these weights fixed on the shaft?
Also can we have options for smaller weights for the case we don't need such a range?
Note the mass of the weights.

> 3. Set-screws on both side of wire clamp to adjust its horizontal position:

How much is the range of the clamp motion limited by the slot for the side screws and the slot for the protrusion? Are they matched?
Can you show us the design of the slot made on the mirror holder?

>>

Where is the center of mass (CoM) for the entire mirror holder assy and how much is the height gap between the CoM and the wire release points. Can you do this with 3/8" and 1/2" fused silica mirrors?

 

  14015   Mon Jun 25 21:14:08 2018 KojiSummaryGeneralRe: A summary of the Tip-TIlt Mirror Holder design changes

3.
- Do we need this much of extended range of the clamp location? How much range will we need if we use either 3/8 or 1/4 inch mirrors?
- This slot on the mirror holder ring is not machinable.

About the CoM height
- Include the angle adjustment screw and adjust the wire releasing point to have comparable pitch resonant freq to the SOS suspension.

 

  14042   Fri Jul 6 19:39:37 2018 Udit KhandelwalSummaryGeneralCAD drawings of cantilever suspension required

Request to Koji to acquire the drawings or 3D CAD of the cantilever suspensions of the Tip-Tilt Assembly!

  14044   Sun Jul 8 12:20:12 2018 JonSummaryAUXGouy Phase Measurements from AUX-Laser Scans

This note reports analysis of cavity scans made by directly sweeping the AUX laser carrier frequency (no sidebands). The measurement is made by sweeping the RF offset of the AUX-PSL phase-locked loop and demodulating the cavity reflection/transmission signal at the offset frequency.

Y-Arm Scan

Due to the simplicity of its expected response, the Y-arm cavity was scanned first as a test of the AUX hardware and the sensitivity of the technique. Attachment 1 shows the measured cavity transmission with respect to RF drive signal.

The AUX laser launch setup is capable of injecting up to 9.3 mW into the AS port. This high-power measurement is shown by the black trace. The same measurement is repeated for a realistic SQZ injection power, 70 uW, indicated by the red curve. At low power, the technique still clearly resolves the FSR and six HOM resonances. From the identified mode resonance frequencies the following cavity parameters are directly extracted.

YARM Gautam's Finesse Model Actual
FSR 3.966 MHz 3.967 MHz
Gouy phase 54.2 deg 52.0 deg

PRC Scan

An analogous scan was performed for the PRC, with the IFO locked on PSL carrier in PRMI. Attachment 2 shows the measurement of PRC transmission with respect to drive signal.

The scan resolves HOM resonances to at least ~13th order, whose frequencies yield the following cavity parameters.

PRC Gautam's Finesse Model Actual
FSR 22.30 MHz 22.20 MHz
Gouy phase 13.4 deg 15.4 deg

SRC Scan

Ideally (and at the sites) the SRC mode resonances will be measured in SRMI configuration. Because every other cavity is misaligned, this configuration provides an easily-interpretable spectrum whose resonances can all be attributed to the SRC.

Due to time constraints at the 40m, the IFO could not be restored to lockability in SRMI. It has been more than two years since this configuration was last run. For this reason the scan was made instead with the IFO locked in DRMI, as shown in Attachment 3. The quantity measured is the AUX reflection with respect to drive signal.

This result requires far more interpretation because resonances of both the SRC and PRC are superposed. However, the resonances of the PRC are known a priori from the independent PRMI scan. The SRC mode resonances identified below do not conincide with any of the first five PRC mode resonances.

Based on the identified mode resonance frequencies, the SRC parameters are measured as follows.

SRC Gautam's Finesse Model Actual
FSR 27.65 MHz 27.97 MHz
Gouy phase 10.9 deg 8.8 deg

Lessons Learned

From experience with the 40m, the main challenges to repeating this measurement at the sites will be the following.

  • Pointing jitter of the input AUX beam. This causes the PSL-AUX beam overlap to vary at transmission (or reflection), causing variation in the amplitude of the AUX-PSL beat note. As far as we can tell, the frequency of the resonances (the only object of this measurement) is not changing in time, only the relative amplitudes of the diferent mode peaks. I believe the SQZ alignment loops will mitigate this problem at the sites.
  • Stabilization of the network analyzer time base. We found the intrinsic frequency stability of the network analyzer (Agilent 4395A) to be unacceptably large. We solved this problem by phase-locking the Agilent to an external reference, a 10-MHz signal provided by an atomic clock.
  14047   Mon Jul 9 17:29:28 2018 Udit KhandelwalSummaryTip-TIltTipTilt mirror holder final changes

Final Summary of changes to mirror holder in Tip-Tilt holder.

Determining minimum range for Side Clamp:

1. The initial distance b/w wire-release point and mirror assembly COM = 0.265 mm


2. But this distance is assuming that wire-release point is at mid-point of clamp. So I'm settling on a range of +/- 1mm. The screenshots below confirm range of ~1mm between (1) side screw & protrusion and (2) clamp screw and clamp.

Determining length of tilt-weight assembly rod at the bottom to get \pm 20mRad range

The tilt-weight assembly is made from following Mcmaster parts:
Rod   - 95412A864 18-8 SS  #2-56 Threaded Rod
Nuts  - 91855A103 18-8 SS #2-56 Acorn Cap Nut

Since the weights are fixed, only rod length can be changed to get the angle range.

tan \theta =\frac{d}{h}

d= h \times tan\theta = 34.25\text{mm} \times tan(20 \text{mRad}) = 0.69 \text{mm}
So a range of 1 mm between nut's inner face and mirror-holder face should be enough. Since holder is 12 mm thick, rod length = 12mm + 2 x 1mm + 2 x (nut length) = 12 + 2 + 9.6 = 23.6 mm = 0.93 inch. So a 1" rod from Mcmaster will be fine.

  Draft   Wed Jul 11 18:13:19 2018 keerthanaSummaryAUXGouy Phase Measurements from AUX-Laser Scans

From the Measurement Jon made, FSR is 3.967 MHz and the Gouy phase is 52 degrees. From this, the length of the Y-arm cavity seems to be 37.78 m and the radius of curvature of the mirror seems to be 60.85 m.

 

Guoy Phase = \cos^{-1} \sqrt{g1.g2}

\\ g = 1- \frac{L}{R}

L = \frac {c} {2*FSR}

FSR = Free spectral Range

L = Lenth of the arm

R = Radius of curvature of the mirror (R1 =\infty  , R2= unknown)

Quote:

This note reports analysis of cavity scans made by directly sweeping the AUX laser carrier frequency (no sidebands). The measurement is made by sweeping the RF offset of the AUX-PSL phase-locked loop and demodulating the cavity reflection/transmission signal at the offset frequency.

Y-Arm Scan

Due to the simplicity of its expected response, the Y-arm cavity was scanned first as a test of the AUX hardware and the sensitivity of the technique. Attachment 1 shows the measured cavity transmission with respect to RF drive signal.

The AUX laser launch setup is capable of injecting up to 9.3 mW into the AS port. This high-power measurement is shown by the black trace. The same measurement is repeated for a realistic SQZ injection power, 70 uW, indicated by the red curve. At low power, the technique still clearly resolves the FSR and six HOM resonances. From the identified mode resonance frequencies the following cavity parameters are directly extracted.

