40m QIL Cryo_Lab CTN SUS_Lab TCS_Lab OMC_Lab CRIME_Lab FEA ENG_Labs OptContFac Mariner WBEEShop
  40m Log, Page 61 of 339  Not logged in ELOG logo
ID Date Author Type Categoryup Subject
  16712   Mon Mar 7 19:38:47 2022 AnchalSummaryCDSc1susaux2 slow controls issues

I tried to perform a simple enabling test of coils using c1susaux2 modbus channels but failed. I'm able to do the enabling of coils using the windows GUI of acromag card but I can not do it when the cards are connected to the computer subnetwork. The issue is two-fold:

  • The enable channels such as C1:SUS-LO1_UL_ENABLE are not changing values when their DOL changes a value. In this case, I created a calc channel C1:SUS-LO1_ALL_CALC which takes the AND of all coil's individual CALC channels which are normally used as DOL for the ENABLE channels. But even though the changes are reflected properly to C1:SUS-LO1_ALL_CALC, it does not affect C1:SUS-LO1_UL_ENABLE. See the db files here for more info.
  • I tried to directly change the value of C1:SUS-LO1_UL_ENABLE using caput and even though in soft value the channel changes, it does not propagate a change at the output of Acromag card. So my suspicion is that something might be off with the setting of the Acromag card or c1susuaux2.cmd file. I followed this wiki page instructions, but if anyone can find an error, it would be useful.

There's also an issue in reading back the ENABLE_MON channels. Here we suspect that one of the optical isolator box that we have been using might have a short in one of it's output channel. I'll investigate this more tomorrow. Again, the issue is two-fold. The EPICS channel values do not really change. So there is clearly some issue of communicating with the acromag cards.

  16724   Mon Mar 14 12:20:05 2022 AnchalSummaryCDSc1susaux2 slow controls acromag chassis installed

[Anchal, Yehonathan, Ian]

We installed c1susaux2 acromag chassis in 1Y0 with c1susaux2 computer. We connected PD monitors, Binary inputs, Binary outputs, and Run/Acquire RTS signals for 6 of the 7 suspensions. We ran out of DB9 cables to connect PR3. Of the ones that were connected, LO2, AS1, AS4, SR2, and PR2 are showing no issues in the functionality from the chassis. For LO1, everything is working except for UR EnableMon channel. The enable monitor does not show an ON state for the coil even though the coil driver chassis shows that it is ON via the LED lights. A possible reason could be that a wire got disconnected when we closed the chassis (there are a lot of wires pushing against each other. Another reason could be that the optical isolator ISO10 could have developed a bad channel on channel 2. The circuit was tested before closing the chassis, so not sure what went wrong after closing it.

PR2 is showing a non-acromag chassis related issue. As soon as we close the loop by enabling the coils, the watchdog triggers because the loop is unstable. Not sure what has changed for PR2, but someone should take a look at it.

For the issue with LO1, I suggest we keep a note that the C1:SUS-LO1_UR_ENABLEMon channel is faulty and don't take its value seriously. We should diagnose and fix this issue once we have more reasons to disconnect the chassis and open it.

 

Attachment 1: BHD_WatchDogs.png
BHD_WatchDogs.png
Attachment 2: 40mBHD_C1SUSAUX2_Acromag_Chassis.pdf
40mBHD_C1SUSAUX2_Acromag_Chassis.pdf
  16726   Tue Mar 15 11:52:34 2022 AnchalSummaryCDSc1su2 model updated for sending Run/Acquire Binary Output to Binary Interface card

I routed the XXX_COIL_DW signals from the 7 SOS blocks in c1su2.mdl (located at /cvs/cds/rtcds/userapps/trunk/sus/c1/models/c1su2.mdl) to the binary outputs from the FE model. The routing is done such that when these binary outputs are routed through the binary interface card mounted on 1Y0, they go to the acromag chassis just installed and from there they go to the binary inputs of the coil drivers together with the acromag controlled coil outputs.

I have not restarted the rtcds models yet. This needs more care and need to follow instructions from 40m/16533. Will do that sometime later or Koji can follow up this work.

Attachment 1: c1su2.pdf
c1su2.pdf
  16728   Tue Mar 15 14:10:41 2022 AnchalSummaryCDSc1su2 model remade, reinstalled, restarted after the update

I have restarted c1su2 model with the connections of Run Acquire switch to analog filters on coil drivers. Following steps were taken:

First ssh to c1sus2 and then:

controls@c1sus2:~ 0$ rtcds make c1su2
buildd: /opt/rtcds/caltech/c1/rtbuild/release
### building c1su2...
Cleaning c1su2...
Done
Parsing the model c1su2...
Done
Building EPICS sequencers...
Done
Building front-end Linux kernel module c1su2...
Done
RCG source code directory:
/opt/rtcds/rtscore/branches/branch-3.4
The following files were used for this build:
/opt/rtcds/userapps/release/cds/common/models/lockin.mdl
/opt/rtcds/userapps/release/cds/common/models/rtbitget.mdl
/opt/rtcds/userapps/release/cds/common/models/rtdemod.mdl
/opt/rtcds/userapps/release/isc/common/models/QPD.mdl
/opt/rtcds/userapps/release/sus/c1/models/c1su2.mdl
/opt/rtcds/userapps/release/sus/c1/models/lib/sus_single_control.mdl

Successfully compiled c1su2
***********************************************
Compile Warnings, found in c1su2_warnings.log:
***********************************************
WARNING  *********** No connection to subsystem output named  SUS_DAC1_12  
WARNING  *********** No connection to subsystem output named  SUS_DAC1_13  
WARNING  *********** No connection to subsystem output named  SUS_DAC1_14  
WARNING  *********** No connection to subsystem output named  SUS_DAC1_15  
WARNING  *********** No connection to subsystem output named  SUS_DAC2_7  
WARNING  *********** No connection to subsystem output named  SUS_DAC2_8  
WARNING  *********** No connection to subsystem output named  SUS_DAC2_9  
WARNING  *********** No connection to subsystem output named  SUS_DAC2_10  
WARNING  *********** No connection to subsystem output named  SUS_DAC2_11  
WARNING  *********** No connection to subsystem output named  SUS_DAC2_12  
WARNING  *********** No connection to subsystem output named  SUS_DAC2_13  
WARNING  *********** No connection to subsystem output named  SUS_DAC2_14  
WARNING  *********** No connection to subsystem output named  SUS_DAC2_15  
***********************************************
controls@c1sus2:~ 0$ rtcds install c1su2
buildd: /opt/rtcds/caltech/c1/rtbuild/release
### installing c1su2...
Installing system=c1su2 site=caltech ifo=C1,c1
Installing /opt/rtcds/caltech/c1/chans/C1SU2.txt
Installing /opt/rtcds/caltech/c1/target/c1su2/c1su2epics
Installing /opt/rtcds/caltech/c1/target/c1su2
Installing start and stop scripts
/opt/rtcds/caltech/c1/scripts/killc1su2
/opt/rtcds/caltech/c1/scripts/startc1su2
Performing install-daq
Updating testpoint.par config file
/opt/rtcds/caltech/c1/target/gds/param/testpoint.par
/opt/rtcds/rtscore/branches/branch-3.4/src/epics/util/updateTestpointPar.pl -par_file=/opt/rtcds/caltech/c1/target/gds/param/archive/testpoint_220315_135808.par -gds_node=26 -site_letter=C -system=c1su2 -host=c1sus2
Installing GDS node 26 configuration file
/opt/rtcds/caltech/c1/target/gds/param/tpchn_c1su2.par
Installing auto-generated DAQ configuration file
/opt/rtcds/caltech/c1/chans/daq/C1SU2.ini
Installing Epics MEDM screens
Running post-build script

