40m QIL Cryo_Lab CTN SUS_Lab TCS_Lab OMC_Lab CRIME_Lab FEA ENG_Labs OptContFac Mariner WBEEShop
  40m Log, Page 340 of 344  Not logged in ELOG logo
ID Date Authordown Type Category Subject
  2924   Wed May 12 17:10:16 2010 AlbertoUpdate40m UpgradingRF frequency generation box - step 0

I started putting together the components that are coint to go inside the frequency generation box. Here's how it looked like:


The single component are going to be mounted on a board that is going to sit on the bottom of the box.

I'm thinking whether to mount the components on an isolating board (like they did in GEO), or on an aluminum board.

I emailed Hartmut to know more details about his motivations on making that choice.

  2925   Wed May 12 23:31:17 2010 AlbertoUpdate40m Upgrading216 MHz resonance in the POY11 PD killed
It turned out that the resonance at 216 MHz in the 11MHz PD that I showed in the elog entry 2902 was casued by an instability of the of the MAX4107 opamap' feedback loop.
As the datasheet of the opamp shows, the close-loop gain has a peak at about 200-250MHz, in presence of even small capacitive loads.
In my case, perhaps either the capacitance of the BNC cables plugged to the RF output of the PD box, or the shunt capacitance of the circuit parts after the opamap (traces and resistors) might have introduced capacitance at the output of the amplifier.
LISO had failed in predicting the resonance because it has only ideal transfer functions of the opamps. In particular the open-loop gain of the opamaps in the library is just a function with a simple pole.
At RF frequencies the output impedances of the opamp starts having a non-negligible inductance that interacts with the load capacitance, generating a typical LC-circuit resonance.
In cases like this, such effect can be mitigated by introducing an "isolating" resistor at the output of the opamp.
So I did that and modified the circuit as in this simplified schematic here:

The choice of 100 Ohm for the isolating resistor was mainly empirical. I started with 10, then 20 and 50 until I got a sufficient suppression of the resonance. Even just 10Ohm suppressed the resonance by several tens of dB.



In that way the gain of the loop didn't change. Before that, I was also able to kill the resonance by just increasing the loop gain from 10 to 17.  But, I didn't want to increase the closed-loop gain.

One thing that I tried, on Koji's suggestion, was to try to connect the RF output of the PD box to an RF amplifier to see whether shielding the output from the cable capacitance would make the resonance disappear: It did not work.

  2966   Fri May 21 11:56:34 2010 AlbertoUpdate40m Upgrading40mUpgrade Field Power and RF Power Spectrum at the ports. 38m/38.55m arm length issue.

I update my old 40mUpgrade Optickle model, by adding the latest updates in the optical layout (mirror distances, main optics transmissivities, folding mirror transmissivities, etc). I also cleaned it from a lot of useless, Advanced LIGO features.

I calculated the expected power in the fields present at the main ports of the interferometer.

I repeated the calculations for both the arms-locked/arms-unlocked configurations. I used a new set of functions that I wrote which let me evaluate the field power and RF power anywhere in the IFO. (all in my SVN directory)

As in Koji's optical layout, I set the arm length to 38m and I found that at the SP port there was much more power that I woud expect at 44Mhz and 110 MHz.

It's not straightforward to identify unequivocally what is causing it (I have about 100 frequencies going around in the IFO), but presumably the measured power at 44MHz was from the beat between f1 an f2 (55-11=44MHz), and that at 110MHz was from the f2 first sidebands.

Here's what i found:






I found that When I set the arm length to 38.55m (the old 40m average arm length), the power at 44 and 110 MHz went significantly down. See here:



I checked the distances between all the frequencies circulating in the IFO from the closest arm resonance to them.

I found that the f2 and 2*f2 are two of the closest frequencies to the arm resonance (~80KHz). With a arm cavity finesse of 450, that shouldn't be a problem, though.


 I'll keep using the numbers I got to nail down the culprit.

Anyways, now the question is: what is the design length of the arms? Because if it is really 38m rather than 38.55m, then maybe we should change it back to the old values.

  2969   Fri May 21 16:27:45 2010 AlbertoOmnistructureEnvironmentThe control room is molding...

... not just because we haven't locked the interferometer for quite some time. I mean, it literally stinks. The chiller's chiller is molding. Its' dripping water and there's mold all under it (Jo just confirmed: "yeah, it's mold").

Someone from Caltech maintenance just crossed the door. Hopefully he'll help us fix it.

I'll keep you updated. Stay tuned.

