40m QIL Cryo_Lab CTN SUS_Lab TCS_Lab OMC_Lab CRIME_Lab FEA ENG_Labs OptContFac Mariner WBEEShop
  40m Log, Page 339 of 344  Not logged in ELOG logo
New entries since:Wed Dec 31 16:00:00 1969
ID Date Author Type Category Subjectdown
  1349   Tue Mar 3 11:39:50 2009 OsamuDAQComputers2 PCs in Martian

 Kiwamu and I brought 2 SUPER MICRO PCs from Willson house into 40m.

Both PCs are hooked up into Martian network. One is named as bscteststand for BSC which has been set up by Cds people and another one is named kami1 for temporary use for CLIO which is a bland new, no operating installed PC. This bland new PC will be returned Cds or 40m once another new PC which we will order within several days arrives.

IP address for each machine is 131.215.113.83 and 131.215.113.84 respectively.

We have installed CentOS5.2 into the new PC.

  7385   Fri Sep 14 01:18:51 2012 ranaUpdateCOC2 Layout Changes

After looking at the in-vacuum layout I think we should make two changes during the next vent:

1) Reduce the number of mirrors between the FI and its camera. We install a large silvered mirror in the vacuum flange which holds the Faraday cam (in the inside of the viewport). That points directly at the input to the Faraday. We get to remove all of the steering mirror junk on the IO stack.

2) Take the Faraday output (IFO REFL) out onto the little table holding the BS and PRM Oplevs. We then relocate all 4 of the REFL RFPDs as well as the REFL OSA and the REFL camera onto this table. This will reduce the path length from the FI REFL port to the diodes and reduce the beam clutter on the AS table.

  7398   Mon Sep 17 18:04:01 2012 SteveUpdateCOC2 Layout Changes

Quote:

After looking at the in-vacuum layout I think we should make two changes during the next vent:

1) Reduce the number of mirrors between the FI and its camera. We install a large silvered mirror in the vacuum flange which holds the Faraday cam (in the inside of the viewport). That points directly at the input to the Faraday. We get to remove all of the steering mirror junk on the IO stack.

2) Take the Faraday output (IFO REFL) out onto the little table holding the BS and PRM Oplevs. We then relocate all 4 of the REFL RFPDs as well as the REFL OSA and the REFL camera onto this table. This will reduce the path length from the FI REFL port to the diodes and reduce the beam clutter on the AS table.

 There is just so much room on this table.

  3960   Sat Nov 20 02:25:30 2010 yutaUpdateCDS2 LOCKINs for suspension models

(Suresh, Koji, Yuta)

Background:
  No AWG. No tdssine.
  ...... LOCKIN!

What we did:
  1. Added 2 LOCKINs for c1sus model.
   Currently, we cannot put cdsOsc in a subsystem.
   So, we put LOCKINs just for BS for a test.
   The signal going into LOCKIN can be anything. For now, we just put a matrix for selecting the signal and connected the input signals to the ground.

   See the following page for the current simlink diagram of c1sus model.
     https://nodus.ligo.caltech.edu:30889/FE/c1sus_slwebview_files/index.html

  2. Edited MEDM screens. (see Attachment #1)

Result:
  We succeeded in putting 2 LOCKINs and exciting BS.
  During the update, we might destroyed things. For example, fb status is red in GDS screens.
  We will wait for Joe to fix them.

Plan:
 - Fix cdsOsc and put LOCKINs for all the other optics
 - Come up with a good idea what to do with this LOCKIN. Remember, LOCKIN is not just a replacement for excitation points.
 - Enhance an oscillator so that we can put a random noise

  3314   Wed Jul 28 18:24:57 2010 JenneUpdateGreen Locking2 Green Periscopes have mirrors, aligned

[Koji, Jenne, Kiwamu]

This is to describe the work that went on in the Cleanroom today.  Kiwamu's entry will detail the tidbits that happened in the chamber.

We engraved the periscope mounts with the mirror info for the mirrors which were placed in the periscope.  We also engraved the barrels of the optics with their info, for posterity.  Koji carefully put the mirrors into the periscopes.  Since we have wedged optics, the goal was to have the front HR surface of the mirror parallel to the plane of the mount, and leave a bit of space behind one side of the optic (if we just pushed the optic fully in, the HR surface wouldn't be flat, and would send the beam off to the left or right somewhere).  Once the mirrors were mounted in the periscopes, we checked the vertical levelness of the outcoming beam.  For the first periscope (the one which has been installed on the BS table), the beam was deflected upward (2.5)/32 inches over 55inches.  This corresponds to a 1.4mRad vertical deflection.  The second periscope (which will eventually be installed on the OMC table) had a deflection of 1/32 over 55inches, or 0.6mRad.  We did not check the side-to-side deflection for either of the periscopes.