/opt/rtcds/userapps/release/cds/common/scripts/generate_KisselButton.py 4 5 C1:SUS-AS1_INMATRIX > /opt/rtcds/caltech/c1/medm/c1su2/C1SUS_AS1_INMATRIX_KB.adl
/opt/rtcds/userapps/release/cds/common/scripts/generate_KisselButton.py 2 4 C1:SUS-AS1_LOCKIN_INMTRX > /opt/rtcds/caltech/c1/medm/c1su2/C1SUS_AS1_LOCKIN_INMTRX_KB.adl
/opt/rtcds/userapps/release/cds/common/scripts/generate_KisselButton.py 5 6 C1:SUS-AS1_TO_COIL --fi > /opt/rtcds/caltech/c1/medm/c1su2/C1SUS_AS1_TO_COIL_KB.adl
/opt/rtcds/userapps/release/cds/common/scripts/generate_KisselButton.py 4 5 C1:SUS-AS4_INMATRIX > /opt/rtcds/caltech/c1/medm/c1su2/C1SUS_AS4_INMATRIX_KB.adl
/opt/rtcds/userapps/release/cds/common/scripts/generate_KisselButton.py 2 4 C1:SUS-AS4_LOCKIN_INMTRX > /opt/rtcds/caltech/c1/medm/c1su2/C1SUS_AS4_LOCKIN_INMTRX_KB.adl
/opt/rtcds/userapps/release/cds/common/scripts/generate_KisselButton.py 5 6 C1:SUS-AS4_TO_COIL --fi > /opt/rtcds/caltech/c1/medm/c1su2/C1SUS_AS4_TO_COIL_KB.adl
/opt/rtcds/userapps/release/cds/common/scripts/generate_KisselButton.py 4 5 C1:SUS-LO1_INMATRIX > /opt/rtcds/caltech/c1/medm/c1su2/C1SUS_LO1_INMATRIX_KB.adl
/opt/rtcds/userapps/release/cds/common/scripts/generate_KisselButton.py 2 4 C1:SUS-LO1_LOCKIN_INMTRX > /opt/rtcds/caltech/c1/medm/c1su2/C1SUS_LO1_LOCKIN_INMTRX_KB.adl
/opt/rtcds/userapps/release/cds/common/scripts/generate_KisselButton.py 5 6 C1:SUS-LO1_TO_COIL --fi > /opt/rtcds/caltech/c1/medm/c1su2/C1SUS_LO1_TO_COIL_KB.adl
/opt/rtcds/userapps/release/cds/common/scripts/generate_KisselButton.py 4 5 C1:SUS-LO2_INMATRIX > /opt/rtcds/caltech/c1/medm/c1su2/C1SUS_LO2_INMATRIX_KB.adl
/opt/rtcds/userapps/release/cds/common/scripts/generate_KisselButton.py 2 4 C1:SUS-LO2_LOCKIN_INMTRX > /opt/rtcds/caltech/c1/medm/c1su2/C1SUS_LO2_LOCKIN_INMTRX_KB.adl
/opt/rtcds/userapps/release/cds/common/scripts/generate_KisselButton.py 5 6 C1:SUS-LO2_TO_COIL --fi > /opt/rtcds/caltech/c1/medm/c1su2/C1SUS_LO2_TO_COIL_KB.adl
/opt/rtcds/userapps/release/cds/common/scripts/generate_KisselButton.py 4 5 C1:SUS-PR2_INMATRIX > /opt/rtcds/caltech/c1/medm/c1su2/C1SUS_PR2_INMATRIX_KB.adl
/opt/rtcds/userapps/release/cds/common/scripts/generate_KisselButton.py 2 4 C1:SUS-PR2_LOCKIN_INMTRX > /opt/rtcds/caltech/c1/medm/c1su2/C1SUS_PR2_LOCKIN_INMTRX_KB.adl
/opt/rtcds/userapps/release/cds/common/scripts/generate_KisselButton.py 5 6 C1:SUS-PR2_TO_COIL --fi > /opt/rtcds/caltech/c1/medm/c1su2/C1SUS_PR2_TO_COIL_KB.adl
/opt/rtcds/userapps/release/cds/common/scripts/generate_KisselButton.py 4 5 C1:SUS-PR3_INMATRIX > /opt/rtcds/caltech/c1/medm/c1su2/C1SUS_PR3_INMATRIX_KB.adl
/opt/rtcds/userapps/release/cds/common/scripts/generate_KisselButton.py 2 4 C1:SUS-PR3_LOCKIN_INMTRX > /opt/rtcds/caltech/c1/medm/c1su2/C1SUS_PR3_LOCKIN_INMTRX_KB.adl
/opt/rtcds/userapps/release/cds/common/scripts/generate_KisselButton.py 5 6 C1:SUS-PR3_TO_COIL --fi > /opt/rtcds/caltech/c1/medm/c1su2/C1SUS_PR3_TO_COIL_KB.adl
/opt/rtcds/userapps/release/cds/common/scripts/generate_KisselButton.py 4 5 C1:SUS-SR2_INMATRIX > /opt/rtcds/caltech/c1/medm/c1su2/C1SUS_SR2_INMATRIX_KB.adl
/opt/rtcds/userapps/release/cds/common/scripts/generate_KisselButton.py 2 4 C1:SUS-SR2_LOCKIN_INMTRX > /opt/rtcds/caltech/c1/medm/c1su2/C1SUS_SR2_LOCKIN_INMTRX_KB.adl
/opt/rtcds/userapps/release/cds/common/scripts/generate_KisselButton.py 5 6 C1:SUS-SR2_TO_COIL --fi > /opt/rtcds/caltech/c1/medm/c1su2/C1SUS_SR2_TO_COIL_KB.adl
safe.snap exists
controls@c1sus2:~ 0$

Then on rossa, run activateSUS2DQ.py which creates a file C1SU2.ini.NEW. Remove old backup file C1SU2.ini.bak, rename C1SU2.ini to C1SU2.ini.bak and rename C1SU2.ini.NEW to C1SU2.ini:

~> cd /opt/rtcds/caltech/c1/chans/daq/
daq>python2 activateSUS2DQ.py 
/opt/rtcds/caltech/c1/chans/daq/C1SU2.ini
daq>rm C1SU2.ini.bak
daq>mv C1SU2.ini C1SU2.ini.bak
daq>mv C1SU2.ini.NEW C1SU2.ini

Then ssh back to c1sus2 and restart the rtcds model:

controls@c1sus2:~ 0$ rtcds restart c1su2
### stopping c1su2...
### starting c1su2...
c1su2epics: no process found
Number of ADC cards on bus = 2
Number of DAC16 cards on bus = 3
Number of DAC18 cards on bus = 0
Number of DAC20 cards on bus = 0
Specified filename iocC1.log does not exist.
c1su2epics C1 IOC Server started
c1su2 RT ready in 4
awg_server Version $Id$
channel_client Version $Id$
testpoint_server Version $Id$
/opt/rtcds/caltech/c1/target/gds/bin/awgtpman -s c1su2 -l /opt/rtcds/caltech/c1/target/gds/awgtpman_logs/c1su2.log started on host c1sus2 hostid ffffffffa8c05771 
awgtpman Version $Id$
controls@c1sus2:~ 0$

Then restart daqd services from rossa and burtrestore to latest snap of c1su2epics.snap:

daq>telnet fb 8083
Trying 192.168.113.201...
Connected to fb.martian.
Escape character is '^]'.
daqd> shutdown
OK
Connection closed by foreign host.
daq>burtgooey
>burtwb -f /opt/rtcds/caltech/c1/burt/autoburt/latest/c1su2epics.snap -l /tmp/controls_1220315_140755_0.write.log -o /tmp/controls_1220315_140755_0.nowrite.snap -v <
daq>

All suspensions are back online and everything is same as before now. Will test later the Run/Acquire switch functionality.

  16734   Thu Mar 17 19:12:44 2022 AnchalSummaryCDSc1auxey1 slow controls acromag chassis installed, not powered

[Anchal, Tega]

We installed c1auxey1 computer and the acromag chassis in 1Y4. The computer has been configured properly for nfs mounts to happen and we have initialized a git repo for /cvs/cds/caltech/target/c1auxey1 directory which stores all files for running modbusIOC service on this computer. We connected 18V power source but have not connected the 24V power yet  as we need to make a new connector for it. Going on what Koji recommended, we'll connect the 24V power input to 18 V strip as well as the acromags can run on that voltage too.

  16736   Fri Mar 18 18:39:13 2022 YehonathanSummaryCDSc1auxey1 slow controls acromag chassis installed, powered

{Yehonathan, Anchal}

We connected the c1auxey1 chassie to the different boxes (coil drivers, SAT amp, etc.) using DB9 cables and labeling them in the process. We ran out of 2.5 foot DB9 cables so we used 5 foot as a temporary solution.

The chassie was powered, but a two issues arised:

1. The Acromags didn't turn on.

2. When connecting the green laser shutter BNC cable, the power supply overloaded.

We took the chassie back to the bench. The wire that powers the Acromags was disconnected. We made a new longer wire and made sure it is not connected flimsily.

The issue with the BNC turned out to be a much deeper problem: The GND and EXC wires on the DIN rail connector were switched! Making the shield of the BNC to have high volatage compared to the shield of the green shutter causing current to overflow when the BNC was connected.

We switched back the EXC and GND wires. Not trusting the digital I/O tests that were done before due to this mistake we tested some of the I/Os using a spare coil driver. We tested both the inputs and the outputs and they all seemed to work.

Finally, we also noticed that the 2 RTS DB9s were wrongly female type so we switched them to males. We closed the lead on chassie and installed it back in the rack. We connected the cables and saw that the green shutter BNC cable was no longer shorting the power supply.

  16737   Fri Mar 18 19:10:51 2022 AnchalSummaryCDSc1auxey1 slow controls issues

I started the modbusIOC service on c1auxey1 and added PD variance channels for UR and SD as well.  There are unfortunately two issues here:

  • The enable monitors are reading NOT of what they should read. The optical isolator circuit might need to be changed.
  • ETMY is not damping now. This is strange and was seen in the use to other acromag chassis as well where AS4 and PR2 are unable to damp. This is weird since the acromag chassis are not part of the damping loop, maybe it is a coincidence. Next time we should check if we still have this issue when acromag chassis is disconnected from ETMY.