  2994   Wed May 26 17:10:09 2010 AlbertoUpdate40m UpgradingRF Generation box

This is how the RF generation box might soon look like:


A dedicated wiki page shows the state of the work:


  2996   Wed May 26 22:22:03 2010 AlbertoConfiguration40m UpgradingArm cavity length

The second sideband is resonant in the arms for a cavity length of 37.9299m.

The nearest antiresonant arm lengths for f2 (55MHz) are 36.5753m and 39.2845m.

If we don't touch the ITMs, and we use the room we still have now on the end tables, we can get to 37.5m.

This is how the power spectrum at REFL would look like for perfect antiresonance:


And this is how it looks like for 37.5m:


Or, god forbid, we change the modulation frequencies...

  3001   Thu May 27 12:52:02 2010 AlbertoUpdate40m UpgradingArm lengths

For both sidebands to be antiresonant in the arms, the first modulation frequency has to be:

f1 = (n + 1/2) c / (2*L)

where L is the arm length and c the speed of light.  For L=38m, we pick to cases: n=3,  then f1a = 13.806231 MHz;  n=2, then f1b = 9.861594 MHz.

If we go for f1a, then the mode cleaner half length has to change to 10.857m.  If we go for f1b, the MC length goes to 15.200m. A 2 meter change from the current length either way.

And the mode cleaner would only be the first of a long list of things that would have to change. Then it would be the turn of the recycling cavities.

Kind of a big deal.

  3004   Fri May 28 07:13:05 2010 AlbertoFrogsGreen LockingSR785 found abandoned next to the workbenches

A poor lonely SR785 was found this morning roaming around in the lab in evident violation of the fundamental rule which requires all the equipment on carts to be brought back inside the lab right after use.

The people and the professors related to the case should take immediate action to repair for their misdeed.

  3012   Fri May 28 21:32:32 2010 AlbertoUpdate40m UpgradingMC alignment

[Alberto, Kiwamu, Kevin, Rana]

Today we tried to measured the beam shape after the MC MMT1 that Jenne installed on the BS table.

The beam scan showed a clipped spot. We tracked it down to the Farady and the MCT pickoff mirror.

The beam was getting clipped at the exit of the Faraday. But it was also clipping the edge of the MCT pick-off mirror. I moved the mirror.

Also the beam looked off-center on MC2.

We're coming back on Sunday to keep working on this.

Now things are bad.

  3015   Sun May 30 15:33:21 2010 AlbertoConfigurationIOOmode cleaner and air conditioning

The mode cleaner is locked and the air conditioning is full on. So the the air conditioning doesn't seem to be so important for the lock to hold.

  3016   Sun May 30 15:36:22 2010 AlbertoConfigurationPSLIMC periscope shutter

Two days ago I opened the PSL shutter by switching the switch on the shutter driver. That caused the shutter's switch on the medm screen to work in reversed mode: open meant closed and closed meant open.

I fixed that. Now the medm screen switch state is correct.

  3026   Tue Jun 1 16:29:51 2010 AlbertoUpdateIOOMC transmitted beam aligned to the Faraday; next things to do

We moved the MC-trans pick-off mirror (= the beam splitter between the input of the Faraday and the steering mirror located right after MC3). Now the beam goes through the Farady without getting clipped.

This is the list of the things that have to be done next:

  1. take pictures of the beam spot just before and after the Faraday
  2. lock down to the table the MCTrans pickoff mirror with its screws
  3. measure the beam profile after the first MC telescope mirror (MMT1)
  4. remove Jenne's extra steering mirror from the MC table
  5. re-level the MC table with the bubble level
  6. align the MC-trans beam to its photodiode on the PSL table
  7. align the REFL beam to its photodiode on the AP table
  3053   Mon Jun 7 07:39:38 2010 AlbertoOmnistructureElectronicsCapacitor Bridge Test


To get a feel for the Capacitive Bridge problems, we setup a simple bridge using fixed (1 nF) caps on a breadboard. We used an SR830 Lock-In amplifier to drive it and readout the noise.

The measurement setup for the Capacitor Bridge Test is still sitting on one of the work benches.

Unless the experiment is supposed to continue today, the equipment shouldn't have been left on the bench. It should have been  taken back to the lab.

Also the cart with HP network analyzer used for the test was left in the desk area. That shouldn't have left floating around in the desk area anyway.

The people responsible for that, are kindly invited to clean up after themselves.

  3062   Thu Jun 10 07:53:14 2010 AlbertoUpdatePEMLaTeXlabs


BTW, latex launched this new thing for writing pdfs. doesnot require any installations.  check  http://docs.latexlab.org

 so cool!

