40m QIL Cryo_Lab CTN SUS_Lab TCS_Lab OMC_Lab CRIME_Lab FEA ENG_Labs OptContFac Mariner WBEEShop
  40m Log, Page 336 of 341  Not logged in ELOG logo
New entries since:Wed Dec 31 16:00:00 1969
ID Date Author Type Categorydown Subject
  2785   Fri Apr 9 06:45:28 2010 AlbertoUpdate40m UpgradingREFL11 Noise Vs Photocurrent

Quote:

Something must be wrong. 

1. Physical Unit is wrong for the second term of "Vn = Vdn + Sqrt(2 e Idc)"

2. Why does the fit go below the dark noise?

3. "Dark noise 4 +/- NaN nV/rtHz"   I can not accept this fitting.

Also apparently the data points are not enough.

 1) True. My bad. In my elog entry (but not in my fit code) I forgot the impedance Z= 750Ohm (as in the fit) of the resonant circuit in front of the square root: Vn = Vdn + Z * sqrt( 2 e Idc )

2) That is exactly the point I was raising! The measured dark noise at resonance is 2x what I expect.

3) I don't have uncertainties for the fit offset (that is, for the Dark Noise). The quick fit that I used (Matlab's Non Linear Least Squares method) doesn't provide 95% confidence bounds when I constrain the offset parameter the way I did (I forced it to be strictly positive).
Sure. It's not a very good fit. I just wanted to see how the data was going.

I also admitted that the data points were few, especially around the 3dB point.

Today I'm going to repeat the measurement with a new setup that lets me tune the light intensity more finely.

  2789   Mon Apr 12 16:20:05 2010 AlbertoConfiguration40m UpgradingREFL55 improved
During the commissioning of the AS55 PD, I learned how to get a much better rejection of the 11MHz modulation.
So I went back to REFL55 and I modified it using the same strategy. (Basically I added another notch to the circuit).
After a few days of continuous back and forth between modeling, measuring, soldering, tuning I got a much better transfer function.

All the details and data will be included in the wiki page (and so also the results for AS55). Here I just show the comparison of the transfer functions that I measured and that I modeled.

I applied an approximate calibration to the data so that all the measurements would refer to the transfer function of Vout / PD Photocurrent. Here's how they look like. (also the calibration will be explained in the wiki)

2010-04-12_REFL55_TF_model_to_meas_comparison.png.

The ratio between the amplitude of the 55Mhz modulation over the 11MHz is ~ 90dB

The electronics TF doesn't provide a faithful reproduction of the optical response.

  2790   Mon Apr 12 17:09:30 2010 AlbertoUpdate40m UpgradingREFL11 Noise Vs Photocurrent

Quote:

Quote:
 

 1) True. My bad. In my elog entry (but not in my fit code) I forgot the impedance Z= 750Ohm (as in the fit) of the resonant circuit in front of the square root: Vn = Vdn + Z * sqrt( 2 e Idc )

2) That is exactly the point I was raising! The measured dark noise at resonance is 2x what I expect.

3) I don't have uncertainties for the fit offset (that is, for the Dark Noise). The quick fit that I used (Matlab's Non Linear Least Squares method) doesn't provide 95% confidence bounds when I constrain the offset parameter the way I did (I forced it to be strictly positive).
Sure. It's not a very good fit. I just wanted to see how the data was going.

I also admitted that the data points were few, especially around the 3dB point.

Today I'm going to repeat the measurement with a new setup that lets me tune the light intensity more finely.

 Here's another measurement of the noise of the REFL11 PD.

This time I made the fit constraining the Dark Noise. I realized that it didn't make much sense leaving it as a free coefficient: the dark noise is what it is.

2010-04-09_REFL11NoiseMeasurements.png

Result: the transimpedance of REFL11at 11 MHz is about 4000 Ohm.

Note:
This time, more properly, I refer to the transimpedance as the ratio between Vout @11Mhz / Photocurrent. In past entries I improperly called transimpedance the impedance of the circuit which resonates with the photodiode.
  2795   Mon Apr 12 22:44:30 2010 KojiUpdate40m UpgradingREFL11 Noise Vs Photocurrent

Data looks perfect ... but the fitting was wrong.

Vn = Vdn + Z * sqrt( 2 e Idc ) ==> WRONG!!!

Dark noise and shot noise are not correlated. You need to take a quadratic sum!!!

Vn^2 = Vdn^2 + Z^2 *(2 e Idc)

And I was confused whether you need 2 in the sqrt, or not. Can you explain it?
Note that you are looking at the raw RF output of the PD and not using the demodulated output... 