We also engraved one more DLC mount with mirror info, and put a mirror into the mount.  This is one of the optics that was placed onto the BS table today, which Kiwamu will describe.

We removed TT#3 from the BS chamber so that it could have rubber vertical dampers installed, and be characterized.  For future reference, the #'s of the Tip Tilts refers to the serial number of the suspension block piece, which forms the top horizontal bar of the frame. 

  329   Thu Feb 21 19:55:46 2008 ranaUpdateElectronics2 BNC Cables, 1 Tee
I'm not sure where Ward and Miller went to Analyzer school, but it was probably uncredited.
I turned it on and used 2 BNC cables and a T to hook up the source to the 2 inputs and measured the always-exciting TF of cable.

Score:  HP Analyzer  1
        Rob & John   0


I have left the analyzer on in this complicated configuration. RTFM boys.


Quote:
The HP 4195A network analyser may be broken, measurements below 150MHz are not reliable. Above 150MHz everything looks normal. This may be caused by a problem with its output (the one you'd use as an excitation) which is varying in amplitude in a strange way.

Analyzer
  7626   Thu Oct 25 21:02:34 2012 DenUpdatePEM1x7 dc power

 We now stop using bench DC power supplies for microphone preamp and PEM AA board. DC power is wired from 1x5 rack suppliers. I've installed a beam to mount fuse houses in the 1x7 as we did not have one.

DSC_4779.JPG

  6076   Tue Dec 6 02:57:44 2011 kiwamuUpdateGreen Locking1st trial of handing off

I succeeded in handing off the servo from that of the ALS to IR-PDH.

However the handing off was done by the coarse sensor instead of the fine sensor because I somehow kept failing to hand off the sensor from the coarse to the fine one.

The resultant rms in the IR-PDH signal was about a few 100 pm, which was fully dominated by the ADC noise of the coarse sensor.

 

Tomorrow I will try :

  (1) Using the fine sensor.

  (2) Noise budgeting with the fine sensor.

 

Here is the actual time series of the handing off.

YarmALS.png

(Upper left ):  intracavity power.
            As the offset was adjusted the power increased to ~ 0.8. Eventually the power becomes close to the nominal value of 1 after the handing off.
(Lower left) : Frequency of the beat-note.
            After the engagement of the ALS servo, I was scanning the arm length and searching for the resonance by changing the error point of this signal.
(Lower right) : IR-PDH signal.
  8507   Mon Apr 29 18:53:03 2013 JenneUpdateElectronics1pps timing fiber to OMC rack may be bent

While helping Riju out this afternoon, I noticed that the timing fiber that goes to the OMC rack (near the AP table) was bent, and is now possibly kinked, after the installation of the fiber splitter box. 

The fiber was hanging from the back of the rack, and had been strain relieved.  However, the path that the fiber was taking is now occupied by the fiber splitter for the RF PD diagnostic stuff.  So, the installation of the fiber splitter box put the old timing fiber under tension, causing the fiber to be bent at a little over 90 degrees, since it was pulled tightly against the corner of the splitter's front panel. 

I adjusted the strain relief so that the fiber is loose again, although there is still a bit of a kink that you can feel.  Things (for now) seem to be working, since the 1pps light on the front of the box at the top of the OMC rack is still blinking happily, indicating that the 1pps is still getting there. 

We are not using most of the stuff in that rack right now, but if we have problems in the future, we should check out the fiber to make sure it is still good.

  593   Sun Jun 29 18:58:43 2008 ranaSummaryComputers1e20 is too big for AWG and/or IOVME
While testing out my matlab/awgstream based McWFS diagnostic script I accidentally put a
huge excitation into
C1:IOO-WFS1_PIT_EXC
. This went to 1e20 and then caused
some SUS to trip and c1susvme2 to go red. I tried booting it via the normal procedures
but it wouldn't come back, even after 2 crate power cycles. I also tried booting AWG
via the vmeBusReset, but that didn't do it. Then I booted c1iovme from the telnet prompt
and then I could restart c1susvme2 successfully.

The reason the excitation was so large is that the following filter command is unstable:
[b,a] = butter(4,[0.02 30]/1024);

The low pass part is OK, but it looks like making such a low frequency digital filter
is not. Que lastima. On the bright side, the code now has some excitation amplitude
checking.
  2173   Tue Nov 3 12:47:01 2009 KojiConfigurationCDS1Y9 Rack configuration update

For the CDS upgrade preparation I put and moved those stuff at the rack 1Y9:

Placed 1Y9-12 ADC to DB44/37 Adapter LIGO D080397

Placed 1Y9-14 DAC to IDC Adapter LIGO D080303

Moved the ethernet switch from 1Y9-16 to 1Y9-24

Wiki has also been updated.