  3064   Thu Jun 10 11:10:21 2010 AlbertoUpdateGeneralLaTeXlabs


I could not dare to share my google doc with this site...



BTW, latex launched this new thing for writing pdfs. doesnot require any installations.  check  http://docs.latexlab.org

 so cool!


Just in case,  granted access to Google docs can be revoked any time from here:


  3072   Sat Jun 12 19:41:04 2010 AlbertoUpdateLocking40m Upgrade Optickle Model

I wrote down the settings according to which I tuned the optickle model of the 40m Upgrade.

Basically I set it so that:

  1. PRC alone anti-resonant for the carrier and resonant for both sidebands
  2. SRC alone resonant for the carrier and resonant for the f2 sideband

In this way when the carrier becomes resonant in the arms we have:

  1. carrier resonant in PRC and anti-resonant in SRC
  2. f1 resonant in PRC and non resonant in SRC
  3. f2 resonant in SRC

The DARM offset for DC readout is optional, and doesn't change those conditions.

I also plotted the carrier and the sideband's circulating power for both recycling cavities.

I'm attaching a file containing more detailed explanations of what I said above. It also contains the plots of field powers, and transfer functions from DARM to the dark port. I think they don't look quite right. There seems to be something wrong.

Valera thought of fixing the problem, removing the 180 degree offset on the SRM, which is what makes the sideband rather than the carrier resonant in SRC. In his model the carrier becomes resonant and the sideband anti-resonant. I don't think that is correct.

The resonant-carrier case is also included in the attachment (the plots with SRMoff=0 deg). In the plots the DARM offset is always zero.

I'm not sure why the settings are not producing the expected transfer functions.

Attachment 1: optickleIFOworkingpoint.pdf
optickleIFOworkingpoint.pdf optickleIFOworkingpoint.pdf optickleIFOworkingpoint.pdf optickleIFOworkingpoint.pdf optickleIFOworkingpoint.pdf optickleIFOworkingpoint.pdf optickleIFOworkingpoint.pdf optickleIFOworkingpoint.pdf
  3073   Sat Jun 12 19:43:19 2010 AlbertoUpdateWIKI-40M UpdateIFO modeling Wiki Page updated

Today I started writing the IFO modeling wiki page.

The idea is to make it a reference place where to share our modeling tools for the 40m.

  3083   Wed Jun 16 18:44:07 2010 AlbertoConfigurationComputers40MARS


i added my laptop's mac address to teh martian at port 13 today.


No personal laptop is allowed to the martian network. Only access to the General Computing Side is permitted.

Please disconnect it.

  3084   Thu Jun 17 17:09:44 2010 AlbertoUpdateLSCShort Cavity Length Adjustments

I calculated the phase shifts that the sidebands would pick up in the arms in the case we changed the arm length to 38.4m as proposed. I obtained the following values (in degrees):

phi(-f2) = 0.66; phi(-f1) = -0.71; phi(f1) = 0.71; phi(+f2) = -0.66

These are the plots with the results as I obtained from an Optickle simulation (the second zooms in around 38.4m).

sidebandPhaseRotation_73430639654.png sidebandPhaseRotation_73430656054.png

These values agree with what Koji had already estimated (see elog entry 3023).

Since we can't make the arm longer than that, to increase the distance from the resonance, we would like to adjust the length of the short cavities to compensate for that.  For f2 (=55MHz), 0.7 degrees correspond to about 5cm. That is about the length change that we expect to make to the design.

I simulated with Optickle the effect of changing the length of either the SRC or the PRC. The best way I found to do that, was to measure the cavity circulating power when the macroscopic lengths change.

The following plots show the effect of changing either the PRC or SRC length (left or right figure), on the circulating power of both cavities at the same time (top and bottom plots).

shortCavityCirculatingPower_73430666992.png prcCirculatingPower_73430665955.png

 You can compare these with the case of perfect antiresonance as in the following plots:

shortCavityCirculatingPower_73430668892.png shortCavityCirculatingPower_73430669604.png

It seems that the design length for the short cavities are not too bad. f1 is not optimized in the PRC, but changing the length of the cavity wold just make f2 worse in SRC.

These simulations seem to support the choice of not changing the design cavity lengths for PRC and SRC.

Of course these are only an "open loop" simulations. At the moment we don't know what would be the effect of closing the control loops. That is something I'm going to do later. It'll be part of my studies on the effects of cavity absolute length on the whole IFO.