 

  16741   Mon Mar 21 18:42:06 2022 AnchalSummaryCDSc1auxey1 slow controls issues

Another issue, Green Y Shutter can not be controlled with the EPICS controls right now. This needs to be investigated.

  16756   Mon Apr 4 17:03:47 2022 AnchalSummaryCDSc1susaux2 slow controls acromag chassis fixed and installed

[Anchal, JC, Ian, Paco]

We have now fixed all issues with the PD mons of c1susaux2 chassis. The slow channels are now reading same values as the fast channels and there is no arbitrary offset. The binary channels are all working now except for LO2 UL which keeps showing ENABLE OFF. This was an issue earlier on LO1 UR and it magically disappeared and now is on LO2. I think the optical isolators aren't very robust. But anyways, now our watchdog system is fully functional for all BHD suspended optics.

Attachment 1: Screenshot_2022-04-04_17-03-26.png
Screenshot_2022-04-04_17-03-26.png
  16793   Thu Apr 21 10:35:23 2022 KojiUpdateCDSDAQ seemed down

Yesterday, when I worked on the damping servo, I found that any of the daqvtools (ndscope, dtt, dataviewer,...) is not available.  We may need to restart the fb and rt machines.

  16811   Mon Apr 25 17:24:06 2022 AnchalUpdateCDSDAQ still down

I investigated this issue today. At first, it seemed that only new suspension testpoints are inaccessible. I was able to use diaggui for a measurement on MC2. The DAQ network cable between 1X4 and 1Y1 was tied and is very taught now (we should relieve this as soon as possible, best solution is to lay down a longer cable over the bridge). My hypothesis is that the DAQ network might have broken while tying this cable and it probably did not come back since then.

The simplest solution would have been to restart c1su2 models. As I restarted those models though, I found that c1lsc and c1sus models failed. This is very unusual as c1su2 models are independent and share nothing with the other vertex models. So I had to restart all the FE computers eventually. But this did not solve the issue. Worse, now the DAQ isn't working for the vertex machiens as well.

Next step was to try restarting fb1 itself. We switched off all the FE computers, restarted fb1, stopped daqd_* processes, reloaded gpstime module, restarted open-mx, mx, nds and daqd_* process. But the mx.service failed to load with following error message:

● mx.service - LSB: starts MX driver for Myrinet card
   Loaded: loaded (/etc/init.d/mx)
   Active: failed (Result: exit-code) since Mon 2022-04-25 17:18:02 PDT; 1s ago
  Process: 4261 ExecStart=/etc/init.d/mx start (code=exited, status=1/FAILURE)

Apr 25 17:18:02 fb1 mx[4261]: Loading mx driver
Apr 25 17:18:02 fb1 mx[4261]: insmod: ERROR: could not insert module /opt/mx/sbin/mx_mcp.ko: File exists
Apr 25 17:18:02 fb1 mx[4261]: insmod: ERROR: could not insert module /opt/mx/sbin/mx_driver.ko: File exists
Apr 25 17:18:02 fb1 systemd[1]: mx.service: control process exited, code=exited status=1
Apr 25 17:18:02 fb1 systemd[1]: Failed to start LSB: starts MX driver for Myrinet card.
Apr 25 17:18:02 fb1 systemd[1]: Unit mx.service entered failed state.

(Ignore the timestamp above, I ran the command again to capture the error message.)

However, I was able to start all the FE models without any errors and daqd processes are also all running without showing any errors. Everything is green in CDS screen with no error messages. But the only thing still wrong is mx.service which is not running.

From my limited knowledge and experience, mx.service is a one-time script that mounts mx devices in /dev and loads the mx driver. I tried running the script /opt/mx/sbin/mx_start_stop :

controls@fb1:/opt/mx/sbin 1$ sudo ./mx_start_stop start
Loading mx driver
insmod: ERROR: could not insert module /opt/mx/sbin/mx_mcp.ko: File exists
insmod: ERROR: could not insert module /opt/mx/sbin/mx_driver.ko: File exists

This gave the same error. On searching little bit online, "insmod: ERROR; cound not insert module" error comes up when the kernel version of the driver doesnot match the Linux kernel (whatever that means!). Such deep issues should not appear out of nowhere in a previosuly perfectly runnig system. I'll check around more what changed in fb1, network cables etc.

  16887   Fri Jun 3 12:13:58 2022 PacoConfigurationCDSFix RFM channels

[Paco, Yuta]

We tried fixing the issue of LSC_TRY and LSC_TRX channels not working. We first did some investigation, and just like previously reported by Chris, narrowed down the issue to the RFM channels coming from c1iscex/c1iscey.

First attempt : FAIL

In our first attempt, we

  1. Tripped ETMX/ETMY watchdogs, ssh to c1iscex/c1iscey and restart the rtcds models.
  2. Since the last step didn't fix things, we decided to do the same thing on c1lsc, c1sus, c1ioo.
  3. After hard rebooting c1ioo and c1lsc (because they died during the stopping of rtcds models), and not experiencing any timing issues (nice), we still don't fix the issue.

Second attempt: Success

A second attempt just followed Koji's previous fix explained here. Basic difference with our first attempt was a hard reboot of c1iscex/c1iscey in addition to the rtcds model restarting. RFM channels were then clear of errors and we recovered our IR transmission channels in the LSC model.

Attachment 1: SoGreen.png
SoGreen.png
  16976   Wed Jul 6 22:40:03 2022 TegaSummaryCDSUse osem variance to turn off SUS damping instead of coil outputs

I updated the database files for the 7 BHD optics to separate the OSEM variance trigger and the LATCH_OFF trigger operations so that an OSEM variance value exceeding the max of say 200 cnts turns off the damping loop whereas pressing the LATCH_OFF button cuts power to the coil. I restarted the modbusIOC service on c1susaux2 and checked that the new functionality is behaving as expected. So far so good.

 

TODO

Figure out the next layer of watchdogging needed for the BHD optics.  

 

Quote:

[Anchal, JC, Ian, Paco]

We have now fixed all issues with the PD mons of c1susaux2 chassis. The slow channels are now reading same values as the fast channels and there is no arbitrary offset. The binary channels are all working now except for LO2 UL which keeps showing ENABLE OFF. This was an issue earlier on LO1 UR and it magically disappeared and now is on LO2. I think the optical isolators aren't very robust. But anyways, now our watchdog system is fully functional for all BHD suspended optics.

 

  16979   Thu Jul 7 21:25:48 2022 TegaSummaryCDSUse osem variance to turn off SUS damping instead of coil outputs

[Anchal, Tega]

Implemented ramp down of coil bias voltage when the BHD optics watchdog is tripped. Also added a watchdog reset button to the SUS medm screen that turns on damping and ramps up the coil PIT/YAW bias voltages to their nominal values. I believe this concludes the watchdog work.

Quote:

TODO

Figure out the next layer of watchdogging needed for the BHD optics.  

 

  17000   Wed Jul 13 17:30:19 2022 KojiUpdateCDSToo huge script_archive

I wanted to check the script archive to see some old settings. I found that the script archive inflated to huge volume (~1TB).
The size of the common NFS volume (/cvs/cds) is 3TB. So it is really significant.

- The scripts living in /opt/rtcds/caltech/c1/scripts are archived daily in /cvs/cds/caltech/scripts_archive as bz2 files. This is done by crontab of megatron (see https://wiki-40m.ligo.caltech.edu/Computers_and_Scripts/CRON)

- In fact, the script folder (say old script folder) /opt/rtcds/caltech/c1/scripts has the size of 10GB. And we have the compressed copy of thi s everyday.

- This large script folder is due to a couple of huge files/folders listed below

  • (scripts)/MEDMtab is 5.3GB / This is probably related to the web MEDM view (on nodus) but I don't think the web page is not updated. (i.e. the images are unused)
  • (scripts)/MC/logs/AutoLocker.log 2.9GB / This is just the accumulated MC autolocker log.
  • (scripts)/GigE 780M / This does not look like scripts but source and object files
  • (scripts)/Admin/n2Check.log 224M / This is important but increases every minute.
  • (scripts)/ZI 316MB / Zurich Instrument installation. This should not be here.

Here I propose some changes.
For the script archive

  • We can remove most of the scripts for the past (say ~2019). We leave an archive file per month.
  • For the scripts in 2020, we leave a weekly archive.
  • For 2021 and 2022, we leave all the archive files.