  948   Mon Sep 15 14:00:52 2008 josephbConfigurationComputers1Y9 Hub and C1asc
The 1Y9 switch is now using a labeled Cat6 cable in cable trays to connect to the main switch in the offices. In addition, the c1asc cable which had been coming out the door was fixed last Friday, and is now labeled, going out the top and connects to the hub in 1Y2.

Note: Do not connect new ethernet cable from switch to switch without disconnecting the old cable to the rest of the network - this tends to make the Ethernet network unhappy with white flashing alarms.
  14848   Fri Aug 16 16:40:04 2019 gautamUpdateCDS1Y3 work

[chub, gautam]

Installation: The following equipment were installed in 1Y3, see Attachment #1:

  1. Supermicro server, which is the new c1iscaux machine, with IP Address 192.168.113.83.
  2. 6U Acromag chassis which contains all the ADCs, DACs and BIO units.
  3. 2 Sorensen DC power supplies to provide +24 V DC and +15 V DC to the Acromags.
  4. Fusable DIN rail power blocks were installed on the North side of the 1Y3 rack - I placed 2 banks of 5 connectors each for +15 V DC and +24 V DC.

Removal: The following equipment was removed from 1Y3:

  1. VME crates that were the old c1iscaux and c1iscaux2 machines.
  2. Spare VME crate that used to be c1susaux, which Chub and I brought over to 1Y3 in an attempt to revive the broken c1iscaux2.
  3. Approximately 30 twisted ribbon cables that were going to the cross connects. For now, we have not done a full cleanup and they are just piled along the east arm (see Attachment #2), beware if you are walking there!

Software: 

  1. I connected the c1iscaux machine to the martian network.
  2. Then I edited the relevant files on chiara to free up the IP addresses previously used by c1iscaux (192.168.113.81) and c1iscaux2 (192.168.113.82), and re-assigned the IP address used for c1iscaux to be 192.168.113.83.
  3. I also changed the hostname of the c1iscaux machine (it was temporarily called c1iscaux3 to allow bench testing).
  4. I moved the old /cvs/cds/caltech/target/c1iscaux and /cvs/cds/caltech/target/c1iscaux2 directories to /cvs/cds/caltech/target/preAcromag_oldVME/c1iscaux and /cvs/cds/caltech/target/preAcromag_oldVME/c1iscaux2 respectively.
  5. I moved the temporarily named /cvs/cds/caltech/target/c1iscaux3 directory, from which I was running all the tests, to /cvs/cds/caltech/target/c1iscaux.
  6. I edited all references to c1iscaux3 in the systemd files so that we can run the approriate systemd services.

Next steps: 

  1. We did not get around to running the DB37 cables between the Acromag chassis and the 1Y2 Eurocrates today - this operation itself took the whole day as we also needed to lay out some support struts etc on the rack to support the Sorensens and the Acromag chassis.
  2. Once the Acromags are connected to the Eurocrates, we have to run in-situ tests to make sure the appropriate functionality has been restored.
  3. We must have bumped something in the c1lsc expansion chassis - the CDS FE overview screen is reporting some errors (see Attachment #3). I will fix this.
  4. General tidiness, strain-relief etc.
Quote:

I judge that we are good to go ahead with an install tomorrow.

  4609   Tue May 3 10:59:31 2011 josephbUpdateCDS1Y2 binary output adapter board now powered

I temporarily turned off the power to the 1Y2 rack this morning while wiring in the binary output adapter board power (+/- 15V) into the cross connects.

The board is now powered and we can proceed to testing if can actually control the LSC whitening filters.

  4717   Sat May 14 14:50:21 2011 KojiUpdateLSC1Y2 5V Blown Fuse found -> Fixed

Incidentally, a blown fuse on 5V line at 1Y2 rack was found during the intallation of Sorensens.
The fuse (5A 125V) has been replaced and fixed.

When I plugged the fuse in, I heard some sound like relays were switched. Are there any relays in the LSC rack?

It was a 9th fuse from the top as seen in the picture.

  16453   Mon Nov 8 10:13:52 2021 PacoSummaryBHD1Y1 rack work; Sorensens removed

[Paco, Chub]

Removed all sorensen power supplies from this rack except for 12 VDC one; that one got pushed to the top of the rack and is still powering the cameras.

  16454   Mon Nov 8 13:13:00 2021 KojiSummaryBHD1Y1 rack work; Sorensens removed

Updated the rack layout. Now there is an issue.
We were supposed to have 1U space at the top, but it was occupied by the 12V.
We need to either lower the c1sus2 and IO chassis 1U or move the Sorensen at the bottom.

  16455   Mon Nov 8 15:29:05 2021 PacoSummaryBHD1Y1 rack work; New power for cameras

[Paco, Anchal]

In reference to Koji's concern (see previous elog), we have completely removed sorensen power supplies from 1Y1. We added a 12 Volts / 2 Amps AC-to-DC power supply for the cameras and verified it works. We stripped off all unused hardware from shutters and other power lines in the strips, and saved the relays and fuses.