  3087   Fri Jun 18 15:07:26 2010 AlbertoUpdateLSCShort Cavity Length Adjustments


You should have been in my lecture yesterday!
Power in the cavity is not a good index (=error signal) to judge the optimal length.
You should look at the phases of the length signals. (i.e. demodulation phase which gives you the maximum amplitude for CARM, PRC, SRC, etc)

You must move the SRC and PRC lengths at the same time.
The resonance of f1 (mostly) depends on the PRC length, but that of f2 depends on both the PRC and SRC lengths. 

Right. Ultimately the phase gain inside the cavity is what we look at. Calculating that for the SBs inside PRC and SRC is actually the first thing I did.

But I kept getting very small angles. Too small, I thought. Maybe there was some problem in the way I calculated it.

Then I made a power analysis to check if the SBs were getting affected at all by that 0.7degree phase shift they're picking up in the arms.

I wanted to show the point where I am, before leaving. But, I keep working on it.

  3089   Fri Jun 18 22:12:29 2010 AlbertoUpdateIOOMode Profile after Mode Matching Telescope (Round 2)


  3170   Wed Jul 7 17:18:57 2010 AlbertoConfigurationElectronicsStochmon and LSC AM Stabilizer Decomissioned
Today I disconnected and removed the Stochmon box from the 1Y2 rack.
I also removed the amplifiers that were sitting on the PSL table, next to the RF AM PD, that were connected to the Stochmon. I pulled back the RG cable and the power cables that went from the PSL table to the 1Y1 and 1Y2 racks.
The power cable, all rolled up, is now sitting on the floor, inside the 1Y1 rack and one of its end is still connected to the power of the rack. We'd like to turn off the entire rack in order to safely remove it. But since the laser driver is there too, we should do it the first time we have to turn off the rack for some other reason.

I also removed two of the AM stabilizers from the 1Y2 rack. The other one, which is currently running th MC modulations, is still in the rack, and there it is going to remain together with its distribution box.

I stored both AM stabilizers and the Stochmon box inside the RF cabinet down the East arm.

  3227   Thu Jul 15 12:21:08 2010 AlbertoConfigurationLSCPRC and SRC length adjustements

Lately I've been trying to calculate the corrections to the recycling cavity lengths that would compensate for the phase that the sidebands will pick up from the arms in the upgraded interferometer.

To do that calculation , I tried two quite different ways, although equivalent in principle. They both use the optickle model of the 40m, but the calculation is made differently.

In the first way, I looked directly at the phases of the field: phase of [input field] / [reflected field], phase of [input field at PRM] / [transmitted field at SRM].

In the second way I looked at the demodulation phases of the LSC signals.

The first way is much simpler, especially from a computational point of view. It is the first I tried several weeks ago, but then I had abandoned because back then I thought it wasn't the correct way.

Anyway, both ways gave me the same results for the PRC length.
For the SRC length, the first way has given me a clear outcome. On the other hand, the second way has produced a less clear result.

According to these results, these would be the proposed adjustements to the cavity lengths:
dl(PRC) = -0.0266 m; dl(SRC) = 0.0612 m

I) 1st Way
a) case of arms ideal length (33.86 m)

sidebandPhaseRotation_73433447384.png sidebandPhaseRotation_73433447590.png

b) case arm length = 38.40 m


 sidebandPhaseRotation_73433447960.png zoom -> sidebandPhaseRotation_73433448864.png


sidebandPhaseRotation_73433445372.png zoom -> sidebandPhaseRotation_73433449354.png

II) 2nd Way
a) case of arms ideal length (33.86 m)


b) case arm length = 38.40 m


  3229   Thu Jul 15 16:16:51 2010 AlbertoConfigurationLSCPRC and SRC length adjustements


Tell me whether it is correct or not. Otherwise I won't be able to sleep tonight.


According to these results, these would be the proposed adjustements to the cavity lengths:
dl(PRC) = -0.0266 m; dl(SRC) = 0.612 m

 Sorry. I was in a rush to go to the LIGO "all hands" meetings when I posted that elog entry, that I forgot a zero in the SRC length value. The correct values are:

dl(PRC) = -0.0266 m; dl(SRC) = 0.0612 m

The cavity absolute lengths are then:

L(PRC) = 0.5/2/f1*c - 0.0266 = 6.7466 m

L(SRC) = c/f2 + 0.0612 = 5.4798 m

where c is the speed of light; f1 = 11065399 Hz; f2 = 55326995 Hz

  3239   Fri Jul 16 16:12:31 2010 AlbertoConfigurationComputersc1susvme1/2 rebooted

Today I noticed that the FE SYNC counters of c1susvme1/2 on the RFM network screen were stuck at 16384. I tried to reboot the machines to fix the problem but it didn't work.