YARM Gautam V. Finesse Model Actual
FSR 3.966 MHz 3.967 MHz
Gouy phase 54.2 deg 52.0 deg

 

 

  14069   Fri Jul 13 20:36:33 2018 KojiSummaryGeneralIn vac/In air heater wiring

I went to the Y-end and took more photos of the cable stand. These revealed that in-vac pin #13 is connected to the shield of the cable (P.2). This in-vac pin #13 corresponds to  in-air pin #1. So in the end, we bunch the pins in the following order.

In Air In Vac
Pin #2-7 Pin #12-7
Pin #8-13 Pin #6-1
Pin #14-19 Pin #25-20
Pin #20-25 Pin #19-14

 

  14073   Mon Jul 16 15:07:19 2018 KojiSummaryVACOven C vent

[Steve Koji]

- Attachment1: Removed the thermal cap. Checked the temperature of the oven. It was totally cold.

- Attachment2: Confirmed the RGA section was isolated. The pumps for the RGA was left running.

- Attachment3: Closed the main valve. The pumps for the main volume was left running.

- Attachment4: Started removing the rid. This did not change the gause readings as they were isolated from the venting main volume.

- Attachment5: Opened the rid. Took the components out on a UHV foil bag. The rid was replaced but loosely held by a few screws with the old gasket, just to protect the frange and the volume from rough dusts.

  14077   Tue Jul 17 12:55:45 2018 KojiSummaryGeneralStarted pumping

[Steve, Koji, Gautam]

We started pumping down at ~12:15PM.

Vent finalization ~ YEND

  • The table leveling was way off. This was adjusted by the balancing weight. (Attachment 1~3)
  • The alignment of ETMY was not too much off. Just aligned it with the oplev spot on MEDM and this already made the green flashing.
  • The Green TEM00 was maximized with ITMY and ETMY. This made the PSL IR flashing.
  • The heater wires were checked. I found that one of the heater wires was touching the optical table via the cable shield. This is because the upper pins were shifted to the left side (Attachment 4&5). The pins were shifted and now all 4 cables are isolated form the table. I also checked the mutual resistance between the 4 terminals. They were measured to be isolated except two pairs that showed 4.4 Ohms and 4.0 Ohms (Attachment 6)
  • The tools were removed from the chamber. The Y arm was still flashing.
  • We closed the ETMY door.

Vent finalization ~ Vertex

  • Found the ITMX stuck. Gautam came in and showed us his black magic to release the optic...
  • This allowed us to align X arm. The green flash was found and the TEM00 flash was seen. This allowed us to see the PSL IR flash at the X end.
  • PRM Refl was aligned. SRM was aligned with the oplev.
  • The beam on the AS port was checked. The AS beam came out from the window.
  • Closed the OMC chamber.

Pumping

  • Started pumping with RP1 and RP3. (~12:15PM)

  14079   Tue Jul 17 18:16:38 2018 SteveSummaryVACpumpdown 81 at 6 hrs

Precondition:  4 days at atm.   Atm5

HEPA tent used during the vent at ETMY  It reduced partical count 10 fold of 0.5 and 0.3 micron particals. Atm6

New items in vacuum:  Clean manual gate valve [Cetec made] from John Worden with 6" id....as it came from Hanford... [ Throttle able gate valve- TGV ] Atm3

                                 ( note: we have 3 more identical in the lab. The original intention was to use them for purging gates )

                                  Optiform Au plated reflector , Induceramics heating elements, similar as existing Cooner cables and related lenses, hardwear. see 14078

                                  OMC related item : none......... 14,110

 

The pumpdown is at 510 mTorr with RP1 & RP3 still pumping. Koji will shut it down the roughing later tonight. Tomorrow morning I will start the pumping by switching over to TP1 maglev.

Thanks for Koji and Gautam'  help of the installation of the manual gate valve. Atm4  This will allow us to control the load on our Varian foreline D70 turbo TP3

 

  14080   Tue Jul 17 22:25:41 2018 KojiSummaryVACpumpdown 81 at 6 hrs

10:20PM

  • Opened VM2 to pump down the RGA section with TP1
  • Stopped rotary roughing pumps
    • Manually closed RV1
    • Closed V3
    • Stopped RP1 and RP3
    • Vented the RP hose

The P1 pressure is 380mTorr. I allowed Gautam to use the full PSL power (~1W).

  14082   Wed Jul 18 12:49:08 2018 SteveSummaryVACpumpdown 81 at 6 +4.5hrs

The manual gate valve scan was clean. Atm1     TP1 was pumping on it overnight.

                                                Pumpdown continued to hand over the pumping to TP1 maglev turbo

V1 was opened at P1 400 mTorr  with manual gate at 3/4 turn open position as Magev at 560 Hz rotation.

Two aux fans on to hold tubo temps TP1 & TP3 . Atm3

This is the first time we pumping down from atm with ONE small "beer can" turbo  and throttled gate valve to control load on small turbo forepump

The 70 l/s turbo is operating at 50k RPM, 0.7 A and 31 C,  pumping speed  ~ 44 mTorr/h at 200-400 mTorr range with aux drypump in the foreline of TP3

Watching foreline pressures and current one can keep opening gate valve little by little the so the load is optimized. It is working but not fast.

Let's keep small turbo at 0.8 Amp and 32 C max at this pumpdown. 

Quote:

10:20PM

  • Opened VM2 to pump down the RGA section with TP1
  • Stopped rotary roughing pumps
    • Manually closed RV1
    • Closed V3
    • Stopped RP1 and RP3
    • Vented the RP hose

The P1 pressure is 380mTorr. I allowed Gautam to use the full PSL power (~1W).

  14083   Wed Jul 18 17:36:50 2018 SteveSummaryVACpumpdown 81 at 6 +9 hrs completed

IFO P1 6e-4 Torr,  manual gate valve is fully open

The annuloses will be pumped down tomorrow.

Valve configuration: vacuum normal, RGA and annuloses are not pumped

Quote:

The manual gate valve scan was clean. Atm1     TP1 was pumping on it overnight.

                                                Pumpdown continued to hand over the pumping to TP1 maglev turbo

V1 was opened at P1 400 mTorr  with manual gate at 3/4 turn open position as Magev at 560 Hz rotation.

This is the first time we pumping down from atm with one small "beer can" turbo  and throttled gate to control load on small turbo forepump

The 70 l/s turbo is operating at 50k RPM, 0.7 A and 31 C,  pumping speed  ~ 44 mTorr/h at 200-400 mTorr range.

Watching foreline pressures and current one can keep opening gate valve little by little the so the load is optimized. It is working but not fast.

Let's keep small turbo at 0.8 Amp and 32 C max at this pumpdown. 

Quote:

10:20PM

  • Opened VM2 to pump down the RGA section with TP1
  • Stopped rotary roughing pumps
    • Manually closed RV1
    • Closed V3
    • Stopped RP1 and RP3
    • Vented the RP hose

The P1 pressure is 380mTorr. I allowed Gautam to use the full PSL power (~1W).