We then mounted SR2, PR3, PR2 Sat Amps, 1Y1 Sat amp adapter, and C1SUS2 AA (2) and AI (3) boards. We made all connections we could make with the cables from the test stand, as well as power connections to an 18 VDC power strip.

  16540   Mon Jan 3 16:46:41 2022 PacoUpdateBHD1Y1 rack work for SR2, PR2, PR3

[Paco, Anchal]

Continued working on 1Y1 rack. Populated the 6 coil drivers, made all connections between sat amp, AA chassis, DAC, and ADC adapters for SR2, PR2, and PR3 suspensions. Powered all boxes and labeled them and cables where needed. Near the end, we had to increase the current limit on the positive rail sorensen (+18 V) from ~ 7 to > 8.0 Amps to feed all the instruments. We also increased the negative (-18 V) current limit proportionally.

We think we are ready for all the new SOS on this side electronics-wise.


Photos: https://photos.app.goo.gl/GviuqLQviSPo1M3G6

  16444   Tue Nov 2 16:42:00 2021 PacoSummaryBHD1Y1 rack work

[paco, ian]

After the new 1Y0 rack was placed near the 1Y1 rack by Chub and Anchal, today we worked on the 1Y1 rack. We removed some rails from spaces ~ 25 - 30. We then drilled a pair of ~ 10-32 thru-holes on some L-shaped bars to help support the c1sus2 machine weight. The hole spacing was set to 60 cm; this number is not a constant across all racks. Then, we mounted c1sus2. While doing this, Paco's knee clicked some of the video MUX box buttons (29 and 8 at least). We then opened the rack's side door to investigate the DC power strips on it before removing stuff. We did power off the DC33 supplies on there. No connections were made to allow us to keep building this rack.

When coming back to the control room, we noticed 3/4 video feed (analog) for the Test masses had gone down... why?


Next steps:

  • Remove sorensen (x5) power supplies from top of 1Y1 .. what are they actually powering???
  • Make more bars to support heavy IO exp and acromag chassis.
  • Make all connections (neat).

Update Tue Nov 2 18:52:39 2021

  • After turning Sorensens back up, the ETM/ITM video feed was restored. I will need to hunt the power lines carefully before removing these.
  16448   Thu Nov 4 15:03:43 2021 KojiSummaryBHD1Y1 rack work

I have visited the binder file for the 40m wiring file in the control room.
The 12V power supply on 1Y1 is for the CCD cameras. So we still want to keep the 12V 0.8A power and the side connections for these. It is not necessary to be Sorensen. Can we replace it with an AC-DC adapter with +12V/1A for example? BTW, the video matrix and quads are AC-powered.

The mysterious thick cables and cross-connects (green wires) on the side panel (labeled AP1/AP2/SP/IMCREFL) are for "EO shutters". It was meant for the protection of the PDs from bright beams.
I don't think they have been used. And we don't need them.

  16440   Fri Oct 29 14:39:37 2021 AnchalSummaryBHD1Y1 cleared. IY3 ready for C1SUS2 I/O and FE.

[Anchal, Paco]

We cleared 1Y1 rack today removing the following items. This stuff is sitting on the floor about 2 meters east of 1Y3 (see attachment 1):

  • A VME crate: We disconnected it's power cords from the side bus.
  • A NI PXIe-1071 crate with some SMA multiplexer units on it.

We also moved the power relay ethernet strip from the middle of the rack to the bottom of the rack clearing the space marked clear in Koji's schematics. See attachment 2.

There was nothing to clear in 1Y3. It is ready for installing c1sus2 I/O chassis and FE once the testing is complete.

We also removed some orphaned hanging SMA RG-405 cables between 1Y3 and 1Y1.

  16539   Mon Jan 3 12:05:08 2022 PacoUpdateBHD1Y0 rack work for LO2 AS1 AS4

[Paco, Anchal]

Continue working on 1Y0. Added coil drivers for LO2, AS1, AS4. Anchal made additional labels for cables and boxes. We lined up all cables, connected the different units and powered them without major events.

  16506   Tue Dec 14 19:29:42 2021 PacoUpdateBHD1Y0 rack work for LO1

[Paco]

Two coil drivers have been installed on 1Y0 (slots 6, 7, for LO1 SOS). All connections have been made from the DAC, AI board, DAC adapter, Coil driver, Sat Amp box. Then no SOS load installed, all return connections have been made from Sat Amp box, ADC adapter, AA board, and to ADC. We will continue this work tomorrow, and try to test everything before closing the loop for LO1 suspension.