Also you should be able to fit Vdn. You should put your dark noise measurement at 10nA or 100nA and then make the fitting.

Quote:

 Here's another measurement of the noise of the REFL11 PD.

This time I made the fit constraining the Dark Noise. I realized that it didn't make much sense leaving it as a free coefficient: the dark noise is what it is.

2010-04-09_REFL11NoiseMeasurements.png

Result: the transimpedance of REFL11at 11 MHz is about 4000 Ohm.

Note:
This time, more properly, I refer to the transimpedance as the ratio between Vout @11Mhz / Photocurrent. In past entries I improperly called transimpedance the impedance of the circuit which resonates with the photodiode.

 

  2882   Wed May 5 16:32:39 2010 AlbertoUpdate40m UpgradingNew REFL55 PD, 11MHz rejection

Here's the (calibrated) transimpedance of the new REFL55 PD.

T(55.3) / T_(11.06) = 93 dB

2010-05-05_REFL55_CalibratedOpticalResponse0-60MHz.png

  2886   Thu May 6 16:18:37 2010 AlbertoUpdate40m UpgradingNew improved design for the 11MHz photodiode

After munching analytical models, simulations, measurements of photodiodes I think I got a better grasp of what we want from them, and how to get it. For instance I now know that we need a transimpedance of about 5000 V/A if we want them to be shot noise limited for ~mW of light power.

Adding 2-omega and f1/f2 notch filters complicates the issue, forcing to make trade-offs in the choice of the components (i.e., the Q of the notches)

Here's a better improved design of the 11Mhz PD.

  2893   Thu May 6 19:57:26 2010 AlbertoUpdate40m UpgradingNew improved design for the 11MHz photodiode

Quote:

After munching analytical models, simulations, measurements of photodiodes I think I got a better grasp of what we want from them, and how to get it. For instance I now know that we need a transimpedance of about 5000 V/A if we want them to be shot noise limited for ~mW of light power.

Adding 2-omega and f1/f2 notch filters complicates the issue, forcing to make trade-offs in the choice of the components (i.e., the Q of the notches)

Here's a better improved design of the 11Mhz PD.

 This should be better. It should also have larger resonance width.

  2894   Fri May 7 11:21:49 2010 kojiUpdate40m UpgradingNew improved design for the 11MHz photodiode

How much is the width?

Quote:

 This should be better. It should also have larger resonance width.

 

  2896   Fri May 7 18:18:02 2010 AlbertoUpdate40m UpgradingNew improved design for the 11MHz photodiode

Quote:

How much is the width?

Quote:

 This should be better. It should also have larger resonance width.

 

 The transfer function phase drops by 180 degrees in about 2MHz. Is that a good way to measure the width?

  2897   Fri May 7 19:02:27 2010 ranaUpdate40m UpgradingNew improved design for the 11MHz photodiode

To measure the width of a resonance, the standard method is to state the center frequency and the Q. Use the definition of Q from the Wikipedia.

As far as how much phase is OK, you should use the method that we discussed - think about the full closed loop system and try to write down how many things are effected by there being a phase slope around the modulation frequency. You should be able to calculate how this effects the error signal, noise, the loop shape, etc. Then consider what this RFPD will be used for and come up with some requirements.

  2902   Mon May 10 16:59:35 2010 AlbertoUpdate40m UpgradingUnexpected oscilaltionin the POY11 PD

The measured transimpedance of the latest POY11 PD matches my model very well up to 100 MHz. But at about ~216MHz I have a resonance that I can't really explain.

2010-05-10_POY11_CalibratedOpticalResponse0-500MHz.png

 

 The following is a simplified illustration of the resonant circuit:

POX11.png

 

Perhaps my model misses that resonance because it doesn't include stray capacitances.

While I was tinkering with it, i noticed a couple of things:

- the frequency of that  oscillation changes by grasping with finger the last inductor of the circuit (the 55n above); that is adding inductance

- the RF probe of the scope clearly shows me the oscillation only after the 0.1u series capacitor

- adding a small capacitor in parallel to the feedback resistor of the output amplifier increases the frequency of the oscilaltion

  2924   Wed May 12 17:10:16 2010 AlbertoUpdate40m UpgradingRF frequency generation box - step 0

I started putting together the components that are coint to go inside the frequency generation box. Here's how it looked like:

DSC_1499_small.JPG

The single component are going to be mounted on a board that is going to sit on the bottom of the box.

I'm thinking whether to mount the components on an isolating board (like they did in GEO), or on an aluminum board.

I emailed Hartmut to know more details about his motivations on making that choice.