For the existing large files/folders

  • MEDMtab: the stored files are redundant with the burt snapshots. Remove the image files. Also, we want to move the image-saving location.
  • Autolocker.log: simply zap it
  • n2Check.log: we should move the saving location
  • GigE /ZI: they need a new home where the daily copy is not taken.
  17043   Thu Jul 28 15:11:59 2022 KojiUpdateCDSToo huge script_archive

As a result of the following work, the file volume of /cvs/cds was reduced from 3.2TB to 2.2TB, and /opt/rtcds/caltech/c1/scripts was reduced from 10GB to 1.5GB


/cvs/cds/caltech/scripts_archive was cleaned up. Now the archive files are reduced to have:

  • every month 1st day from 2005 to 2018/12
  • every ten days (1, 11, 21) for 2019 and 2020
  • everyday for 2021 and 2022

(scripts)/MEDMtab/image was deleted. I can be restore back from one of the script_archive files.

(scripts)/MC/logs/AutoLocker.log was just deleted and refreshed. For the past settings, we can refer autoburt snapshots or script_archive files.

(scripts)/Admin/n2Check.log

  • It turned out that the frequency of the check was reduced to once per 10min on Sep 9th, 2021 (unelogged activity).
  • The volume of the text since then was not much volume. So I deleted the lines before this date. And the file size is <7MB now.

(scripts)/ZI was moved to /cvs/cds/apps

/opt/rtcds/caltech/c1/burt/autoburt/snapshots

  • 2018, 2019, 2020 snapshots were archived in tar.gz.
  • These snapshots were then deleted

 

  470   Thu May 8 02:06:13 2008 ranaSummaryCOCThermal Lensing in the ITMs and BS may be a problem
The iLIGO interferometers start to see thermal lensing effects with ~2W into the MC, a recycling
gain of ~50, and a beam waist on the ITMs of ~3.5 cm.

At the 40m, the laser power into the MC is 1/2 as much, the recycling gain is 4-5x less, but the
beam on the ITM has a 3 mm waist. So the power in the ITM bulk is 10x less but the power density
is 100x more
. Seems like the induced lens in the ITM bulk might be larger and that if there's
significant absorption on the ITM face (remember our Finesse is 4-5x higher) the beam size in the
arm cavity may also change enough to measure.

Someone (like Andrey) should calculate how much the beam sizes change with absorbed power.
  885   Tue Aug 26 09:58:59 2008 steveOmnistructureCOCETMX is #03
This is the picture of ETMX from the upper south west viewport
Attachment 1: etmx-d40posg_012.jpg
etmx-d40posg_012.jpg
Attachment 2: etmx03.jpg
etmx03.jpg
  1649   Wed Jun 3 18:55:27 2009 ranaUpdateCOCsnapshot of upgrade layout
Attachment 1: layout.png
layout.png
  2094   Thu Oct 15 01:21:31 2009 ranaSummaryCOCThermal Lensing in the ITM

Thermal lensing formula:

Untitled.png

from (T090018 by A. Abramovici (which references another doc).

In the above equation:

w        1/e^2 beam radius

k        thermal conductivity (not the wave vector) = 1.3 W / m/ K

alpha    absorption coefficient (~10 ppm/cm for our glass)

NP       power in the glass (alpha*NP = absorbed power)

dn/dT    index of refraction change per deg  (12 ppm/K)

d        mirror thickness (25 mm for all of our SOS)

I'm attaching a plot showing the focal length as a function of recycling cavity power for both our current MOS and future SOS designs.

I've assumed a 10 ppm/cm absorption here. It may actually be less for our current ITMs which are made of Heraeus low absorption glass - our new ITMs are Corning 7980-A (measured to have an absorption of 13 ppm/cm ala the iLIGO COC FDD). I expect that our thermal lens focal length will always be longer than 1 km and so I guess this isn't an issue.

Attachment 2: aa.png
aa.png
  2096   Thu Oct 15 02:41:04 2009 ranaUpdateCOCChoice of folding mirrors in the RC cavities

In addition to the main mirrors (PRM, SRM) we will also have fold mirrors (called PR1, PR2, SR1, SR2). I am curious to see if we can get away with just using commercial optics; I think that the CVI Y1S coatings may do the trick.

Picture_9.png

The above plots show the reflectivities v. wavelength. I've asked the sales rep to give us specs on the reflectivity v. angle. I bet that we can guess what the answer will be from these plots.

  2157   Wed Oct 28 17:20:21 2009 ranaSummaryCOCETM HR reflectivity plot

This is a plot of the R and T of the existing ETM's HR coating. I have only used 1/4 wave layers (in addition to the standard 1/2 wave SiO2 cap on the top) to get the required T.

The spec is a T = 15 ppm +/- 5 ppm. The calculation gives 8 ppm which is close enough. The calculated reflectivity for 532 nm is 3%. If the ITM reflectivity is similar, the signal for the 532 nm locking of the arm would look like a Michelson using the existing optics.

etm_40_1998.png

  2361   Mon Dec 7 18:18:55 2009 JenneUpdateCOCETMX drag wiped

[Koji, Jenne, Alberto, Steve, Bob]

ETMX has been drag wiped. 

Around 2:45pm, after the main IFO volume had come up to atmospheric pressure, we removed both doors to the ETMX chamber.  Regular procedures (wiping of O-rings with a dry, lint-free cloth, covering them with the light O-ring covers, etc.) were followed.  Koji took several photos of the optic, and the rest of the ETMX chamber before anything was touched. These will be posted to the 40m Picasa page.  Steve and Koji then deionized the optic.

Koji removed the bottom front earthquake stop, and clamped the optic with the remaining earthquake stops.

The clean syringes were prepared: These are all glass and metal (nothing else) medical syringes.  The size used was 100microliters.  Earlier today, we had prepared our solvents in small little beakers which had been baked over the weekend.  Brand new glass bottles of Acetone and Isopropyl Alcohol were opened, and poured into the small beakers.  To make sure we have enough, we have 3 ~10ml beakers of each Acetone and Isopropyl.

We started with Acetone.  The syringe was filled completely with acetone, then squirted onto a kimwipe.  This was repeated ~twice, to ensure the syringe was well rinsed.  Then the syringe was filled a little past the 100 microliter mark.  Koji held a piece of lens cleaning paper to ETMX and used an allen wrench underneath the optic to help guide the paper, and keep it near the optic (of course, the only thing in actual contact with the optic was the lens paper).  In one smooth shot, the plunger of the syringe was pressed all the way down.   (This is a bit tricky, especially when the syringe is totally full.  You have to squeeze it so the plunger moves fairly quickly down the barrel of the syringe to get a good arc of liquid.  The goal is to shoot all of the solvent to the same place on the lens paper, so that it makes a little circle of wetness on the paper which covers the coated part of the optic.  The amount of solvent used should be balanced between having too little, so that the paper is dry by the time it has been wiped all the way down, and too much such that there is still a residue of liquid on the optic after the paper has been removed.)  The target was to hit the optic just above the center mark (the oplev was on, so I went for just above the red oplev dot).  Immediately after applying the liquid onto the paper, Koji slowly and smoothly pulled down on the lens paper until it came off of the bottom of the optic.  The acetone was repeated, for a total of 2 acetone wipes.  Because acetone evaporates very quickly, more acetone is used than isopropyl.  The optimal amount turned out to be ~115 microliters of acetone.  It is hard to say exactly how much I had on the second wipe, because the syringe is not marked past 100 microliters.  On the first wipe, with about 105 microliters, the lens paper was too dry at the bottom of the optic.

We then switched to Isopropyl.  A new syringe was used, and again we rinsed it by filling it completely with isopropyl, and emptying it onto a kimwipe.  This was repeated at least twice.  We followed the same procedure for applying liquid to the optic and wiping the optic with the lens paper.  On the first try with isopropyl, we used 100 microliters, since that was the preferred amount for acetone.  Since isopropyl evaporates much slower than acetone, this was determined to be too much liquid.  On the second isopropyl wipe, I filled the syringe to 50 microliters, which was just about perfect.  The isopropyl wiping was done a total of 2 times.

After wiping, we replaced the front bottom earthquake stop, and released the optic from the other earthquake stops' clamping.  The OSEM values were checked against the values from the screenshots taken yesterday afternoon, and were found to be consistent.  Koji took more photos, all of which will be placed on the 40m Picasa page.

We visually inspected the optic, and we couldn't see anything on the optical surface of the mirror.  Koji said that he saw a few particulates on some horizontal surfaces in the chamber.  Since the optic seemed (at least to the level of human vision without a strong, focused light) to be free of particulates on the optical surface to start with, the suspense will have to remain until we button down, pump down, and try to lock the IFO to determine our new finesse, to see if the wiping helped any substantial amount. 

We replaced the regular, heavy door on the inner side of the ETMX chamber (the side closer to the CES building), and put only a light door on the outer side of the chamber (the side closer to the regular walkway down the arm).  We will look at the spectra of the OSEMS tomorrow, to confirm that none of the magnets are stuck.

We commence at ~9am tomorrow with ETMY.

LESSONS LEARNED:

The LED lights are awesome.  It's easy to use several lights to get lots of brightness (more than we've had in the past), and the chamber doesn't get hot.