  14085   Thu Jul 19 01:56:25 2018 gautamSummaryVACAUX pump shutdown

[koji, gautam]

Per Steve's instructions, we did the following:

  • TP3fl pressure reading was 65 torr.
  • TP3 controller reported pumping current of ~0.18A, temperature of 24C.
  • We throttled the manual valve which was connecting the "AUX" pump to the TP3fl.
  • The TP3fl pressure went up to 330 torr.
  • TP3fl controller reported current of 0.22A, temperature of 24C.
  • After ~5mins, we shut the AUX pump off.
  • We have monitored it over the last 1hour, no red flags.
    • (Before stopping AUX RP)
      0:56AM TP3 I=0.18A, P=6W, 23degC, TP3FL: 66
    • 0:59AM TP3 I=0.22A, P=7W, 23degC, TP3FL: 336
    • 1:15AM TP3 I=0.21A, P=7W, 23degC, TP3FL: 320
    • 1:31AM TP3 I=0.21A, P=7W, 23degC, TP3FL: 310
    • 2:06AM TP3 I=0.21A, P=7W, 23degC, TP3FL: 301
    • 5:06AM TP3 I=0.21A, P=7W, 23degC, TP3FL: 275
  14086   Thu Jul 19 04:44:09 2018 Annalisa, TerraSummaryThermal Compensationfrequency shift observed with heating!

Annalisa, Gautum, Koji, Terra

Summary: with the reflector setup, we measured a frequency shift of the first and second order modes! First looks of shifts show 1st HOM shift ~-10 kHz, 2nd HOM shift ~-18 kHz (carrier ~4 kHz). We saw no shift with the cylinder/lenses set up.

- - - - -

Tonight we modified the cavity scan setup: the LO is provided by the Marconi which, at the same time, is also used to scan the AUX laser frequency instead of the Agilent. In order to get rid of the free running noise between Marconi and Agilent, the Marconi frequency was scanned and, point by point, the Agilent center frequency was changed accordingly. In order to speed up the process, the whole procedure was automated. The script is called AGfast.py and can be found in /users/annalisa/postVent.

One thing that helped in improving the data quality of the phase information was to set the Agilent IF bandwidth @1kHz. Not yet clear why, but it was better than having a lower bandwidth. To be further investigated.

With this setup, we made some coarse scan of the full FSR and then we "zoomed" around the main peaks in order to increase the resolution and get a more precise information about the peak frequency.

Here are the frequency ranges that we scanned:

  • carrier - central frequency: 31.73MHz; range: [31.68MHz - 31.78MHz]
  • HOM1 - central frequency: 32.88MHz; range: [32.84MHz - 32.93MHz]
  • HOM2 - central frequency: 34.03MHz; range: [33.95MHz - 34.06MHz]
  • HOM3 - central frequency: 35.18MHz; range: [35.09MHz - 35.25MHz]

We powered the heater of the lenses setup @4:55 am at 14.4V and 0.9A. Then we slightly increased the power @5:05am and the final "hot state" configuration is with heater powered at 16V and 0.9A.

With this setup we couldn't see any frequency shift

Then, at around 6:30 am we turned on the reflector setup and we measured a frequency shift of the first and second order modes. First scans show 1st HOM shift ~10 kHz, 2nd HOM shift ~18 kHz. First attachment shows carrier hot/cold, second attachment shows HOM2 hot/cold. We started to get plauged by high seismic noise. Heaters turned off at 7:45 am. Lots of scans and actual analysis to go.


gautam: about the questionable plotting -

  • 10 faint (alpha~0.3) lines are individual measurements with the reflector doing its heating. (AG4395A, 0 span, single frequency measurements plotted together).
  • charcoal line, labelled mean, is the mean of the 10 above lines.
  • bright green ("Reference") is the mean of a coarse scan (cold ETM) overlaid for comparison. 
  • "cold" - self explanatory.

My personal favourite plot is Attachment #3, which is a 5 MHz scan (cold) to identify positions of the various peaks. The power of including phase information in the analysis is clear. The second FSR on the right edge of the plot is not as prominent as the first is because the arm transmission was degrading throughout the measurement. For future measurements, we should consider locking the IMC length to the arm cavity - this would eliminate such alignment drifts, and maybe also make the PLL control signal RMS smaller. 

  14087   Thu Jul 19 11:01:03 2018 SteveSummaryVACpd81 @ 2e-5 Torr

Cold cathode gauge just turned on.

  14088   Thu Jul 19 13:35:30 2018 SteveSummaryVACannuloses pumped

Roughing down the annuloses required closing V1 for 13 minutes

IFO is 2.2e-5 Torr

  14090   Fri Jul 20 07:43:54 2018 SteveSummarySUSETMY

 

 

  14094   Sat Jul 21 01:06:49 2018 gautamSummaryThermal CompensationY arm locking

I implemented this today. For now, the LSC output matrix is set to actuate on MC2 for Y arm locking. As expected, the transmission was much more stable, and the PLL control signal RMS was also reduced by factor of ~3. MC2 control signal does pick up a large (~2000 cts) DC component over a few hours, so we need to relieve this periodically.

Now that we have a workable ASS for the Y arm as well, we should be able to have more confidence in returning to the same beam spot position on the ETM and staying there during a scan using this technique.

The main improvement to be trialled next in the scanning is to improve the speed of scanning. As things stand, my script takes ~2.5 seconds per datapoint. If we can cut this in half, that'd be huge. On Wednesday night, we were extraordinarily lucky to avoid MC3 glitching, EPICS/slow machine failures, and GPIB freezes. Today, the latter reared its head. Fortunately, since I'm dumping data to file for each datapoint, this means we at least have data till the GPIB freeze.

Quote:

For future measurements, we should consider locking the IMC length to the arm cavity - this would eliminate such alignment drifts, and maybe also make the PLL control signal RMS smaller. 


Not related to this work: Terra, Sandrine, Keerthana and I cleaned up the lab a bit today, and made better cable labels. Aaron and I have to clean up the OMC area a bit. Huge thanks to Steve for taking care of our mess elsewhere in the lab!

  14096   Sat Jul 21 14:03:19 2018 KojiSummaryThermal CompensationY arm locking

Ah. With MC2 feedback, we have about 3 times smaller "optical gain" for the ASS A2L. We have same dither, same actuator, but we need only 1/3 actuation of the MC2 compared to the ETMY case.
We had to reduce the ASS spot servo from 1 to 0.3 to make is stable, so this means that the ASS is really merginally stable.

  14098   Mon Jul 23 09:58:52 2018 SteveSummaryVACRGA scan at day 6

 

 

  14103   Wed Jul 25 14:45:59 2018 SandrineSummaryThermal CompensationETM Y Table AUX read out

Attached is a photo of the set up of the ETM Y table showing the AUX read out set up. 

Currently, the flip mount sends the AUX to the PDA255. Terra inserted a razor blade so the PDA255 will witness more HOMs. The laser is also sent to the regular PD and the CCD.

  14110   Sat Jul 28 00:45:11 2018 terra, sandrineSummaryThermal CompensationHeater measurements overview

[Sandrine, Koji, Terra]

Summary: We completed multiple scans at different heating powers for the reflector set up, observing unique HOM peak shifts of tens of kHz. We also observed HOM5 shifts with the cylinder set up. Initial Lorentzian fittings of the magnitude give tens of Hz resolution. I summarize the main week's work below. 