  2925   Wed May 12 23:31:17 2010 AlbertoUpdate40m Upgrading216 MHz resonance in the POY11 PD killed
It turned out that the resonance at 216 MHz in the 11MHz PD that I showed in the elog entry 2902 was casued by an instability of the of the MAX4107 opamap' feedback loop.
As the datasheet of the opamp shows, the close-loop gain has a peak at about 200-250MHz, in presence of even small capacitive loads.
In my case, perhaps either the capacitance of the BNC cables plugged to the RF output of the PD box, or the shunt capacitance of the circuit parts after the opamap (traces and resistors) might have introduced capacitance at the output of the amplifier.
 
LISO had failed in predicting the resonance because it has only ideal transfer functions of the opamps. In particular the open-loop gain of the opamaps in the library is just a function with a simple pole.
 
At RF frequencies the output impedances of the opamp starts having a non-negligible inductance that interacts with the load capacitance, generating a typical LC-circuit resonance.
 
In cases like this, such effect can be mitigated by introducing an "isolating" resistor at the output of the opamp.
 
So I did that and modified the circuit as in this simplified schematic here:
 
POX11.png
 

The choice of 100 Ohm for the isolating resistor was mainly empirical. I started with 10, then 20 and 50 until I got a sufficient suppression of the resonance. Even just 10Ohm suppressed the resonance by several tens of dB.

2010-05-12_POY11_CalibratedOpticalResponse0-500MHz.png

 

In that way the gain of the loop didn't change. Before that, I was also able to kill the resonance by just increasing the loop gain from 10 to 17.  But, I didn't want to increase the closed-loop gain.

One thing that I tried, on Koji's suggestion, was to try to connect the RF output of the PD box to an RF amplifier to see whether shielding the output from the cable capacitance would make the resonance disappear: It did not work.

  2926   Thu May 13 05:06:43 2010 ranaUpdate40m Upgrading216 MHz resonance in the POY11 PD killed

 

 This idea was tried before by Dale in the ~1998 generation of PDs. Its OK for damping a resonance, but it has the unfortunate consequence of hurting the dynamic range of the opamp. The 100 Ohm resistor reduces the signal that can be put out to the output without saturating the 4107.

I still recommend that you move the notch away from the input of the 4107. Look at how the double notch solution has been implemented in the WFS heads.

  2957   Thu May 20 12:34:46 2010 kiwamuConfiguration40m Upgradingoptical breadboards with legs

Yesterday Steve and I revived two legs to mount some optical breadboards outside of the end table.

These legs had been used as oplev's mounts many years ago, but now they are served for 40m upgrading. These are really nice.

By putting them on the side of the end table, a mirror mounted on the top of the leg can reflect the beam outside of the end table.

Once we pick off the green beam from the end table to its outside, the green beam can propagate through the 40m walkway along the Y-arm.

So that we can measure the beam profile as it propagates.

These legs are also going to be used during mode matching of the vacuum optics.

  2966   Fri May 21 11:56:34 2010 AlbertoUpdate40m Upgrading40mUpgrade Field Power and RF Power Spectrum at the ports. 38m/38.55m arm length issue.

I update my old 40mUpgrade Optickle model, by adding the latest updates in the optical layout (mirror distances, main optics transmissivities, folding mirror transmissivities, etc). I also cleaned it from a lot of useless, Advanced LIGO features.

I calculated the expected power in the fields present at the main ports of the interferometer.

I repeated the calculations for both the arms-locked/arms-unlocked configurations. I used a new set of functions that I wrote which let me evaluate the field power and RF power anywhere in the IFO. (all in my SVN directory)

As in Koji's optical layout, I set the arm length to 38m and I found that at the SP port there was much more power that I woud expect at 44Mhz and 110 MHz.

It's not straightforward to identify unequivocally what is causing it (I have about 100 frequencies going around in the IFO), but presumably the measured power at 44MHz was from the beat between f1 an f2 (55-11=44MHz), and that at 110MHz was from the f2 first sidebands.

Here's what i found:

RFPower_locked_38m.png

RFPower_unlocked_38m.png

FieldPower_locked_38m.png

FieldPower_unlocked_38m.png

 

I found that When I set the arm length to 38.55m (the old 40m average arm length), the power at 44 and 110 MHz went significantly down. See here:

RFPower_3855m.png

 FieldPower_3855m.png

I checked the distances between all the frequencies circulating in the IFO from the closest arm resonance to them.

I found that the f2 and 2*f2 are two of the closest frequencies to the arm resonance (~80KHz). With a arm cavity finesse of 450, that shouldn't be a problem, though.