  16463   Tue Nov 9 19:02:47 2021 AnchalSummaryBHD1Y0 Populated and 1Y1,1Y0 powered

[Anchal, Paco]

Today we populated 4 Sat Amp boxes for LO1, Lo2, AS1, and AS4, 2 BO boxes for C1SU2, and 1 Sat Amp Adaptor box, at 1Y0 according the latest rack plan. We also added 2 Sorenson power supplies in 1Y0 at the top slots to power +/- 18V DC strips on both 1Y1 and 1Y0. All wiring has been done for these power connections.

  5993   Thu Nov 24 01:28:09 2011 kiwamuUpdateGeneral1X8 sorensen came back

Quote from #5963

 - One of the Sorensens in 1X8 rack is showing the current limit sign. This is exactly the same situation as we saw before (#5592).

       Currently it's off. It needs an investigation to find who is drawing such a large amount of current.

 The 1X8 Sorensen's issue has been solved somehow.

 To investigate what is going on with the Sorensen in the 1X8 rack, I turned on the Sorensen.
Then this time it didn't show the current limit sign, the voltage went up to 15.0, where it is supposed to be.
Surprisingly this is exactly the same recovery process as we saw before (#5592).
  17144   Mon Sep 19 20:21:06 2022 TegaUpdateComputers1X7 and 1X6 work

[Tega, Paco, JC]


We moved the GPS network time server and the Frequency distribution amplifier from 1X7 to 1X6 and the PEM AA, ADC adapter and Martian network switch from 1X6 to 1X7. Also mounted the dolphin IX switch at the rear of 1X7 together with the DAQ and martian switches. This cleared up enough space to mount all the front-ends, however, we found that the mounting brackets for the frontends do not fit in the 1X7 rack, so I have decided to mount them on the upper part of the test stand for now while we come up with a fix for this problem. Attachments 1 to 3 show the current state of racks 1X6, 1X7 and the teststand.

 

Attachment 1: Front of racks 1X6 and 1X7

Attachment 2: Rear of rack 1X7

Attachment 3: Front of teststand rack


Plan for the remainder of the week

Tuesday

  • Setup the 6 new front-ends to boot off the FB1 clone.
  • Test PCIe I/O cables by connecting them btw the front-ends and teststand I/O chassis one at a time to ensure they work
  • Then lay the fiber cables to the various I/O chassis.

Wednesday

  • Migrate the current models on the 6 front-ends to the new system.
  • Replace RFM IPC parts with dolphin IPC parts in c1rfm model running c1sus machine
  • Replace the RFM parts in c1iscex and c1iscey models
  • Drop c1daf and c1oaf models from c1isc machine, since the front-ends have only have 6 cores
  • Build and install models

Thursday [CAN I GET THE IFO ON THIS DAY PLEASE?]

  • Complete any remaining model work
  • Connect all I/O chassis to their respective (new) front-end and see if we can start the models (Need to think of a safe way to do this. Should we disconnect coil drivers b4 starting the models?)

Friday

  • Tie-up any loose ends
  14592   Fri May 3 12:48:40 2019 gautamUpdateSUS1X4/1X5 cable admin

Chub and I crossed off some of these items today morning. The last bullet was addressed by Jon yesterday. I added a couple of new bullets.

The new power connectors will arrive next week, at which point we will install them. Note that there is no 24V Sorensen available, only 20V.

I am running a test on the 2W Mephisto for which I wanted the diagnostics connector plugged in again and Acromag channels to record them. So we set up the highly non-ideal but temporary set up shown in Attachment #1. This will be cleaned up by Monday evening latest.

update 1630 Monday 5/6: the sketchy PSL acromag setup has been disassembled.

Quote:
 
  • Take photos of the new setup, cabling.
  • Remove the old c1susaux crate from the rack to free up space, possibly put the PSL monitoring acromag chassis there.
  • Test that the OSEM PD whitening switching is working for all 8 vertex optics.(verified as of 5/3/19 5pm)
  • New 15V and 24V power cables with standard LIGO connectors need to be run from the Sorensenn supplies in 1X5. The chassis is currently powered by bench supplies sitting on a cart behind the rack.
  • All 24 new DB-37 signal cables need to be labeled.
  • New 96-pin DIN connectors need to be put on two ribbon cables (1Y5_80 B, 1Y5_81) in the 1X4 rack. We had to break these connectors to remove them from the back of the eurcrates.
  • General cleanup of any cables, etc. left around the rack. We cleaned up most things this evening.
  • Rename the host computer c1susaux2 --> c1susaux, and update the DNS lookup tables on chiara.
  10230   Thu Jul 17 17:08:58 2014 HarryUpdateGeneral1X2 Rack Changes

 Purpose

 

Steve and I moved some things around in the 1X2 rack in order to make room (roughly 6") for the electronics box that will contain rf frequency counters, ADC, and Raspberry Pi's for use in the Frequency Offset Locking apparatus

Picture

1X2Changes.png

Occurrences

First, we killed power by removing the fuse that the boxes we were moving were running through.