Set-up

Heater set-up is described in several previous elogs, but attachments #1 and #2 show the full heater set-up and wiring/pinouts in and out of vacuum, since we're all intimately aware of how confusing in-vacuum pinouts can be. We are not using the Sorenson power supply (as described in 14071); we just have the BKPrecision power supply 1735 sitting next to the ETMY rack and are manually going out to turn on/off. 

We've continued to use the scan setup described in elog 14086, which is run using /users/annalisa/postVent/AGfast.py. Step by step notes for setting up the scan, running the scans, and processing the scans are attached in notes.txt.

Inducing/witnessing HOMs

The aux input beam was already clipped and on wednesday (after Trans was centered, 14093) we also clipped the output aux beam with razor blade (angled vertically and horizontally, elog 14103) before PDA255; we clipped ~1/3 of the output beam. Attachment #3 shows before and after clipping output, where orange 'cold' == unclipped, black 'mean' == clipped (all in cold state). Up to HOM5 is visible. 

Measurements

Below is a summary of the available scan data. We also have cold (0A) scans CAR-HOM5 and full FSR scans for most configurations. 

Elliptic Reflector
current[A] voltage[V] power[W] scans
0.4 2 0.8 CAR-HOM3(x1)
0.5 3.4 1.7 CAR-HOM3(x1)
0.6 5 3.0 CAR-HOM3(x1)
0.8 9.4(9.7) 7.5(7.8) CAR-HOM5(>x5)
0.9 12 10.8 CAR-HOM5(x4)
1.09 17 18.5 CAR-HOM3

 

 

 

 

 

 

 

Cylinder + Lenses
current[A] voltage[V] power[W] scans
0.9 15 13.5 CAR-HOM5(odds x4)

We tried the cylinder set-up again tonight for the first time since inital try and can see shifts of HOM5 - see attachment #5; we haven't looked in detail yet, but it looks like odd modes are more effected, suggesting the ring heat pattern is off centered from the beam axis. 

Scan data is saved in the following format: users/annalisa/postVent/scandata/{reflector,cylinder}/{parsed,unparsed}/{CAR,HOM1,HOM2,HOM3,HOM4,HOM5}{_datetime}{_parsed,_unparsed}.{txt,pdf}

Minimum heating

On 7/26 we increased the power to the elliptical reflector heater in steps to find the minimum heater power required to see frequency shifts with our measurement setup. Lowest we can resolve is a shift in HOM3 with 1.7W (0.5A/3.4V). According to Annalisa's measurements in elog 14050, this would be something like 30-60 mW radiated power hitting the test mass. We only looked at CAR - HOM3 for this investigation; data for scans at 0.4A, 0.5A, 0.6A is available as indicated above.

Lorentizian Fitting

The Lorentzian fitting was done using the equation a + b / sqrt(1+((x-c)/d*2), where a = constant background, b = peak height above background, c = peak frequency, d = full width at half max. 

The fitting is still being edited and optimized. We will crop the data to zoom in around the peak more.

The Lorentzian fit of the magnitude shows ~10Hz of resolution. (See attachment 6 for the carrier at 8A and attachment 7 for HOM 1 at 9A)

We're working on fitting the full complex data.

 

 

  14121   Wed Aug 1 16:23:48 2018 KojiSummaryComputersTransition of the main NFS disk on chiara

[Gautam Koji]

Taking the opportunity to shutdown c1ioo for adding a DAC card, we shutdown chiara and worked on moving of the main disk to the bigger home.

We shutdown most of the martian machines including the control machines, megatron, optimus, and nodus.

- Before shutting down chiara, we ran rsync to make the 4TB disk (used to be teh backup) and /cvs/cds synced.

sudo rsync -a --progress /home/cds/ /media/40mBackup

- Modified /etc/fstab

proc            /proc           proc    nodev,noexec,nosuid 0       0
# / was on /dev/sda1 during installation
UUID=972db769-4020-4b74-b943-9b868c26043a /               ext4    errors=remount-ro 0       1
# swap was on /dev/sda5 during installation
UUID=a3f5d977-72d7-47c9-a059-38633d16413e none            swap    sw              0       0
UUID="90a5c98a-22fb-4685-9c17-77ed07a5e000"    /media/40mBackup       ext4      defaults,relatime,commit=60       0         0
#fb:/frames      /frames nfs     ro,bg

UUID=92dc7073-bf4d-4c58-8052-63129ff5755b   /home/cds    ext4    defaults,relatime,commit=60    0   0

- Shutdown chiara. Put the 4TB disk in the chassis. We also installed a new disk (but later it turned out that it only has 2TB...)

- Restart the mahcine. This already made the 4TB disk mounted as /cvs/cds .

- Restart bind9 with DHCP for the diskless clients (cf. https://wiki-40m.ligo.caltech.edu/CDS/How_to_join_martian)

sudo service bind9 restart
sudo service isc-dhcp-server restart

- Looks like /etc/resolv.conf is automatically overwritten by a tool or something everytime we restart the machine!? I still don't know how to avoid this. (cf.  https://www.ctrl.blog/entry/resolvconf-tutorial). But at least for today we manually wrote /etc/resolv.conf

controls@chiara|backup> cat /etc/resolv.conf
# Dynamic
resolv.conf(5) file for
glibc resolver(3) generated by resolvconf(8)
#     DO NOT EDIT THIS FILE BY HAND -- YOUR CHANGES WILL BE OVERWRITTEN
nameserver 192.168.113.104
nameserver 131.215.125.1
nameserver 8.8.8.8

search martian

  14122   Wed Aug 1 19:41:15 2018 gautamSummaryComputersRTCDS recovery, c1ioo changes

[Gautam Koji]

After this work, we recovered the nominal RTCDS state. The main points were:

  1. We needed to restart the bind9 service on chiara such that the FEs knew their IP addresses upon reboot and hence, could get their root filesystems over NFS.
  2. We recovered suspension local damping, IMC locking and POX/POY locking with nominal arm transmission.

Some stuff that is not working as usual:

  1. The EX QPD is reporting strange transmission values - even with the PRM completely misaligned, it reports transmission of ~30. But we were able to lock the Xarm with the Thorlabs PD and revover transmission of ~1.15.
  2. The X arm green does not stay locked to the cavity - the alignment looks fine, and the green flashes are strong, but the lock does not hold. This shouldn't be directly connected to anything we did today since the Green PDH servo is entirely analog.

I made a model change in c1x03 (the IOP model on c1ioo) to add a DAC part. The model compiled, installed and started correctly, and looking at dmesg on c1ioo, it recognises the DAC card as what it is. Next step is to use a core on c1ioo for a c1omc model, and actually try driving some signals.

Note that the only change made to the c1ioo expansion chassis was that a DAC card was installed into the PCIe bus. The adaptor card which allows interfacing the DAC card to an AI board was already in the expansion chassis, presumably from whenever the DAC was removed from this machine.

*I think I forgot to restart optimus after this work...

  14123   Wed Aug 1 20:44:57 2018 gautamSummaryComputersc1omc model (re?)created

The main motivation behind adding a DAC card in c1ioo was to setup an RTCDS model for the OMC. Attachment #1 shows the new look CDS overview screen. Here is what I did.