The BS watchdog tripped off when I did that, because I had forgotten to disable it. I had to wait for a few minutes before it settled down again.

Later I also re-locked the mode cleaner. But before I could do it, Rana had to reduce the MC_L offset for me.

  3265   Thu Jul 22 07:19:56 2010 AlbertoUpdateTreasureMonsters, LNVR, and Phase noise


On Picasa

 "They (shellfish) shall be an abomination to you; you shall not eat their flesh, but you shall regard their carcasses as an abomination." (Leviticus 11:11)

  3269   Thu Jul 22 15:59:29 2010 AlbertoUpdatePSLPSL front end machine


It looks like something wrong happened around the PSL front end.  One of the PSL channel, C1:PSL-PMC_LOCALC, got crazy. 

We found it by the donkey alarm 10 minutes ago.

The attached picture is a screen shot of the PMC medm screen.

The value of C1:PSL-PMC_LOCALC ( middle left on the picture ) shows wired characters. It returns "nan" when we do ezcaread.

Joe went to the rack and powered off / on the crate, but it still remains the same. It might be an analog issue (?)

The problem seems to be a software one.

In any case, Kiwamu and I looked at the at the PMC crystal board and demod board, in search of a possible bad connection. We found a weak connection of the RG cable going into the PD input of the demod board. The cable was bent and almost broken.

I replaced the SMA connector of the cable with a new one that I soldered in situ. Then I made sure that the connection was good and didn't have any short due to the soldering.

  3270   Thu Jul 22 18:18:54 2010 AlbertoUpdatePSLProblem Solved



It looks like something wrong happened around the PSL front end.  One of the PSL channel, C1:PSL-PMC_LOCALC, got crazy. 

We found it by the donkey alarm 10 minutes ago.

The attached picture is a screen shot of the PMC medm screen.

The value of C1:PSL-PMC_LOCALC ( middle left on the picture ) shows wired characters. It returns "nan" when we do ezcaread.

Joe went to the rack and powered off / on the crate, but it still remains the same. It might be an analog issue (?)

The problem seems to be a software one.

In any case, Kiwamu and I looked at the at the PMC crystal board and demod board, in search of a possible bad connection. We found a weak connection of the RG cable going into the PD input of the demod board. The cable was bent and almost broken.

I replaced the SMA connector of the cable with a new one that I soldered in situ. Then I made sure that the connection was good and didn't have any short due to the soldering.

[Alberto, Koji]

By looking at the reference pictures of the rack in the wiki, it turned out that the Sorensen which provides the 10V to the 1Y1 rack was on halt (red light on). It had been like that since 1.30pm today. It might have probably got disabled by a short somewhere or inadvertently by someone working nearby it.

Turning it off and on reset it. The crazy LO calibrated amplitude on the PMC screen got fixed.

Then it was again possible to lock PMC and FSS.

We also had to burtrestore the PSL computer becasue of the several reboots done on it today.

  3285   Sat Jul 24 14:03:19 2010 AlbertoUpdateElectronicsFSS Oscilaltor Phase Noise Measurement

[Rana, Alberto]

Today we measured the phase noise of the oscillator used for the FSS.

The source is a Wenzel crystal at about 21.5MHz that Peter Kalmus built some time ago.

We basically used the same technique that Frank and Megan have been using lately to measure the Marconi's phase noise.

Today we just did a quick measurement but today next week we are going to repeat it more carefully.

Attached is a plot that shows the measurement calibrated for a UGF at about 60 Hz. The noise is compared to that specified by Wenzel for their crystal.

The noise is bigger than that of the MArconi alone locked to the Rubidium standard (see elog entry). We don't know the reason for sure yet.

We'll get back to this problem next week.

Attachment 1: FSScrystalPhaseNoiseHigherGain.pdf
  3287   Sun Jul 25 18:47:23 2010 AlbertoUpdateSVNOptickle 40mUpgrade model updated to include short cavity length corrections

I uploaded an updated optickle model of the upgrade to the SVN directory with the optickle models (here).

  3326   Thu Jul 29 22:08:32 2010 AlbertoUpdateSUSMore optics installed on the BS table

[Koji, Steve, Kiwamu, Alberto]

- This afternoon we installed a few new optics on the BS table: GR_PBS, GRY_SM2, GRY_SM1.

- We pulled up the cables so that we had more freedom to move one of the cable towers farther South.

- Then we re-leveled the table. PRM OSEMs were adjusted to be nominal insertions.