Then, we moved the boxes. I dropped//lost a washer. It didn't seem to cause any problems, so no further attempts to locate it were made.

The fuse was reinstalled, and everything was reconnected.

Moving Forward

We are now working on putting together the electronics box, which will contain ADC, and raspberry pi's. The frequency counters will be mounted on the front of the box.

Once complete, it will be installed for use in FOL.

  10233   Thu Jul 17 21:01:28 2014 ManasaUpdateGeneral1X2 Rack Changes

Quote:

 Purpose

 

Steve and I moved some things around in the 1X2 rack in order to make room (roughly 6") for the electronics box that will contain rf frequency counters, ADC, and Raspberry Pi's for use in the Frequency Offset Locking apparatus

Picture

1X2Changes.png

Occurrences

First, we killed power by removing the fuse that the boxes we were moving were running through.

Then, we moved the boxes. I dropped//lost a washer. It didn't seem to cause any problems, so no further attempts to locate it were made.

The fuse was reinstalled, and everything was reconnected.

Moving Forward

We are now working on putting together the electronics box, which will contain ADC, and raspberry pi's. The frequency counters will be mounted on the front of the box.

Once complete, it will be installed for use in FOL.

Additional comments:

This was done based on the earlier proposed setup plan for the frequency counters that will be used to measure the beat note frequencies [Akhil's elog]

I switched off the power supply to the green PDs so that we don't cause any damage while moving the amplifier panel for the beat signals and beatbox. 

  10234   Thu Jul 17 22:08:14 2014 KojiUpdateGeneral1X2 Rack Changes

It sounds like the work was done carefully. Even so, Jenne or Manasa have to run the ALS (X and Y) to check if they are still functional.

  7433   Mon Sep 24 17:03:39 2012 JenneUpdatePEM1X1 rack power

Quote:

I've installed Guralp readout box back and it turned out that it does not work with voltage provided from the rack (+13.76 0 -14.94).  +/-12 voltage regulators inside the box convert it to -0.9 0 -12. I've connected the box to +/-15 DC voltage supply to measure seismic motion at the ETMY table. Readout box works fine with +/- 15.

 I'm not sure what the problem is here.  Den and I looked at it for a few minutes, before I went back to helping with putting doors on.  The Sorensons are not supplying the rack power for 1X1.  There are some flat cables which go from the fuses on the side of the rack up to the cable tray, and go elsewhere.  Den is going to continue looking into this, but I think it's a moderately high priority, since lots of things should be getting served by that same power.

  15669   Tue Nov 10 12:41:23 2020 gautamUpdateIOO1W > IMC

Looking back through the elog, 1mtorr is the pressure at which it is deemed safe to send the full power beam into the IMC. After replacing the HR mirror in the MCREFL path with a 10% reflective BS, I just cranked the power back up. IMC is locked. With the increased exposure on the MC2T camera, lots of new scattered light has become visible.

  2804   Sat Apr 17 18:30:12 2010 ZachUpdateGreen Locking1W NPRO output profile

NOTE: This measurement is wrong and only remains for documentation purposes.

Koji asked me to take a profile of the output of the 1W NPRO that will be used for green locking. I used the razor-scan method, plotting the voltage output of a PD vs the position of the razor across the beam, both vertically and horizontally. This was done at 6 points along the beam path out of the laser box.

I determined the beam spot size at each point by doing a least-squares fit on the plots above in Matlab (using w as one of the fitting parameters) to the cumulative distribution functions (error functions) they should approximate.

I then did another least-squares fit, fitting the above "measured" beam profiles to the gaussian form for w vs z. Below is a summary.

It seems reasonable, though I know that M2 < 1 is fishy, as it implies less divergence than ideal for that waist size. Also, like Koji feared, the waist is inside the box and thus the scan is almost entirely in the linear regime.

profile_fit_4_17_10.png

  2807   Mon Apr 19 11:31:04 2010 AidanUpdateGreen Locking1W NPRO output profile

Quote:

 Koji asked me to take a profile of the output of the 1W NPRO that will be used for green locking. I used the razor-scan method, plotting the voltage output of a PD vs the position of the razor across the beam, both vertically and horizontally. This was done at 6 points along the beam path out of the laser box.

I determined the beam spot size at each point by doing a least-squares fit on the plots above in Matlab (using w as one of the fitting parameters) to the cumulative distribution functions (error functions) they should approximate.

I then did another least-squares fit, fitting the above "measured" beam profiles to the gaussian form for w vs z. Below is a summary.

It seems reasonable, though I know that M2 < 1 is fishy, as it implies less divergence than ideal for that waist size. Also, like Koji feared, the waist is inside the box and thus the scan is almost entirely in the linear regime.

profile_fit_4_17_10.png

There is a clearly a difference in the divergence angle of the x and y beams - maybe 10-20%. Since the measurements are outside the Rayleigh range and approximately in the linear regime, the slope of the divergence in this plot should be inversely proportional to the waists - meaning the x- and y- waist sizes should differ by about 10-20%. You should check your fitting program for the waist.