Mostly, I followed instructions from when I setup the model for the EX green PZTs.


Simulink model:

The model is just a toy for now (CDS parameters, ADC block and 2 CDS filter modules). I leave it to Aaron to actually populate it, check functionality etc. The path to the model is /opt/rtcds/caltech/c1/userapps/release/isc/c1/models/c1omc.mdl. I am listing the parameters set on the CDS_PARAMETERS block:

  • host = c1ioo
  • site = c1
  • rate = 16k
  • dcuid = 27 (which I chose after making sure that this dcuid was not used on this list which I also updated by adding c1omc and moving c1imc to "old")
  • specific_cpu = 6 (again chosen after checking the available CPUs in the above list and confirming using the cset utility).
  • adc_Slave = 1
  • shmem_daq = 1
  • no_rfm_dma = 1
  • biquad = 1

Building and installing model:

Once the model was installed, I logged into c1ioo, and built and installed the models using the usual rtcds make and rtcds install instructions. Before starting the model, I edited /diskless/root.jessie/etc/rtsystab to allow c1omc to be run on c1ioo. Using sudo cset set, I verified that CPU #6 is no longer listed (if I understand correctly, the RTCDS system takes over the core).


MEDM:

To reflect all this on the MEDM CDS OVERVIEW screen, I just edited the screen.

  • Moved the orange explanation of bits over to the c1iscey panel to make space in the c1ioo panel.
  • Edited the macros to reflect the c1omc parameters.

DAQD:

Finally, I followed the instructions here to get the channels into frames and make all the indicators green. Went into fb and restarted the daqd processes. All looks good smiley. I'm going to leave the model running overnight to investigate stability. I forgot to svn commit the model tonight, will do it tomorrow.


The testing plan (at least initially) is to install the AA and AI boards from the OMC rack in 1X1/1X2. Then we will have short SCSI cables running from the ADC/DAC to these. The actual HV driving stages will remain in the OMC rack (NE corner of AS table).

@Steve, can we get 10 Male-Female D9 cables so that we can run them from 1X1/1X2 to the OMC rack?


Unrelated to this work: There were 2 crashes of the models on c1lsc, one ~6pm and one right now ~1030pm. The restart script brought everything back gracefully  yes...

  14125   Thu Aug 2 20:47:29 2018 gautamSummaryElectronicsX Green "Mystery" solved

I walked down to the X end and found that the entire AUX laser electronics rack isn't getting any power. There was no elog about this.

I couldn't find any free points in the power strip where I think all this stuff was plugged in so I'm going to hold off on resurrecting this until tomorrow when I'll work with Steve.

Quote:

The X arm green does not stay locked to the cavity - the alignment looks fine, and the green flashes are strong, but the lock does not hold. This shouldn't be directly connected to anything we did today since the Green PDH servo is entirely analog.

  14126   Thu Aug 2 20:54:18 2018 gautamSummaryComputersc1omc model looks stable

Actually, c1lsc had crashed again sometime last night so I had to reboot everything this morning. I used the reboot script again, but I increased the sleep time between trying to start up the models again so that I could walk into the VEA and power cycle the c1lsc expansion chassis, as this kind of frequent model crash has been fixed by doing so in the past. Sure enough, there have been no issues since I rebooted everything at ~1030 in the morning. 

The c1omc model itself has been stable as well, though of course, there is nothing in there at the moment. I may do a check of the newly installed DAC tomorrow just to see that we can put out a sine wave.

Steve has ordered the D-sub cabling that will allow us to route signals between AA/AI boards in 1X1/1X2 to the HV PZT electronics in the OMC rack. Things look setup for a measurement next week. Aaron will post a block diagram + photoz of what box goes where in the electronics racks.

  14127   Thu Aug 2 23:09:25 2018 ranaSummaryComputersX Green "Mystery" solved

I'm going to guess that this was me: I was disconnecting some octopus power strip nonsense down there (in particular illuminators and cameras), so I might have turned off the AUX rack by mistake.

Quote:

I walked down to the X end and found that the entire AUX laser electronics rack isn't getting any power. There was no elog about this.

I couldn't find any free points in the power strip where I think all this stuff was plugged in so I'm going to hold off on resurrecting this until tomorrow when I'll work with Steve.

Quote:

The X arm green does not stay locked to the cavity - the alignment looks fine, and the green flashes are strong, but the lock does not hold. This shouldn't be directly connected to anything we did today since the Green PDH servo is entirely analog.

  14128   Fri Aug 3 14:35:56 2018 gautamSummaryElectronicsEX AUX electronics power restored

Steve and I restored the power to the EX AUX electronics rack. The power strip on the lowest shelf of the AUX rack now goes to another power strip laid out vertically along the NW corner of 1X9. The EX green locks to the arm just fine now.

  14138   Mon Aug 6 09:42:10 2018 KojiSummaryComputersTransition of the main NFS disk on chiara

Follow up:

- At least it was confirmed that the local backup (4TB->2TB) is regularly running every morning.

- The 2TB disk was used up to 95%. To ease the size of the remaining space, I have further compressed the burt snapshot folders. (~2016). This released another 150GB. The 2TB is currently used up to  87%.

Prev

Filesystem      1K-blocks       Used  Available Use% Mounted on
/dev/sdc1      3845709644 1731391748 1918967020  48% /home/cds
/dev/sdd1      2113786796 1886162780  120249888  95% /media/40mBackup

Now

Filesystem      1K-blocks       Used  Available Use% Mounted on
/dev/sdc1      3845709644 1731706744 1918652024  48% /home/cds
/dev/sdd1      2113786796 1728124828  278287840  87% /media/40mBackup

 

  14175   Wed Aug 22 00:22:05 2018 KojiSummaryElectronicsInspection of the possible dual backplane interfaces for Acromag DAQ

[Johannes, Koji]

We went around the LSC, PSL, IOO, and SUS racks to check how many dual backplane interfaces will be required.

Euro card modules are connected to the backplane with two DIN 41612 connectors (as you know). The backplane connectors provide DC supplies and GND connections.
In addition, they are also used for the input and output connections with the fast and slow machines.

According to the past inspection by Johannes, most of the modules just use the upper DIN41612 connector (called P1). But there are some modules exhibited the possibility of the additional use of the other connector (P2).

Tuesday afternoon Johannes and I made the list of the modules with the possible dual use. And I took a time to check the modules with DCC, Jay's schematics, and the visual inspection of the actual modules.

LSC Rack

  • Common mode servo (D040180 Rev B)
    • Schematic source D040180 Rev B D1500308
    • Assesment: Both P1 and P2 are to be connected to Acromag, but there are only a few channels on P2
    • P1: 1A-32A Digital In
    • P2: 1A-3A Analog Out (D32/33/34, SLOW MON and spare?)
            9A Digital Out for D35 (Limitter)
            10A-15A Spare
            16A Digital In (Latch Enable/Disable)
            25A, 25C  Differential Analog in (Differential offset input, indicated as "BIAS") 
  • PD Interface (D990543 Rev B)
    • Schematic source D990543 RevB
    • Assesment: No connection necessary. We don't monitor/control anything of any LSC PDs from Acromag.