We should get larger syringes for the acetone for the large optics.  It's challenging to smoothly operate the plunger of the syringe while it's so far out.  We should get 200 microliter syringes, so that for the acetone we only fill them about half way.  It was noticeably easier to apply the isopropyl when the syringe only had 50 microliters.

* It may be helpful to have a strong, focused optical light to inspect the surface of the mirror.  Rana says that Garilynn might have such an optical fiber light that we could borrow.

  2366   Tue Dec 8 13:03:26 2009 KojiUpdateCOCETMY drag wiped

Jenne, Kiwamu, Alberto, Steve, Bob, Koji

We wiped ETMY after recovery of the computer system. We take the lunch and resume at 14:00 for ITMX.
Detailed reports will follow.

  2367   Tue Dec 8 16:27:13 2009 JenneUpdateCOCITMX wiped

Jenne, Kiwamu, Koji, Alberto, Steve, Bob

ITMX was wiped without having to move it. 
After 'practice' this morning on ETMY, Kiwamu and I successfully wiped ITMX by leaning into the chamber to get at the front face. 

Most notable (other than the not moving it) was that inspection with the fiber light before touching showed many very small particles on the coated part of the optic (this is versus ETMY, where we saw very few, but larger particles).  The after-wiping fiber light inspection showed many, many fewer particles on the optical surface.  I have high hopes for lower optical loss here!

  2373   Wed Dec 9 18:01:06 2009 KojiUpdateCOCWiping finished

[Kiwamu, Jenne, Alberto, Steve, Bob, Koji]

We finished wiping of four test masses without any trouble. ITMY looked little bit dusty, but not as much as ITMX did.
We confirmed the surface of the ITMX again as we worked at vertex a lot today. It still looked clean.

We closed the light doors. The suspensions are left free tonight in order to check their behavior.
Tomorrow morning from 9AM, we will replace the door to the heavy ones.

  2424   Wed Dec 16 20:29:08 2009 ranaUpdateCOCETM Coating study

This plot shows the Transmission for 532 and 1064 nm as a function of the thickness of the SiO2 layer.

i.e. the thickness is constrained so that the optical thickness of the SiO2 and Ta2O5 pair is always 1/2 of a wavelength.

The top layer of the mirror is also fixed in this plot to be 1/2 wave.

This plot shows the result for 17 pairs. For 16 pairs, we are unable to get as low as 15 ppm for the 1064 nm transmission.

Attachment 1: layerfrac.png
layerfrac.png
  2588   Wed Feb 10 23:44:56 2010 KojiSummaryCOCPhase Map Analysis

In the middle of the last month, Kiwamu and I went to Garilynn's lab to measure the phase maps of the new ITMs and SRMs.

Analysis of the phase map data were posted on the svn directory:
https://nodus.ligo.caltech.edu:30889/svn/trunk/docs/upgrade08/cocdocs/PhaseMaps/

The screen shots and the plots were summarized in a PDF file. You can find it here:
http://lhocds.ligo-wa.caltech.edu:8000/40m/Upgrade_09/Main_Optics_Phase_Maps

The RoCs for all of the PRMs are turned out to be ~155m. This is out of the spec (142m+/-5m) although the actual effect is not understand well yet..

These RoCs are almost independent from the radus of the assumed gaussian beam.
In deed, I have checked the dependence of the RoC on the beam spot position, and it turned out that the RoCs vary only little.
(In the SRMU01 case, for example, it varies from 153.5m to 154.9m.)
The beam radius of 3mm was assumed. The RoCs were calculated 20x20mm region around the center of the mirror with a 2mm mesh.
 

Attachment 1: SRM01_HR_RoC_rad_15mm.png
SRM01_HR_RoC_rad_15mm.png
Attachment 2: SRM01_HR_RoC_scan.png
SRM01_HR_RoC_scan.png
  2611   Wed Feb 17 19:36:05 2010 KojiUpdateCOCArm visibility

I have measured the arm visibilities.
I did not see any change since the last wiping. Our vacuum is not contaminating the cavity in the time scale of 2 months.

It is very good.


Arm visibility measurement ~ latest (Feb. 17, 2010)

X Arm: 0.898 +/- 0.003
Y Arm: 0.892 +/- 0.006

Arm visibility measurement after the vent (Dec. 14, 2009)

X Arm: 0.897 +/- 0.005
Y Arm: 0.893 +/- 0.004

Arm visibility measurement before the vent (Nov 10, 2009)

X Arm: 0.875 +/- 0.005
Y Arm:
0.869 +/- 0.006

  2614   Fri Feb 19 00:31:17 2010 JenneUpdateCOCNew ITMX guiderods glued

[Jenne, Kiwamu, with moral support from Koji, and loads of advice from Steve and Bob]

New upgrade ITMX (ITMU03) has it's guiderod & standoff glued on, as step 1 toward hanging the ITMs.

Procedure:

1. Make sure you have everything ready.  This is long and complicated, but not really worth detail here.  Follow instructions in E970037 (SOS Assembly Spec), and get all the stuff in there.

2. Set optic in a 'ring stand', of which Bob has many, of many different sizes. They are cleaned and baked, and in the cleanroom cupboard on the bottom just behind the door. We used the one for 3" optics.  This lets you sit the optic down, and it only rests on the bevel on the outside, so no coated surface touches anything.

3. Drag wipe the first surface of the optic, using Isopropyl Alcohol.  We used the little syringes that had been cleaned for the Drag Wipe Event which happened in December, and got fresh Iso out of the bottle which was opened in Dec, and put it into a baked glass jar.  The drag wipe procedure was the same as for the December event, except the optic was flat on the bench, in the ring holder.

4. Turn the optic over.

5. Drag wipe the other surface.

6. Align the optic in the guiderod gluing fixture (Step 3 in Section 3.2.1: Applying Guide Rod and Wire Standoff of E970037).

7. Set guiderod and standoff (1 guiderod on one side, 1 standoff on the other, per instructions) against the side of the optic.

8.a.  Use a microscope mounted on a 3-axis micrometer base to help align the guiderod and standoff to the correct places on the optic (Steps 4-5 of Section 3.2.1).  This will be much easier now that we've done it once, but it took a looooooong time. 

8.b.  We put the optic in 180deg from the way we should, based on the direction of the wedge angle in the upgrade table layout (wedge angle stuff used a "Call a Friend" lifeline.  We talked to Koji.) The instructions say to put the guiderod and standoff "above" the scribe lines in the picture on Page 5 of E970037 - the picture has the arms of the fixture crossing over the scribe lines.  However, to make the optic hang correctly, we needed to put the guiderod and standoff below the scribe lines.  This will be true as long as the arrow scribe line (which marks the skinniest part of the optic, and points to the HR side) is closest to you when the optic is in the fixture, the fixture is laying on the table (not standing up on end) with the micrometer parts to your right.  We should put the other ITM into the fixture the other way, so that the arrow is on the far side, and then we'll glue the guiderod and standoff "above" the scribe lines.  Mostly this will be helpful so that we can glue in exactly the places the instructions want us to.

8.c.  The biggest help was getting a flashlight to help illuminate the scribe lines in the optic while trying to site them in the microscope.  If you don't do this, you're pretty much destined to failure, since the lights in the cleanroom aren't all that bright. 

8.d.  The micrometer mount we were able to find for the microscope has a max travel of 0.5", but the optic is ~1" thick.  To find the center of the optic for Step 5 in the guiderod and standoff alignment we had to measure smaller steps, such as bevel-to-end-of-scribe-line, and length-of-scribe-line then end-of-scribe-line-to-other-bevel.  Thankfully once we found the total thickness and calculated the center, we were able to measure once bevel-to-center. 

9. Apply glue to the guiderod and standoff.  We made sure to put this on the "down" side, which once the optic is hung, will be the top of the little rods.  This matches the instructions as to which side of the rods to apply the glue on.  The instructions do want the glue in the center of the rod though, but since we put the optic in the fixture the wrong way, we couldn't reach the center, so we glued the ends of the rods.  We will probably apply another tiny dab of glue on the center of the rod once it's out of the fixture, perhaps while the magnet assemblies are being glued.

10.  We didn't know if the airbake oven which Bob showed us to speed up the curing of our practice epoxy last night was clean enough for the ITM (he was gone by the time we got to that part), so for safety, we're leaving the optic on the flow bench with a foil tent (the foil is secured so there's no way it can blow and touch the optic).  This means that we'll need the full curing time of the epoxy, not half the time.  Maybe tomorrow he'll let us know that the oven is in fact okay, and we can warm it up for the morning.

  2618   Fri Feb 19 15:29:14 2010 kiwamuUpdateCOCGluing dumbbells and magnets

Jenne and kiwamu

We have glued the dumbbells to the magnets that will be used for the ITMs

We made two sets of glued pair of the dumbbell and the magnet ( one set means 6 pairs of the dumbbell and the magnet. Therefore in total we got 12 pairs. )

You can see the detailed procedure we did on the LIGO document E990196.