- Koji released the earthquake stops on BS but the readout of the OSEMs was apparently frozen on the MEDM screens.
Initially we thought it was a software problem. a nuclear reboot didn't solve it. We spent the following three hours investigating the cause.
Eventually it turned out that the earthquake stops on BS weren't actually fully released.

We opened the tank and accessed to BS. Releasing the earthquake stops in full solved the issue. The OSEMs readout went back to normal.

  3429   Tue Aug 17 09:06:08 2010 AlbertoUpdateelogelog was down

I just restarted the elog after I found it down a few minutes ago.

  3450   Fri Aug 20 16:41:43 2010 AlbertoUpdateElectronicsFrequency Generation Box Assembly Completed

I finished assembling the frequency generation unit for the upgrade. I tested it through to check that the power levels are as expected at the various connection (see attached png, showing in black the design power values, and in red the measured ones).

Because of some modifications made on the design along the construction, I have to recalculate the SNR along the lines.

I can now start to measure phase noise and distortion harmonics.

A document with a description of the design and the results of the characterization measurements will be available in the end.


Attachment 1: RFplan_6_measured_powers.png
Attachment 2: DSC_2409.JPG
Attachment 3: DSC_2413.JPG
Attachment 4: DSC_2414.JPG
Attachment 5: DSC_2415.JPG
Attachment 6: DSC_2417.JPG
Attachment 7: DSC_2419.JPG
  3499   Tue Aug 31 17:58:38 2010 AlbertoUpdateElectronicsFSS Frequency Generation Box - Phase Noise

A few weeks ago, on Jul 24, Rana and I measured the phase noise of the FSS frequency box (aka the 'Kalmus Box'). See elog entry 3286.

That time, for some reason, we measured a phase noise higher than we expected; higher than that of the Marconi.

I repeated the measurement today using the SR785 spectrum analyzer. Here is the result:


(The measurement of July 24 on the plot was not corrected for the loop gain. The UGF was at about 30 Hz)

To make sure that my measurement procedure was correct, I also measured the combined phase noise of two Marconis. I then confirmed the consistency of that with what already measured by other people in the past (i.e. Rana elog entry 823 in the ATF elog).

This time the noise seemed reasonable; closer to the Marconi's phase noise, as we would expect. I don't know why it was so bad on July 24.

The shoulder in the Marconi-to-Marconi measurement between 80Hz and 800Hz is probably due to the phase noise of the other Marconi, the one used as LO.

I'm going to repeat the measurement connecting the setup to the DAQ, and locking the Marconi to the Rubidium standard.

Ultimately, the goal is to measure the phase noise of the new Sideband Frequency Generation Box of the 40m Upgrade.

  3501   Wed Sep 1 07:52:27 2010 AlbertoConfigurationElectronicsPMC board unplugged, turned on Sorensen switches on 1Y1 rack

Today I put the FSS frequency box back into the 1Y1 rack.

To power it on, I turned on the 24V and 15V Sorensen switches in the same rack.

The PMC crystal board in the same rack should not be affected (it runs with 10V), but, to make sure it was not powered, I disconnected it from its crate. Since the board was disconnected from the EOM for the PSL table's upgrade, I wanted to avoid having the RF output floating.

We just have to remember to plug it back in, when we need it again.

  3504   Wed Sep 1 08:40:28 2010 AlbertoConfigurationElectronicsPMC board unplugged, turned on Sorensen switches on 1Y1 rack


Today I put the FSS frequency box back into the 1Y1 rack.

To power it on, I turned on the 24V and 15V Sorensen switches in the same rack.

The PMC crystal board in the same rack should not be affected (it runs with 10V), but, to make sure it was not powered, I disconnected it from its crate. Since the board was disconnected from the EOM for the PSL table's upgrade, I wanted to avoid having the RF output floating.

We just have to remember to plug it back in, when we need it again.

 I just turned on the other Sorensen's too in 1Y1.

  3506   Wed Sep 1 11:34:39 2010 AlbertoUpdateElectronicsFSS Box Phase Noise from DAQ

I measured the phase noise of the LO output of the FSS box from the DAQ. I'm attaching the results.

As we expected, the measurement is limited by the internal phase noise of the Marconi.


The measurement was done as shown in this diagram.


  3509   Wed Sep 1 16:29:28 2010 AlbertoUpdateElectronicsFSS Box Phase Noise from DAQ - Measurement setup modified


The differences between this setup and the one used previously is the lack of the 50 Ohm terminator in the mixer output and

that the SR560 readout with the G=100 should come before the first SR560 via T, so as not to be spoiled by the high noise of the G=1 SR560.