PSL Rack

  • Generic DAQ Interface (D990155) - This is a DAC interface.
    • Schematic source: Jay's page D990155 Rev.B All the lines between P2 and P3 are connected.
    • Assesment: Only P2 is to be connected to Acromag.
    • P1 DAC mon -> not necessary
    • P2 A1-A16, Connected to DAC in P2-P3
  • PMC Servo
    • Schematic source: LIGO DCC D980352
    • Assesment: Only P1 (1A-9A) is to be connected to Acromag. (Just one DSub is sufficient)
    • P1 1A-9A
  • Crystal Ref (D980353)
    • Schematic source: LIGO DCC D980353
    • Assesment: Only P1 (1A-4A) is to be connected to Acromag. (Just one DSub is sufficient)
    • P1 1A-4A
  • TTFSS REV A
    • Schematic source: PNot found
    • Assesment: Probably Only P1 is sufficient. We need to analyze the board to figure out the channel assignment.

IOO Rack

  • PD Interface (D990543 Rev B)
    • Schematic source D990543 RevB
    • Assesment: Only P1 connection is sufficient.
  • Generic DAQ Interface (D990155)
    • Assesment: Remove the module. We already have the same module in PSL Rack. This is redundant.
  • Common mode servo (D040180 Rev B)
    • See above
  • Pentek Generic Input Board D020432
    • Schematic source Jay's page D020432-A
    • Assesment: No connection. There is no signal on the backplane.

SUS Rack

  • SUS Dewhitening
    • Schematic source: Jay's page D000316-A
    • Assesment: No connection.
    • We can omit Mon CHs.
    • Bypass/Inputs are already connected to the fast channels.

 

  14177   Wed Aug 22 12:22:27 2018 ranaSummaryElectronicsInspection of the possible dual backplane interfaces for Acromag DAQ

I think we don't need to keep Crystal Ref: we can change this into a regular Wenzel box with no outside control or monitoring.

Quote:

 

  • Crystal Ref (D980353)
    • Schematic source: LIGO DCC D980353
    • Assesment: Only P1 (1A-4A) is to be connected to Acromag. (Just one DSub is sufficient)
    • P1 1A-4A

 

  14213   Sun Sep 23 20:15:35 2018 KojiSummaryOMCMontecarlo simulation of the phase difference between P and S pols for a modeled HR mirror

Link to OMC_Lab ELOG 308

  14367   Wed Dec 19 14:19:15 2018 KojiSummaryVACPlan for pumpoing down test

We still need elaborated test procedure posted

12/29 Wed

  • Jon continues to work on valve actuator tests.
  • Chub continues to work on wiring / fixing wiring.
  • At the end of the day Jon is going to send out a notification email of "GO"/"NO GO" for pumping.

 

12/30 Thu

  • 9AM: Start closing two doors unless Jon gives us NO GO sign.
  • 10AM: Start pumping down
    • Test roughing pump capability via new control system
    • (Independently) Test turbo rotating procedure. This time we will not open the gate valve between the TP1 and the main volume. This is because we want to take care of the backing turbo loads while we gradually open the gate valve. This will take more hours to be done and we will not be able to finish this test by the end of Thu.
    • At the end of the procedure, we isolate the main volume, stop all the pumps, and vent the roghing pumps to save them from the oil backstream.

gautam: Koji and I were just staring at the vacuum screen, and realized that the drypumps, which are the backing pumps for TP2 and TP3, are not reflected on the MEDM screen. This should be rectified.

Steve also mentioned that the new small turbo controller does not directly interface with the drypump. So we need some system to delay the starting of the turbo itself, once the drypump has been engaged. Does this system exist?

  14439   Thu Feb 7 17:27:53 2019 KojiSummaryTip-TIltFive FiveNine Optics Optics delivered

5 PR3/SR3 optics from FiveNine Optics were delivered. The data sheets were scanned and uploaded to the following wiki page. https://wiki-40m.ligo.caltech.edu/Aux_Optics

  14442   Fri Feb 8 00:20:56 2019 gautamSummaryTip-TIltFive FiveNine Optics Optics delivered

They have been stored on the 3rd shelf from top in the clean optics cabinet at the south end. EX

Quote:

5 PR3/SR3 optics from FiveNine Optics were delivered. The data sheets were scanned and uploaded to the following wiki page. https://wiki-40m.ligo.caltech.edu/Aux_Optics

  14444   Fri Feb 8 20:35:57 2019 gautamSummaryTip-TIltCoating spec

[Attachment #1]: Computed spectral power transmissivity (according to my model) for the coating design at a few angles of incidence. Behavior lines up well with what FNO measured, although I get a transmission that is slightly lower than measured at 45 degrees. I suspect this is because of slight changes in the dispersion relation assumed and what was used for the coating in reality.

[Attachment #2]: Similar information as Attachment #1, but with the angle of incidence as the independent parameter in a continuous sweep. 

Conclusion: The coating behaves in a way that is in reasonable agreement with our model. At 41.1 degrees, which is what the PR3 angle of incidence will be, T<50 ppm, which was what we specified. The larger range of angles was included because originally, we thought of using this optic as a substitute for SR3 as well. But I claim that for the shorter SRC (signal recycling as opposed to RSE), we will not end up using the new optic, but rather go for the G&H mirror. In any case, as Koji pointed out, ~50 ppm extra loss in the RC will not severely limit the recycling gain. Such large variation was not seen in the MC analysis because we only varied the angle of incidence by +/- 0.5 degrees about the nominal design value of 41.1 degrees.

  14448   Mon Feb 11 19:53:59 2019 gautamSummaryLoss MeasurementLoss measurement setup

To measure the Y-arm loss, I decided to start with the classic reflectivity method. To prepare for this measurement, I did the following:

  1. Placed a PDA 520 in the AS beam path on the AS table.
  2. Centered AS beam on above PDA 520.
  3. Monitored signal from PDA520 and the MC transmission simultaneously in the single-bounce from ITMY config (i.e. all other optics were misaligned). Convinced myself that variations in the two signals were correlated, thus ruling out in this rough test any interference from ghost beams from ITMX / PRM etc.
  4. For the DAQ, I decided to use the two ALS Y arm channels in 1Y4, mainly because we have some whitening electronics available there - the OMC model would've been ideal but we don't have free whitening channels available there. So I ran long BNCs to the rack, labelled them.
  5. It'd be nice to have these signals logged to frames, so I added DQ-channels for the IN1 points of the BEATY_FINE filters, recording at 2048 Hz for now. Of course this necessitated restart of the c1lsc model, which caused all the vertex FEs to crash, but the reboot script brought everything back smoothly.
  6. Not sure what to make of the shape of the spectrum of the AS photodiode, see Attachment #1 - looks like some kind of scattering shelf but I checked the centering on the PD itself, looks good. In any case, with the whitening gains I'm using, seems like both channels are measuring above ADC noise.
  7. Found that the existing misalignment to the ETMY does not eliminate signatures of cavity flash in the AS photodiode. So I increased the amount of misalignment until I saw no evidence of flashes in the reflected photodiode.
  8. Johannes' old scripts didn't work out of the box - so I massaged it into a form that works.
  9. Re-centered Oplevs to try and keep them as well centered in the linear range as possible, maybe the DC position info from the Oplevs is useful in the analysis.