Actually we performed one different thing from the documented procedure;

we made scratch lines on the surface of the both dumbbells and magnets by a razor blade.

According to Steve and Bod, these scratch make the strength of the glues stronger.

Now the dumbbell-magnet pairs are on the flow bench in the clean room, and supported by a fixture Betsy sent us.

 

- -  notes

On the bench the left set is composed by magnets of 244 +/- 3 Gauss and the right set is 255 +/- 3 Gauss.

 

  2623   Mon Feb 22 10:25:37 2010 JenneUpdateCOCITMY standoff and guiderod epoxied

This work happened on Friday, after Nodus and the elog went down....

[Jenne, Kiwamu]

The guiderod and standoff for ITMY were epoxied, and left drying over the weekend on the flow bench under a foil tent.  The flow bench was off for the weekend, so we made tents which hopefully didn't have any place for dust to get in and settle on the mirrors.

There is a small chance that there will be a problem with glue on the arm of the fixture holding the guiderod to the optic.  Kiwamu and I examined it, and hopefully it won't stick.  We'll check it out this afternoon when we start getting ready for gluing magnets onto optics this afternoon.

  2629   Mon Feb 22 21:07:26 2010 JenneUpdateCOCMagnets glued to ITMX

[Kiwamu, Jenne]

The magnets + dumbbell standoffs have been glued to ITMX.  We're waiting overnight for them to dry. 

Since I broke one of the magnet + dumbbells on the ITMY set, we've glued another dumbbell to the 6th magnet, and it should be ready for us to glue to ITMY tomorrow, once ITMX is dry and out of the fixture.  This doesn't put us behind schedule at all, so that's good.

We had been concerned that there might be a problem with the arm of the guiderod fixture being glued to ITMY, but it was fine after all.  Everything is going smoothly so far.

 

[Zach, Mott]

Zach and Mott are almost prepared to start cutting the viton for the earthquake stops.  We need 2 full sets by Wednesday morning, when we expect to begin hanging the ITMs.

  2642   Fri Feb 26 01:00:07 2010 JenneUpdateCOCSuspension Progress

This is going to be a laundry list of the mile markers achieved so far:

* Guiderod and wire standoff glued to each ITMX and ITMY

* Magnets glued to dumbbells (4 sets done now).  ITMX has 244 +- 3 Gauss, ITMY has 255 +- 3 Gauss.  The 2 sets for SRM and PRM are 255 +- 3 G and 264 +- 3 G.  I don't know which set will go with which optic yet.

* Magnets glued to ITMX.  There were some complications removing the optic from the magnet gluing fixture.  The way the optic is left with the glue to dry overnight is with "pickle picker" type grippers holding the magnets to the optic.  After the epoxy had cured, Kiwamu and I took the grippers off, in preparation to remove the optic from the fixture.  The side magnet (thankfully the side where we won't have an OSEM) and dumbbell assembly snapped off.  Also, on the UL magnet, the magnet came off of the dumbbell (the dumbbell was still glued to the glass).  We left the optic in the fixture (to maintain the original alignment), and used one of the grippers to glue the magnet back to the UL dumbbell.  The gripper in the fixture has very little slop in where it places the magnet/dumbbell, so the magnet was reglued with very good axial alignment.  Since after the side magnet+dumbbell came off the glass, the 2 broke apart, we did not glue them back on to the optic.  They were reattached, so that we can in the future put the extra side magnet on, but I don't think that will be necessary, since we already know which side the OSEM will be on.

* Magnets glued to ITMY.  This happened today, so it's drying overnight.  Hopefully the grippers won't be sticky and jerky like last time when we were removing them from the fixture, so hopefully we won't lose any magnets when I take the optic out of the fixture.

* ITMX has been placed in its suspension cage.  The first step, before getting out the wire, is to set the optic on the bottom EQ stops, and get the correct height and get the optic leveled, to make things easier once the wire is in place.  Koji and I did this step, and then we clamped all of the EQ stops in place to leave it for the night.

* The HeNe laser has been leveled, to a beam height of 5.5inches, in preparation for the final leveling of the optics, beginning tomorrow.  The QPD with the XY decoder is also in place at the 5.5 inch height for the op lev readout.  The game plan is to leave this set up for the entire time that we're hanging optics.  This is kind of a pain to set up, but now that it's there, it can stay out of the way huddled on the side of the flow bench table, ready for whenever we get the ETMs in, and the recoated PRM. 

* Koji and Steve got the ITMX OSEMs from in the vacuum, and they're ready for the hanging and balancing of the optic tomorrow.  Also, they got out the satellite box, and ran the crazy-long cable to control the OSEMs while they're on the flow bench in the clean room.

 

Koji and I discovered a problem with the small EQ stops, which will be used in all of the SOS suspensions for the bottom EQ stops.  They're too big.  :(  The original document (D970312-A-D) describing the size for these screws was drawn in 1997, and it calls for 4-40 screws.  The updated drawing, from 2000 (D970312-B-D) calls for 6-32 screws.  I naively trusted that updated meant updated, and ordered and prepared 6-32 screws for the bottom EQ stops for all of the SOSes.  Unfortunately, the suspension towers that we have are tapped for 4-40.  Thumbs down to that.  We have a bunch of vented 4-40 screws in the clean room cabinets, which I can drill, and have Bob rebake, so that Zach and Mott can make viton inserts for them, but that will be a future enhancement.  For tonight, Koji and I put in bare vented 4-40 screws from the clean room supply of pre-baked screws.  This is consistent with the optics in our chambers having bare screws for the bottom EQ stops, although it might be nicer to have cushy viton for emergencies when the wire might snap.  The real moral of this story is: don't trust the drawings.  They're good for guidelines, but I should have confirmed that everything fit and was the correct size.

  2654   Thu Mar 4 02:25:14 2010 JenneUpdateCOCFurther details on the magnet story, and SRM guiderod glued

[Koji, Jenne]

First, the easy story:  SRM got it's guiderod & standoff glued on this evening.  It will be ready for magnets (assuming everything is sorted out....see below) as early as tomorrow.  We can also begin to glue PRM guiderods as early as tomorrow.

The magnet story is not as short.....

Problem: ITMX and ITMY's side magnets are not glued in the correct places along the z-axis of the optic (z-axis as in beam propagation direction). 

ITMX (as reported the other day) has the side magnet placement off by ~2mm.  ITMX side was glued using the magnet fixture from MIT and the teflon pads that Kiwamu and I improvised.

It was determined that the improvised teflon pads were too thin (maybe about 1m thick), so I took those out, and replaced them with the teflon pads stolen from the 40m's magnet gluing fixture.   (The teflon pad from the MIT fixture and the ones from the MIT fixture are the same within my measuring ability using a flat surface and feeling for a step between them.  I haven't yet measured with calipers the MIT pad thickness).  The pads from the 40m fixture, which were used in the MIT fixture to glue ITMY side last night were measured to be ~1.7mm thick.

Today when Koji hung ITMY, he discovered that the side magnet is off by ~1mm.  This improvement is consistent with the switching of the teflon pads to the ones from the 40m fixture.

We compared the 40m fixture with the one from MIT, and it looks like the distance from the edge of where the optic should sit to the center of the hole for the side magnet is different by ~1.1mm.  This explains the remaining ~1mm that ITMY is off by. 

We should put the teflon pads back into the 40m fixture, and only use that one from now on, unless we find an easy way to make thicker teflon pads for the fixture we received from MIT.  (The pads that are in there are about the maximum thickness that will fit).  I'm going to use my thickness measurements of SRM (taken in the process of gluing the guiderods) to see what thickness of pads / what fixture we want to actually use, but I'm sure that the fixture we found in the 40m is correct.  We can't use this fixture however, until we get some clean 1/4-28 screws.  I've emailed Steve and Bob, so hopefully they'll have something for us by ~lunchtime tomorrow. 

The ITMX side magnet is so far off in the Z-direction that we'll have to remove it and reglue it in the correct position in order for the shadow sensor to do anything.  For ITMY, we'll check it out tomorrow, whether the magnet is in the LED beam at all or not.  If it's not blocking the LED beam enough, we'll have to remove and reglue it too. 

Why someone made 2 almost identical fixtures, with a 1mm height difference and different threads for the set screws, I don't know.  But I don't think whoever that person was can be my friend this week. 

  2820   Tue Apr 20 18:02:22 2010 JenneUpdateCOCNew SRM and PRM Hung

[Jenne, Steve]

We removed the old SRM and PRM from their cages, and are temporarily storing them in the rings which we use to hold the optics while baking.  Steve will work on a way to store them more permanently.

We then hung the new SRM (SRMU03) and new PRM (SRMU04) in the cages.  We were careful not to break the wires, so the heights will not have changed from the old heights.

The optics have not been balanced yet.  That will hopefully happen later this week.