I removed the 50 Ohm in-line terminator when I did the measurement with the SR785. The for some reason I was getting more noise, so I removed it.

Now I put it back in and I did the measurement with the DAQ. I also moved the SR560 that amplifies the signal for the DAQ, Tee'ing it with the input of the in-loop SR560.

Now the setup looks like this:


And the phase noise that I measure is this:


Comparing it with the phase noise measured with the previous setup (see entry 3506), you can see that the noise effectively is reduced by about a factor of 2 above 10 Hz.


  3520   Fri Sep 3 11:03:41 2010 AlbertoFrogsElectronicsCable cutting tools

I found this very interesting German maker of cool cable cutting tools. It's called Jokari.

We should keep it as a reference for the future if we want to buy something like that, ie RF coax cable cutting knives.


  3526   Mon Sep 6 10:08:10 2010 AlbertoConfigurationComputersNetgear Network Switch fan broken.

The Netgear Network Switch in the top shelf of Nodus' rack has a broken fan. It is the one interfaced to the Martian network.

The fan must have broken and it is has now started to produce a loud noise. It's like a truck was parked in the room with the engine running.

Also the other network switch, just below the Netgear, has one of its two fans broken. It is the one interfaced with the General Computer Side.

I tried to knock them to make the noise stop, but nothing happened.

We should consider trying to fix them. Although that would mean disconnecting all the computers.

  3529   Mon Sep 6 22:09:11 2010 AlbertoUpdateElectronicsRF Frequency Generation Box heat sink installed and tested

Last week I noticed that the high power amplifiers in the Frequency Generation Box became hot after 2 hours of continuous operation with the lid of the box closed. When I measured their temperature it was 57C, and it was still slowly increasing (~< 1K/hr).
According to the data sheet, their maximum recommended temperature is 65C. Above that their performances are not guaranteed anymore.

These amplifiers aren't properly dissipating the heat they produce since they sit on a plastic surface (Teflon), and also because their wing heat dissipator can't do much when the box is closed. I had to come up with some way to take out their heat.
The solution that I used for the voltage regulators (installing them on the back panel, guaranteeing thermal conduction but electrical isolation at the same time) wouldn't be applicable to the amplifiers.

I discussed the problem with Steve and Koji and we thought of building a heat sink that would put the amplifier in direct contact with the metal walls of the box.
After that, on Friday I've got Mike of the machine shop next door to make me this kind of L-shaped copper heat sink:


On Saturday, I completely removed the wing heat dissipator, and I only installed the copper heat sink on top of the amplifier. I used thermal paste at the interface.

I turned on the power, left the lid open and monitored the temperature again. After 2 hours the temperature of the amplifier had stabilized at 47C.

Today I added the wing dissipator too, and monitored again the temperature with the lid open. then, after a few hours, I closed the the box.
I tracked the temperature of the amplifier using the temperature sensors that I installed in the box and which I have attached to the heat sink.
I connected the box temperature output to C1:IOO-MC_DRUM1. With the calibration of the channel (32250 Counts/Volt), and Caryn's calibration of the temperature sensor (~110F/Volt - see LIGO DOC # T0900287-00-R), the trend that I measured was this:


The heat sink is avoiding the amplifier to overheat. The temperature is now compatible with that of the other component in the box (i.e., crystal oscilaltors, frequency multiplier).
Even with the lid closed the temperature is not too high.

Two things remain untested yet:
1) effect of adding a MICA interface sheet between the heat sink and the wall of the chassis. (necessary for gorund isolation)
2) effect of having all 3 amplifiers on at the same time

I am considering opening air circulation "gills" on the side and bottom of the chassis.

Also we might leave the box open and who ever wants can re- engineer the heat sink.

For posterity.
- Ideally we would like that the heat sink had the largest section area. A brick of metal on top the amplifier would be more effective. Although it would have added several pounds to the weight of the box.
- We need these amplifiers in order to have the capability to change the modulation depth up to 0.2, at least. The Mini-Circuit ZHL-2X-S are the only one available off-the-shelf, with a sufficiently low noise figure, and sufficiently high output power.

  3530   Tue Sep 7 08:56:00 2010 AlbertoUpdateElectronicsFrequency Generation Box Assembly - Phase Noise Measurements

Here are the results of my phase noise measurements on the 7 outputs of the Frequency Generation Box. (BIN=95L applied by DTT). See attached pdf for a higher definition picture.


The plot shows that the phase noise of the 11 MHz outputs (Source, EOM modulation signal, Demodulation signal) is as low as that of the Marconi. The Marconi is limiting my measurement's resolution.