I'm running a measurement tonight, starting now (~1130PM), should be done in ~1hour, may need to do more data-quality improvements to get a realistic loss number, but I figured I'd give this a whirl.

I'm rather pleased with an initial look at the first align/misalign cycle, at least there is discernable contrast between the two states - Attachment #2. The data is normalized by MC transmission, and then sig.decimated by x512 (8**3).

  14449   Tue Feb 12 18:00:32 2019 gautamSummaryLoss MeasurementLoss measurement setup

Another arm loss measurement started at 6pm.

  14450   Tue Feb 12 22:59:17 2019 gautamSummaryLoss MeasurementY arm loss

Summary:

There are still several data quality issues that can be improved. I think there is little point in reading too much into this until some of the problems outlined below are fixed and we get a better measurement.

Details:

  1. Mainly, we are plagued by the inability of the ASS system to get back to the good transmission levels - I haven't done a careful diagnosis of the servo, but the ITM PIT output always seems to run away. As a result, the later measurements are poor, as can be seen in Attachment #2.
  2. For this reason, we can't easily sample different spot positions on the ETM.
  3. Data processing:
    • Download AS reflection and MC transmission DQ channels
    • Take their ratio
    • Downsample to 4 Hz by repeated application of scipy.signal.decimate by a factor of 8 each time, thrice, with the filtfilt option enabled
  4. Attachment #1 and #2 are basically showing the same data - the former collects all locked (top left) and misaligned (top right) data segments and plots them with the corresponding TRY values in the bottom row. The second plot shows a pseudo-continuous time series (pseudo because the segments transitioning from locked to misaligned states have been excised).

As an interim fix, I'm going to try and use the Oplevs as a DC reference, and run the dither alignment from zero each time, as this prevents the runaway problem at least. Data run started at 11:20 pm.

  14451   Wed Feb 13 02:28:58 2019 gautamSummaryLoss MeasurementY arm loss

Attachment #1 shows estimated systematic uncertainty contributions due to 

  1. ITM transmission by +/- 0.01 % about the nominal value of 1.384 %
  2. ETM transmission of +/- 3 ppm about the nominal value of 13.7 ppm
  3. Mode matching efficiency into the cavity by +/- 5% about the nominal value of 92%.

In all the measurements so far, the ratio seems to be < 1, so this would seem to set a lower bound on the loss of ~35 ppm. The dominant source of systematic uncertainty is the 5% assumed fudge in the mode-matching

To do: 

  1. Account for uncertainties on modulation depths
  2. To estimate if the amount of fluctuation we are seeing in the reflected signal even after normalizing by the MC transmission, get an estimate of statistical uncertainty in the reflected power due to 
    • Pointing jitter - is there some spec for the damped angular displacement of the TT1/TT2?
    • Cavity length in-loop residual

Bottom line: I think we need to have other measurements and simultaenously analyse the data to get a more precise estimate of the loss.

  14454   Thu Feb 14 21:29:24 2019 gautamSummaryLoss MeasurementInferred Y arm loss

Summary:

From the measurements I have, the Y arm loss is estimated to be 58 +/- 12 ppm. The quoted values are the median (50th percentile) and the distance to the 25th and 75th quantiles. This is significantly worse than the ~25 ppm number Johannes had determined. The data quality is questionable, so I would want to get some better data and run it through this machinery and see what number that yields. I'll try and systematically fix the ASS tomorrow and give it another shot.

Model and analysis framework:

Johannes and I have cleaned up the equations used for this calculation - while we may make more edits, the v1 of the document lives here. The crux of it is that we would like to measure the quantity \kappa = \frac{P_L}{P_M}, where P_{L(M)} is the power reflected from the resonant cavity (just the ITM). This quantity can then be used to back out the round-trip loss in the resonant cavity, with further model parameters which are:

  1. ITM and ETM power transmissivities
  2. Modulation depths and mode-matching efficiency into the cavity
  3. The statistical uncertainty on the measurement of the quantity \kappa, call it \sigma_{\kappa}

If we ignore the 3rd for a start, we can calculate the "expected" value of \kappa as a function of the round-trip loss, for some assumed uncertainties on the above-mentioned model parameters. This is shown in the top plot in Attachment #1, and while this was generated using emcee, is consistent with the first order uncertainty propagation based result I posted in my previous elog on this subject. The actual samples of the model parameters used to generate these curves are shown in the bottom. What this is telling us is that even if we have no measurement uncertainty on \kappa, the systematic uncertainties are of the order of 5 ppm, for the assumed variation in model parameters.

The same machinery can be run backwards - assuming we have multiple measurements of \kappa, we then also have a sample variance, \sigma_{\kappa}. The uncertainty on the sample variance estimator is also known, and serves to quantify the prior distribution on the parameter \sigma_{\kappa} for our Monte-Carlo sampling. The parameter \sigma_{\kappa} itself is required to quantify the likelihood of a given set of model parameters, given our measurement. For the measurements I did this week, my best estimate of \kappa \pm \sigma_{\kappa} = 0.995 \pm 0.005. Plugging this in, and assuming uncorrelated gaussian uncertainties on the model parameters, I can back out the posterior distributions.

For convenience, I separate the parameters into two groups - (i) All the model parameters excluding the RT loss, and (ii) the RT loss. Attachment #2 and Attachment #3 show the priors (orange) and posteriors (black) of these quantities. 

Interpretations:

  1. This particular technique only gives us information about the RT loss - much less so about the other model parameters. This can be seen by the fact that the posteriors for the loss is significantly different from the prior for the loss, but not for the other parameters. Potentially, the power of the technique is improved if we throw other measurements at it, like ringdowns.
  2. If we want to reach the 5 ppm uncertainty target, we need to do better both on the measurement of the DC reflection signals, and also narrow down the uncertainties on the other model parameters.

Some assumptions:

So that the experts on MC analysis can correct me wheere I'm wrong.

  1. The prior distributions are truncated independent Gaussians - truncated to avoid sampling from unphysical regions (e.g. negative ITM transmission). I've not enforced the truncation analytically - i.e. I just assume a -infinity probability to samples drawn from the unphysical parts, but to be completely sure, the actual cavity equations enforce physicality independently (i.e. the MC generates a set of parameters which is input to another function, which checks for the feasibility before making an evaluation). One could argue that the priors on some of these should be different - e.g. uniform PDF for loss between some bounds? Jeffrey's prior for \sigma_{\kappa}?
  2. How reasonable is it to assume the model parameter uncertainties are uncorrelated? For exaple, \eta, \beta_1, \beta_2 are all determined from the ALS-controlled cavity scan
  14463   Sun Feb 17 17:35:04 2019 gautamSummaryLoss MeasurementInferred X arm loss

Summary:

To complete the story before moving on to ALS, I decided to measure the X arm loss. It is estimated to be 20 +/- 5 ppm. This is surprising to say the least, so I'm skeptical - the camera image of the ETMX spot when locked almost certainly looks brighter than in Oct 2016, but I don't have numerical proof. But I don't see any obvious red flags in the data quality/analysis yet. If true, this suggests that the "cleaning" of the Yarm optics actually did more harm than good, and if that's true, we should attempt to identify where in the procedure the problem lies - was it in my usage of non-optical grade solvents?