 

  2818   Tue Apr 20 13:02:14 2010 ZachUpdateGreen Locking1W NPRO output profile

EDIT: I used an IFIT (inverse fast idiot transform) to change the x-axis of the plot from Hz to m. I think xlabel('Frequency [Hz]') is in my muscle memory now..

I have redone the beam fit, this time omitting the M2, which I believe was superfluous. I have made the requested changes to the plot, save for the error analysis, which I am still trying to work out (the function I used for the least squares fit does not work out standard error in fit parameters). I will figure out a way to do this and amend the plot to have error bars.

 
profile_fit_4_19_10.png
  2819   Tue Apr 20 13:37:36 2010 JenneUpdateGreen Locking1W NPRO output profile

Quote:

I have redone the beam fit, this time omitting the M2, which I believe was superfluous. I have made the requested changes to the plot, save for the error analysis, which I am still trying to work out (the function I used for the least squares fit does not work out standard error in fit parameters). I will figure out a way to do this and amend the plot to have error bars.

 
profile_fit_4_19_10.png

 Are you sure about your x-axis label? 

  2821   Tue Apr 20 19:37:02 2010 KojiUpdateGreen Locking1W NPRO output profile

Beautiful fitting.

Quote:

EDIT: I used an IFIT (inverse fast idiot transform) to change the x-axis of the plot from Hz to m. I think xlabel('Frequency [Hz]') is in my muscle memory now..

I have redone the beam fit, this time omitting the M2, which I believe was superfluous. I have made the requested changes to the plot, save for the error analysis, which I am still trying to work out (the function I used for the least squares fit does not work out standard error in fit parameters). I will figure out a way to do this and amend the plot to have error bars.

 
profile_fit_4_19_10.png

 

  12070   Mon Apr 11 17:03:41 2016 SteveUpdateCalibration-Repair1W Innolight repair completed

The laser is back. Test report is in the 40m wiki as New Pump Diode Mephisto 1000

It will go on the PSL table.

  12040   Mon Mar 21 14:29:32 2016 SteveUpdateCalibration-Repair1W Innolight laser repair diagnoses

 

Quote:
Quote:

After adjusting the alignment of the two beams onto the PD, I managed to recover a stronger beatnote of ~ -10dBm. I managed to take some measurements with the PLL locked, and will put up a more detailed post later in the evening. I turned the IMC autolocker off, turned the 11MHz Marconi output off, and closed the PSL shutter for the duration of my work, but have reverted these to their nominal state now. The are a few extra cables running from the PSL table to the area near the IOO rack where I was doing the measurements from, I've left these as is for now in case I need to take some more data later in the evening...I

Innolight 1W 1064nm, sn 1634 was purchased in 9-18-2006 at CIT. It came to the 40m around 2010

It's diodes should be replaced, based on it's age and performance.

RIN and noise eater bad. I will get a quote on this job.

The Innolight Manual frequency noise plot is the same as Lightwave' elog 11956

Diagnoses from Glasglow:

“So far we have analyzed the laser. The pump diode is degraded. Next we would replace it with a new diode. We would realign the diode output beam into the laser crystal. We check all the relevant laser parameters over the whole tuning range. Parameters include single direction operation of the ring resonator, single frequency operation, beam profile and others. If one of them is out of spec, then we would take actions accordingly. We would also monitor the output power stability over one night. Then we repackage and ship the laser.”

  3751   Thu Oct 21 10:44:56 2010 steveMetaphysicsTreasure1987 supernova tapes plus....?

I'm cleaning out to make room for our new optical cabinet. Are we keeping these? There are  ~20  pieces of 10" od 1" wide tapes and large number of cassettes.

AJW,  Zucker,  Stuart A and Koji were notified in this matter.

Alan suggested to save data of Bruce Allen paper of observation of binary neutron stars in the 40m on 1994 November 14-20 and save back up tapes of his period in the 40m.

Mike: reels are not readable any more, it is time to let go

  16155   Mon May 24 08:38:26 2021 ChubUpdateElectronics18-bit AI, 16-bit AI and 16-bit AA

- High priority units: 2x 18AI / 1x 16AI / 3x 16AA

All six are reworked and on the electronics workbench. The rest should be ready by the end of the week.

Chub

  11772   Tue Nov 17 14:31:25 2015 ericqUpdateCDS16Hz frame writing temporarily disabled

To test the effect on EPICS latency, I've restarted daqd with modified ini files which disable all frame writing of 16Hz channels. 