The mode cleaner signal's oscillator (29.5 MHz output, blue trace) is higher than the 11MHz above 1KHz.

The 55MHz signals have all the same phase noise (traces overlapped), and that is higher than the 11 MHz ones from about 100Hz up. i don't know what's going on.

I need to use the spare 11MHz Wenzel crsytal to have a better reference source for the measurement.

Attachment 2: 2010-09-03_FreqBoxPhaseNoise_AllOutputsComparison_smooth.pdf
  3532   Tue Sep 7 13:31:49 2010 AlbertoUpdateElectronicsRF System - Frequency Distribution Box - Priority Plan

We need a distribution unit in the LSC rack to: 1) collect the demod signals coming from the Frequency Generation Box 2) adjust the power level 3) generate 2nd harmonics (for POP) 4) distribute the demod signals to the single demodulation boards.

The base line plan is the following:


The box can be build up gradually, but the priority goes to these parts:


I need help for this work. I know exactly how to do it, I just don't have the time to do it all by myself.

 Besides the Distribution Box, the demodulation part of the upgrade would still require two steps:

1) upgrade the Band Pass Filters of the demodulation boards (I have all the parts)

2) cabling from the distribution box to the demod board (one-afternoon kind of job)

  3535   Tue Sep 7 15:57:07 2010 AlbertoConfigurationComputersNodus connection not working. Fixed

[Joe, Alberto]

The Nodus connection to the Martian network stopped working after someone switched cables on the Netgear router. Apparently that router doesn't like to have the 23 and 24 ports connected at the same time.

Joe fixed the connection just freeing either the 23 or the 24 port.

  3537   Tue Sep 7 22:21:17 2010 AlbertoConfigurationComputerselog restarted
  3552   Thu Sep 9 12:02:03 2010 AlbertoUpdateElectronicsFrequency Generation Box - Amplitude Noise Measurements

I measured the amplitude noise of the source outputs and the EOM outputs of the Frequency Generation box.

the setup I used is shown in this diagram:


(NB It's important that the cables from the splitter to the RF and LO inputs of the mixers are the same length).

The results of the measurements are shown in the following plot:



1) both Crystals (29.5MHz and 11MHz) have the same noise

2) the 55MHz source's noise is bigger than the 11 MHz (~2x): the frequency multiplication and amplification that happen before it, add extra noise

3) the noise at EOM outputs is ~2x bigger than that of the relative sources


When I have the chance, I'll plot the results of my calculations of expected noise and compare them with the measurements.

  3555   Thu Sep 9 18:53:56 2010 AlbertoConfigurationElectronicsBusby Box, Rai's Box, SR554 in the RF cabinet

I stored the Busby Box, the Rai's Box and the SR554 preamp in the RF cabinet down the Y arm.

  3565   Mon Sep 13 11:40:50 2010 AlbertoUpdateElectronicsFrequency Box Documentation Added to the SVN

I uploaded all the material about the RF frequency Generation Box into the SVN under the path:


I structured the directory as shown in this tree:


I'm quickly describing in a section of the Rf system upgrade document with LIGO # T1000461.

  3572   Tue Sep 14 18:07:41 2010 AlbertoUpdateElectronicsFrequency Box Documentation Added to the SVN

I completed a LIGO document describing design, construction and characterization of the RF System for the 40m upgrade.

It is available on the SVN under https://nodus.ligo.caltech.edu:30889/svn/trunk/docs/upgrade08/RFsystem/RFsystemDocument/

It can also be found on the 40m wiki (http://lhocds.ligo-wa.caltech.edu:8000/40m/Upgrade_09/RF_System#preview), and DCC under the number T1000461.

  3764   Fri Oct 22 18:22:27 2010 AlbertoUpdateElectronicsEpic Takeover


As the suspension work winds down (we'll be completely done once the ETMs arrive, are suspended, and then are placed in the chambers), I'm going to start working on the RF system. 

Step 1: Figure out what Alberto has been up to the last few months.

Step 2: Figure out what still needs doing.

Step 3: Complete all the items listed out in step 2.

Step 4: Make sure it all works.

Right now I'm just starting steps 1 & 2.  I've made myself a handy-dandy wiki checklist: RF Checklist.  Hopefully all of the bits and pieces that need doing will be put here, and then I can start checking them off. Suggestions and additions to the list are welcome.

 There's also a page dedicated to the progress in the PD upgrade process:


There you can find a pdf document with my notes on that.

ELOG V3.1.3-