  3051   Sun Jun 6 04:48:41 2010 ranaUpdateCOCITM01 HR Phase Map

While trying to set up the SIS-FFT to use our new ITM phase maps, I noticed that the surface of our ITMs looks pretty good actually (even compared to the aLIGO pathfinder optic map on the AIC wiki). I'm attaching it here for your viewing pleasure.

The code to plot it has been added to the SVN in the PhaseMaps/mat directory.

Attachment 1: itm01hr.png
itm01hr.png
  3091   Sun Jun 20 16:07:23 2010 KojiSummaryCOCCalibration of the metrology lab interferometer

Kiwamu and Koji

Summary

We have visited GariLynn's lab to make a calibration of the metrology interferometer. 

The newly calibrated value is

RoC(SRMU01) = 153.3+/- 1.6 [m]

This is to be compared with the specification of 142m +/- 5m

Although the calibration deviation from the previous value was found to be 1.3%, it is far from explaining the curvature difference between the spec (142m) and the measured value.


Motivation

The previous measurements of the SRM curvatures showed larger RoCs by ~10% compared with the spec.

It can be caused by the mis-calibration of the pixel size of the CCD in the metrology interferometer.
In order to confirm the calibration value, an object with known dimension should be measured by the instrument.

Method

We've got a flat blank optic from "Advanced Thin Film" together with a metalic ring.
The ring has been attached on the blank optic with 3 fragments of a double sided tape.
The RoC of SRMU1 was also measured in order to obtain "the radius of curvature of the day".

The calibration process is as follows:

  1. Measure the diameters of the ring by a caliper in advance to its attachment to the blank.
  2. Determine the inner and outer diameter of the ring in the obtained image.
    Note that the obtained image is pre-calibrated by the default value given by the measurement program
      (i.e. 0.270194mm/pixel for horizontal)
  3. Check the ratio of the diameters with the measured value by the caliper. Correct a systematic effect.
  4. Compare the image measurement and the caliper measurement.

Results

  1. The outer and inner diameters of 2.000" and 1.660" (measured by a caliper, error 0.005"). The ratio is 0.830+/-0.003.
  2. The center and radius for the inner circle were estimated to be (79.7924, 91.6372) and 21.4025 [mm].
    The center and radius for the outer circle were estimated to be (79.6532, 91.6816) and 25.6925 [mm].

    The error would be ~0.01mm considering they sweep 500 pixels by the circle and the pixel size is 0.27mm. i.e. 0.27/Sqrt(500) ~ 0.01mm
  3. Ratio of the inner and outer diameter is 0.8330 +/- 0.0005.
    The systematic error of x is given by solving (21.4025+x)/(25.6925-x)=0.83 ==> x = -0.042 +/- 0.043 [mm]. This is just a 0.2% correction.
    By correcting the above effect, we get (Rin, Rout) = (21.36 +/- 0.046, 25.74 +/- 0.047).
  4. By comparing the result with the caliper measurement, we get calibration factor of 1.013 +/- 0.005.
    This means we measured "1mm" as "1.013mm". The scale was too small.

    We have got the calibration of 0.2737+/-0.0014 [mm/pixel].

Discussion

Because of the calibration error, we measured too long RoC. The same day, we measured the curvature of SRMU01 as 155.26 m.
The newly calibrated value is

RoC(SRMU01) = 153.3+/- 1.6 [m]

This is the value to be compared with the specification of 142m +/- 5m

 

Attachment 1: ring1_inner_centering.pdf
ring1_inner_centering.pdf
Attachment 2: ring1_outer_centering.pdf
ring1_outer_centering.pdf
Attachment 3: SRMU01_pic.png
SRMU01_pic.png
  3684   Sun Oct 10 16:59:20 2010 KojiOmnistructureCOCPRM phase map measurement at Downs SB 014

[Kiwamu, Yuta, Koji]

We went to the new metrology lab at Downs subbasement (Rm014) in order to measure the phase map of the delivered PRMs.

It's brand-new. So we had to measure the reference phase map, calibration as well as the phase map of our mirrors (3 PRMs and 1 spare SRM). It took a whole day...

Attachment 1: IMG_3646.jpg
IMG_3646.jpg
Attachment 2: IMG_3647.jpg
IMG_3647.jpg
  3685   Sun Oct 10 18:09:02 2010 KojiSummaryCOCPhase map interferometer calibration for the data on Oct 8th, 2010

Summary:

Calibration of the phase map interferometer was calculated for the data on Oct 8th, 2010.
The calibration value is 0.1905 mm/pixel.

This is slightly smaller than the assumed value in the machine that is 0.192mm/pixel.
This means that the measured radii of curvature must be scaled down with this ratio.
(i.e. RoC(new) = RoC(old) / 0.1922 * 0.19052)


Motivation:

Our tagets of the phasemap measurement are:

1. Measure the figure errors of the mirrors
2. Measure the curvature of the mirrors

The depth of the mirror figure is calibrated by the wavelength of the laser (1064nm).
However, the lateral scale of the image is not calibrated.
Although Zygo provides the initial calibration as 0.192 mm/pixel, we should measure the calibration by ourselves.

Method:

We found an aperture mask with a grid of holes with 2mm diameter and 3mm spacing (center-to-center).
Take the picture of this aperture and calibrate the pixel size. The aperture is made of stainless and makes not interference
with the reference beam. Thus we put a dummy mirror behind the aperture. (UPPER LEFT plot)

As the holes are aligned as a grid, the FFT of the aperture image shows peaks at the corresponding pitches. (UPPER MIDDLE plot)
As the aperture was slightly rotated, the grids of the peaks are also slanted.

We can obtain the spacing of the peak grids. How can we can that values precisely? I decided to make an artificial mask image.
The artificial mask (LOWER LEFT plot) has the similar FFT pattern (LOWER MIDDLE plot). The inner product of the two
FFT results (i.e. Sum[abs(fft1) x abs(fft2)]), quite a large value is obtained if the grid pitch and the aperture angle agrees between those images.
Note that the phase information was discarded. The estimated grid spacing of the artificial mask can be mathematically obtained.

Result:

The grid pitch and the angle were manually set as initial values. Then the parameters to give the local maximum was obtained by fminsearch of Matlab.
UPPER RIGHT and LOWER RIGHT plots show the scan of the evaluation function by changing the angle and the pitch. They behave quite normal.

The obtained values are

Grid pitch: 15.74 pixel
Angle: 1.935 deg

As the grid pitch is 3mm, the calibration is

3 mm / 15.74 pixel = 0.1905 mm/pixel

Discussion:

A spherical surface can be expressed as the following formula:

z = R - R Sqrt(1-r2/R2)      (note: this can be expanded as r2/(2 R)+O(r3) )

Here R is the RoC and r is the distance from the center. This means that the calibration of r quadratically changes the curvature.
We have measured the RoC of the spare SRM. We can compare the RoCs measured by this new metrology IFO and the old one,
as well as the one by Coastline optics. 

 

Attachment 1: calibration.pdf
calibration.pdf
  3738   Mon Oct 18 18:33:46 2010 KojiSummaryCOCSummary of the main mirrors & their phasemap measurement

I have made a summary web page for the 40m upgrade optics.

https://nodus.ligo.caltech.edu:30889/40m_phasemap/

I made a bunch of RoC calculations along with the phase maps we measured.
Those are also accommodated under this directory structure.

Probably.... I should have used the wiki and copy/paste the resultant HTML?

  7385   Fri Sep 14 01:18:51 2012 ranaUpdateCOC2 Layout Changes

After looking at the in-vacuum layout I think we should make two changes during the next vent:

1) Reduce the number of mirrors between the FI and its camera. We install a large silvered mirror in the vacuum flange which holds the Faraday cam (in the inside of the viewport). That points directly at the input to the Faraday. We get to remove all of the steering mirror junk on the IO stack.

2) Take the Faraday output (IFO REFL) out onto the little table holding the BS and PRM Oplevs. We then relocate all 4 of the REFL RFPDs as well as the REFL OSA and the REFL camera onto this table. This will reduce the path length from the FI REFL port to the diodes and reduce the beam clutter on the AS table.

  7398   Mon Sep 17 18:04:01 2012 SteveUpdateCOC2 Layout Changes

Quote:

After looking at the in-vacuum layout I think we should make two changes during the next vent:

1) Reduce the number of mirrors between the FI and its camera. We install a large silvered mirror in the vacuum flange which holds the Faraday cam (in the inside of the viewport). That points directly at the input to the Faraday. We get to remove all of the steering mirror junk on the IO stack.

2) Take the Faraday output (IFO REFL) out onto the little table holding the BS and PRM Oplevs. We then relocate all 4 of the REFL RFPDs as well as the REFL OSA and the REFL camera onto this table. This will reduce the path length from the FI REFL port to the diodes and reduce the beam clutter on the AS table.

 There is just so much room on this table.