This happened at GPS:1131835955 aka Nov 17 2015 22:52:18 UTC

Last night, I started running a script written by Dave Barker that monitors a specified EPICS channel (in this case C1:IOO-MC_TRANS_SUM), to look for seconds in which it does not update the expected number of times. This is still running, so I will be able to compare the rate of EPICS slowdowns before and after this change. 

I will revert back to the nominal state of things in a few hours, or until someone asks me to. 

  11777   Tue Nov 17 20:57:43 2015 ericqUpdateCDS16Hz frame writing running again

Back to nominal FB configuration at 1131857782, aka Nov 18 2015 04:56:05 UTC.

Weirdly, during this time, the script watching MC_TRANS_SUM from pianosa saw tons of freezes, but another instance  watching LSC-TRY_OUT16 on optimus saw no freezes. 

  1534   Thu Apr 30 05:49:06 2009 YoichiUpdateLocking166MHz LO phase changed
In order to optimize the REFL_2I demod phase, I changed the delay line setting for the 166MHz LO.
Right now, the delay is not yet optimal.
Since the AS166 shares the same LO, the digital demodulation phase of the AS166 had to be changed too.
The DD demod phases and the DD hand off script were also tweaked to improve the resonant condition of the central part.
Now we have more 166MHz coming out of the AS port and the SPOB is larger (more 33MHz resonant in PRC).

Since REFL166 and AS166 demodulation phases are not yet optimized, the cm_step script won't work at this moment.
  1536   Fri May 1 01:32:43 2009 YoichiUpdateLocking166MHz LO phase adjustment
I continued to adjust the REFL_2I demodulation phase.
I first optimized the demod phase for SRCL in the DRMI configuration (the error signals were DDs).
Then I restored the full IFO and offset locked it.
Before handing the DARM to RF, I adjusted the 166MHz delay line to maximize the SRCL signal at REFL_2I.
I did this before the DARM RF hand off because changing the delay line setting also changes the AS166 demodulation phase.
After this, I adjusted the digital phase shifter for AS166 to maximize the DARM signal for this port.

I also adjusted the digital demodulation phase of PD11 (REFL_2I) because the optimal demodulation phase for the initial lock acquisition is somewhat (15deg)
different from the optimal demodulation phase for the SRCL when the central part is locked with the DD signals.
This happens because the resonant condition of the central part (lock points of the recycling cavities) changes when the error signals are switched to the DD signals,
due to the offset in the DD signals. This is not good and should be fixed by the optimization of the DD demodulation phases.

Finally, I reduced the CARM offset to zero and tweaked the delay line a bit to maximize the arm power.

Right now, the locking script runs fine until the end.
At the end of the script, I was able to engage the boost on the CM board.
  1537   Fri May 1 10:04:10 2009 robUpdateLocking166MHz LO phase adjustment

Quote:
I continued to adjust the REFL_2I demodulation phase.
I first optimized the demod phase for SRCL in the DRMI configuration (the error signals were DDs).
Then I restored the full IFO and offset locked it.
Before handing the DARM to RF, I adjusted the 166MHz delay line to maximize the SRCL signal at REFL_2I.
I did this before the DARM RF hand off because changing the delay line setting also changes the AS166 demodulation phase.
After this, I adjusted the digital phase shifter for AS166 to maximize the DARM signal for this port.

I also adjusted the digital demodulation phase of PD11 (REFL_2I) because the optimal demodulation phase for the initial lock acquisition is somewhat (15deg)
different from the optimal demodulation phase for the SRCL when the central part is locked with the DD signals.
This happens because the resonant condition of the central part (lock points of the recycling cavities) changes when the error signals are switched to the DD signals,
due to the offset in the DD signals. This is not good and should be fixed by the optimization of the DD demodulation phases.

Finally, I reduced the CARM offset to zero and tweaked the delay line a bit to maximize the arm power.

Right now, the locking script runs fine until the end.
At the end of the script, I was able to engage the boost on the CM board.



Awesome. Up next: dewhitening.
  2552   Thu Jan 28 09:17:32 2010 AlbertoUpdateLSC166 Modulation turned off

I temporarily turned off the 166 modulation.

  2545   Mon Jan 25 16:30:37 2010 AlbertoUpdateABSL166 MHz sideband turned off

I turned off the modulation at 166MHZ becasue I don't need it if I'm only locking the PRC.

It was introducing extra amplitude modulations of the beam which interfered with the AbsL's PLL photodiode.

I'm going to turn it back on later on.

  2546   Mon Jan 25 16:46:33 2010 AlbertoUpdateABSL166 MHz sideband turned off

Quote:

I turned off the modulation at 166MHZ becasue I don't need it if I'm only locking the PRC.

It was introducing extra amplitude modulations of the beam which interfered with the AbsL's PLL photodiode.

I'm going to turn it back on later on.

 I turned back on the 166MHz modulation just a bit. I set the slider at 4.156.

When it was totally off the MZ seemd quite unhappy.

ELOG V3.1.3-