Details:

  1. Unlike the Y arm, the ratio \kappa = 1.006 \pm 0.002 is quite unambiguously greater than 1, which is already indicative of the loss being lower than for the Y arm. This is reliably repeatable over 15 datapoints at least.
  2. Attachment #1 shows the spectrum of the single-bounce off ITMX beam and compares it to ITMY - there is clearly a difference, and my intuition is to suspect some scatter / clipping, but I confirmed that on the AS table, in air, there is no clipping. So maybe it's something in vacuum? But I'm not sure how to explain its absence for the ITMX reflection. I didn't check the Michelson alignment since I misaligned ITMY before locking the XARM - so maybe there's a small shift in the axis of the X arm reflection relative to the Yarm because of the BS alignment. The other possibility is clipping at the BS?
  3. Attachment #2 shows the filtered time series for a short segment of the measurement. The X arm ASS is mostly well behaved, but the main thing preventing me from getting more statistics in is the familiar ETMX glitching problem, which while doesn't directly break the lock causes large swings in TRX. Given the recent experience with ETMY satellite box, I'm leaning towards blaming flaky electronics for this. If this weren't a problem, I'd run a spatial scan of ETMX, but I'm not going to attack this problem today.
  4. Attachments #3 and #4 show the posterior distributions for model parameters and loss respectively. 
  5. Data quality checks done so far (suggestions welcome):
    • Confirmed that there is no fringing from other ITM (in this case ITMY) / PRM / SRM / ETM in the single-bounce off ITMX config, by first macroscopically misaligning all these optics (the spots could be seen to move on the AS port PD, until they vanished, at some point presumably getting clipped in-vac), and then moving the optics around in PIT/YAW and looking for any effect in the fast time-series using NDScope.
    • Checked for slow drifts in locked / misaligned states - looks okay.
    • Checked centering on PDA520 using both o'scope plateau method and IR viewer - I believe the beam to be well centered.

Provisional conclusions:

  1. The actual act of venting / pumping down doesn't have nearly as large an effect on the round-trip loss as does working in chamber - the IX and EX chambers have not been opened since the 2016 vent.
  2. The solvent marks visible with the green flashlight on ETMY possibly signals the larger loss for the Y arm. 
  14464   Mon Feb 18 19:16:55 2019 ranaSummaryComputersnew laptop setup: ASIA

The old IBM laptop (Asia) has died from a fan error after 7 years. WE have a new Lenovo 330 IdeaPad to replace it:

  1. to enter bios, the usual FN keys don't work. Power off laptop. Insert paperclip into small hole on laptop side with upside-down U symbol. Laptop powers up into BIOS setup.
  2. Insert SL 7.6 DVD into drive
  3. Change all settings from modern UEFI into Legacy support. Change Boot order to put CDROM first.
  4. Boot.
  5. Touchpad is not detected. Hookup mouse for setup.
  6. Delete windows partition.
  7. Setup wireless network according to (https://wiki-40m.ligo.caltech.edu/Network). Computer name = asia.martian. 
  8. Set root password. Do not create user (we want to make the controls acct later using the command line so that we can set userID and groupID both to 1001).
  9. Begin install...lots of disk access noises for awhile...

Install done. Touchpad not recognized by linux - lots of forum posts about kernel patching...Arrgh!

  14474   Tue Mar 5 15:56:27 2019 gautamSummaryTip-TIltDiscussion points about TT re-design

Chub, Koji and I have been talking about Udit's re-design. Here are a few points that were raised. Chub/Koji can add to/correct where necessary. Summary is that this needs considerable work before we can order the parts for a prototype and characterize it. I think the requirements may be stated as:

  1. The overall pendulum length should be similar to that of the SOS, i.e. ~0.3m (current length is more like 0.1m) such that the eigenfrequencies are lowered to more like ~1 Hz. Mainly we wan't to avoid any overlap with the stack eigenmodes. This may require an additional stiffening piece near the top of the tower as we have for the SOS. What is a numerical way to spec this?
  2. The center of the 2" optic should be 6" from the table.
  3. The mass of the optic + holder should be similar to the current design so we may use the same suspension wires (I believe they are a different thickness than that used for the SOS).
  4. Ensure we can extract any transmitted beams without clipping.
  5. Fine pitch adjustment capablity should be yyy mrad (20mrad?).
  6. We should preserve the footprint of the existing TTs, given the space constraints in vacuum. Moreover, we should be able to use dog-clamps to fix the tower in place, so the base plate should be designed accordingly.
  7. Keep the machining requirements as simple as possible while achieving the above requirements- i.e. do we really need rounded optic holder? Why not just rectangular? Similarly for other complicated features in the current design.

Some problems with Udit's design as it stands:

  1. I noticed that the base of the TT and the center of the 2" optic are 4" separated. The SOS cage base and center of 3" optic are separated by 6". Currently, there is an adaptor piece that raises the TT height to match that of the SOS. If we are doing a re-design, shouldn't we just aim for the correct height in the first place?
  2. Udit doesn't seem to have taken into account the torque due to the optic+holder in the pitch balancing calculations he did. Since this is expected to be >> that of any rod/screw we use for fine pitch balancing, we need to factor that into the calculation.
  3. For the coarse pitch adjustment, we'd need to slide the wire clamping piece relative to the optic holding piece. Rather than do this stochastically and hope for the best, the idea was to use a threaded screw to realize this operation in a controlled way. However, Udit's design doesn't include the threaded hole.
  4. There are many complicated machining features which are un-necessary.
  14485   Mon Mar 18 18:10:14 2019 KojiSummaryGeneralTask items and priority

[Gautam/Chub/Koji] ~ Mini discussion

Maintenance / Upgrade Items

(Priority high to low)

  • TT/IO suspension upgrade (solidworks work) -> order components -> TT characterization
  • Acromag upgrade c1susaux
    • Produce spread sheetfor DB files. Learn new format of the DB file with Acromag. Develop a python code for the DB file generation (Jon->Koji)
  • Satellite Box upgrade
    • Rack mount? Front panel DB connectors. New circuits (PD-LED)
       
  • Acromag iscaux1/2 & isc whitening upgrade
     
  • new RC mirror characterization -> installation
  14543   Mon Apr 15 18:29:07 2019 ranaSummaryComputersnew laptop setup: ASIA - yum issues

had trouble using YUM to update. This turned out to be a config problem with our Martian router, not the new laptop. Since I've changed the WiFi pwd awhile ago for the martian access for the CDS laptops, you'll have to enter that in order to use the laptops.

turned out to be some Access Control nonsense inside of the router. Even loggin in as admin with a cable gave some of the fields the greyed out color (had to hover over the link and then type the URL directly in the browser window). ASIA is now able to connect and use YUM + usual connections. Gautam and I have also moved the router a little to get easier view of its LED lights and not blockk its WiFi signal with the cable tray. We'll get a little shelf so that we can mount it ~1 foot off of the wall.

still, this seems like a bad laptop choice: the Lenovo Ideapad 330 will not have its touchpad supported by SL7 without compiling a new version of the kernel frown

ELOG V3.1.3-