Attachment 1: IMG_1635.JPG
IMG_1635.JPG
  7517   Wed Oct 10 08:36:47 2012 SteveUpdateCOCspecial mirror mounts holder

Quote:

After looking at the in-vacuum layout I think we should make two changes during the next vent:

1) Reduce the number of mirrors between the FI and its camera. We install a large silvered mirror in the vacuum flange which holds the Faraday cam (in the inside of the viewport). That points directly at the input to the Faraday. We get to remove all of the steering mirror junk on the IO stack.

2) Take the Faraday output (IFO REFL) out onto the little table holding the BS and PRM Oplevs. We then relocate all 4 of the REFL RFPDs as well as the REFL OSA and the REFL camera onto this table. This will reduce the path length from the FI REFL port to the diodes and reduce the beam clutter on the AS table.

1)  Mirror mount holder for "large silvered mirror" inside of the 8" OD tube vacuum envelope.

Attachment 1: 10101201.PDF
10101201.PDF
  8211   Sat Mar 2 00:23:19 2013 ranaSummaryCOCPhase Maps measured of the ATF flat mirrors

I took the two 'flat' 2" mirrors over to Downs and Garilynn showed me how to measure them with the old Wyko machine.

The files are now loaded onto our Dropbox folder - analysis in process. From eyeball, it seems as if the RoCs are in the neighborhood of ~5 km, with the local perturbations giving ~10-15 km of curvature depending upon position (few nm of sage over ~1 cm scales)

Koji's matlab code should be able to give somewhat more quantitative answers...

Ed: Here you are. "0966" looks good. It has RoC of ~4km. "0997" has a big structure at the middle. The bump is 10nmPV (KA)

 

Attachment 1: 0966_0997_phasemap.pdf
0966_0997_phasemap.pdf 0966_0997_phasemap.pdf 0966_0997_phasemap.pdf 0966_0997_phasemap.pdf 0966_0997_phasemap.pdf 0966_0997_phasemap.pdf 0966_0997_phasemap.pdf 0966_0997_phasemap.pdf
  10414   Wed Aug 20 15:31:27 2014 ericqUpdateCOCArm Loss Investigations Continue

 [ericq, Gabriele] 

Summary: After today's meeting, Gabriele and I looked into the arm loss situation, to see if we should really believe the losses that had been suggested by my previous measurements. We made some observations that we're not sure how to explain, and we're thinking about other ways to try and estimate the losses to corroborate previous findings. 


We first looked to see if the ASS had some effective offset, leaving the alignment not quite right. Once ASS'd, we twiddled each arm cavity mirror in pitch and yaw to see if we could achieve higher transmission. We could not, so this suggested that ASS works properly. 

We then looked at potential offsets in the Xarm loop. We found that an input offset of 25 counts increased the transmission, but only very slightly. With this offset adjusted, we confirmed the qualitative observation that locking/unlocking the xarm causes a much bigger change in ASDC than doing the same with the harm.

However, we noted that the ASDC data (which is the DC value of the AS55 RFPD) was quite noisy, hovering around 50 counts. Looking at the c1lsc model, we found that we were looking at direct ADC counts, so the signal conditioning was not so great. We went to the LSC rack and stole the SR560 that had been hooked up as a REFLDC offsetter, and used it to give ASDC a gain of 100, and a LP at 100Hz, since we only care about DC values. We then undid the gain in the input FM; and this calmed the trace down a fair bit. The effects due to each arm locking/unlocking was still consistent with previous observations. 


At this point, we looked at the arm transmission and ASDC signals simultaneously. Normally, when misaligning a cavity, one would expect the reflected power to rise and the transmission to fall.

However, we saw that when misalignment the Yarm in yaw in either direction, or the Xarm in one direction, both the IR transmission and ASDC would fall. This initially made us think of clipping effects. 

So, we checked out the AS beam situation on the AP table. On a card, the beam looks round as we could tell, and the beam spot on AS55 was nice and small. (We tweaked its steering a little bit in pitch to put it at the center of the "falling-off" points) The reflection and transmission falling effect remained. 


At this point, we're not really sure what could be causing this effect. After the reflected beams recombine at the BS, the output path is common, so it's strange that this odd effect would be the same for both arms. 

Lastly, we discussed other ways that we may be able to see if the Xarm really has ~500ppm loss. Since its transmission is ~1.4%, Gabriele estimated that we may be able to see a ~300Hz difference in the arm cavity pole frequency between the two arms, based on the modification of the cavity finesse due to loss. Since we don't currently have the AOM set up to inject intensity noise, we talked about using frequency noise injection to measure the arm cavity poles, though this would be coupled with the IMC pole, but this could hopefully be accounted for.

  11876   Fri Dec 11 23:12:09 2015 KojiSummaryCOCLoss map measurement document

Yutaro left detailed slides for his loss map measurement

https://dcc.ligo.org/LIGO-G1501547

  12102   Mon May 2 17:06:58 2016 ranaSummaryCOCG&H optics to Fullerton/HWS for anneal testing

Steve sent 4 of our 1" diameter G&H HR mirrors to Josh Smith at Fullerton for scatter testing. Attached photo is our total stock before sending.

Attachment 1: 20160427_182305.jpg
20160427_182305.jpg
  12103   Mon May 2 17:11:55 2016 ranaUpdateCOCRC folding mirrors

Antonio/Gautam are now developing a more up to date Finesse model of our recycling cavities to see what we can have there before our power recycling gain or cavity geometric stability is compromised. Expect that we will here a progress report on the model on Wednesday.

Some thoughts:

  1. RC folding mirrors need to be dichroic to allow green beams to get out.
  2. We should look at the specs Jamie used to get the RC folding mirrors last time and figure out what went wrong / what specs to change.
  3. T_1064 < 100 ppm. Hopefully < 50 ppm.
  4. On the AR side, we mainly want low AR for green, but nothing special for 1064, since that's taken care of by the HR.
  5. How much should we wedge these things?
  6. Should the wedge be horizontal?
  7. Can we get someone in Downs to update the optical layout?
  8. What microroughness do we need?
  9. The mirrors must be flat, with the  500 m < RoC < 100 km. Part of the Finesse modeling is to figure out what happens if the RoC is in the 300 - 1000 m range. Better stability?
  12120   Wed May 18 01:10:22 2016 gautamUpdateCOCFinesse modelling

I've been working on putting together a Finesse model for the current 40m configuration. The idea was to see if I could reproduce a model that is in agreement with what we have been seeing during the recent DRFPMI locks. With Antonio and EricQs help, I've been making slow progress in my forays into Finesse and pyKat. Here is a summary of what I have so far.

  • Arm lengths were taken from some recent measurements done by yutaro and me 
  • Recycling cavity lengths were taken from Gabriele's elog 9590 - it is likely that the lengths I used have errors ~1cm - more on this later. Furthermore, I've tried to incorporate the flipped RC folding mirrors - the point being to see if I can recover, for example, a power recycling gain of ~7 which is what was observed for the recent DRFPMI locks.
  • I used Yutaro's most recent arm loss numbers, and distributed it equally between ITM and ETM for modeling purposes. 
  • For all other optics, I assumed a generic loss number of 25ppm for each surface

Having put together the .kat file (code attached, but this is probably useless, the new model with RC folding mirrors the right way will be what is relevant), I was able to recover a power recycling gain of ~7.5. The arm transmission at full lock also matches the expected value (125*80uW ~ 10mW) based on a recent measurement I did while putting the X endtable together. I also tuned the arm losses to see (qualitatively) that the power recycling gain tracked this curve by Yutaro. EricQ suggested I do a few more checks:

  1. Set PRM reflectivity to 0, scan ETMs and look at the transmission - attachment #1 suggests the linewidth is as we expect 
  2. Set ETM reflectivity to 0, scan PRM - attachment #2 suggests a Finesse of ~60  for the PRC which sounds about right
  3. Set ETM reflectivity to 0, scan SRM and verify that only the 55 MHz sidebands resonate - Attachment #3

Conclusion: It doesn't look like I've done anything crazy. So unless anyone thinks there are any further checks I should do on this "toy" model, I will start putting together the "correct" model - using RC folding mirrors that are oriented the right way, and using the "ideal" RC cavity lengths as detailed on this wiki page. The plan of action then is

  • Evaluating the mode-matching integrals between the PRC and the arm cavities as a function of the radius of curvature of PR2 and PR3
  • Same as above for the SRC
  • PRC gain as a function of RoC of folding mirrors
  • Mode overlap between the modes from the two arm cavities as a function of the RoC of the two ETMs (actually I guess we can fix RoC of ETMy and just vary RoC of ETMx).

Sidenote to self: It would be nice to consolidate the most recent cavity length measurements in one place sometime...

Attachment 1: arms.pdf
arms.pdf
Attachment 2: PRC.pdf
PRC.pdf
Attachment 3: SRC.pdf
SRC.pdf
Attachment 4: Finesse_model.zip
ELOG V3.1.3-