40mUpgrade_distanceFromResonance_38m.png

 I'll keep using the numbers I got to nail down the culprit.

Anyways, now the question is: what is the design length of the arms? Because if it is really 38m rather than 38.55m, then maybe we should change it back to the old values.

  2994   Wed May 26 17:10:09 2010 AlbertoUpdate40m UpgradingRF Generation box

This is how the RF generation box might soon look like:

Visio-frequencyGenerationBox_wiringSchematic.png

A dedicated wiki page shows the state of the work:

http://lhocds.ligo-wa.caltech.edu:8000/40m/Upgrade_09/RF_System/frequency_generation_box#preview

  2996   Wed May 26 22:22:03 2010 AlbertoConfiguration40m UpgradingArm cavity length

The second sideband is resonant in the arms for a cavity length of 37.9299m.

The nearest antiresonant arm lengths for f2 (55MHz) are 36.5753m and 39.2845m.

If we don't touch the ITMs, and we use the room we still have now on the end tables, we can get to 37.5m.

This is how the power spectrum at REFL would look like for perfect antiresonance:

reflRFpowerVsArmLength_3658m.png

And this is how it looks like for 37.5m:

reflRFpowerVsArmLength_3750m.png

Or, god forbid, we change the modulation frequencies...

  3001   Thu May 27 12:52:02 2010 AlbertoUpdate40m UpgradingArm lengths


For both sidebands to be antiresonant in the arms, the first modulation frequency has to be:

f1 = (n + 1/2) c / (2*L)

where L is the arm length and c the speed of light.  For L=38m, we pick to cases: n=3,  then f1a = 13.806231 MHz;  n=2, then f1b = 9.861594 MHz.

If we go for f1a, then the mode cleaner half length has to change to 10.857m.  If we go for f1b, the MC length goes to 15.200m. A 2 meter change from the current length either way.

And the mode cleaner would only be the first of a long list of things that would have to change. Then it would be the turn of the recycling cavities.

Kind of a big deal.

  3012   Fri May 28 21:32:32 2010 AlbertoUpdate40m UpgradingMC alignment

[Alberto, Kiwamu, Kevin, Rana]

Today we tried to measured the beam shape after the MC MMT1 that Jenne installed on the BS table.

The beam scan showed a clipped spot. We tracked it down to the Farady and the MCT pickoff mirror.

The beam was getting clipped at the exit of the Faraday. But it was also clipping the edge of the MCT pick-off mirror. I moved the mirror.

Also the beam looked off-center on MC2.

We're coming back on Sunday to keep working on this.

Now things are bad.

  3023   Tue Jun 1 06:30:38 2010 KojiConfiguration40m Upgradingeffect of the arm length

I checked the effect of the arm length to the reflectance of the f2(=5*f1) sidebands.

Conclusion: If we choose L_arm = 38.4 [m], it looks sufficiently being away from the resonance
We may want to incorporate small change of the recycling cavity lengths so that we can compensate the phase deviation from -180deg.


f1 of 11.065399MHz is assumed. The carrier is assumed to be locked at the resonance.

Attachment 1: (Left) Amplitude reflectance of the arm cavity at f2 a a function of L_arm. (Right) Phase
Horizontal axis: Arm length in meter, Vertical Magnitude and Phase of the reflectance

At L=37.93 [m], f2 sidebands become resonant to the arm cavity. Otherwise, the beam will not be resonant.

Attachment 2: close-up at around 5 f1 frequency.
The phase deviation from the true anti resonance is ~0.7deg. This can be compensated by both PRC and SRC lengths.

  3094   Mon Jun 21 18:01:34 2010 JenneUpdate40m UpgradingSRM, PRM hung, magnets inspected

[Jenne, Kiwamu, Rana, Eric Gustafson]

The SRM and PRM have been re-hung, and are ready for installation into the chambers.  Once we put the OSEMs in, we may have to check the rotation about the Z-axis.  That was not confirmed today (which we could do with the microscope on micrometer, or by checking the centering of the magnets in the OSEMs).

Also, Eric and Rana inspected the Tip Tilt magnets, and took a few that they did their best to destroy, and they weren't able to chip the magnets.  There was concern that several of the magnets showed up with the coatings chipped all over the place.  However, since Rana and Eric did their worst, and didn't put any new chips in, we'll just use the ones that don't have chips in them.  Rana confiscated all the ones with obvious bad chips, so we'll check the strengths of the other magnets using a gaussmeter, and choose sets of 4 that are well matched. 

Eric, photographer extraordinaire, will send along the pictures he took, and we'll post them to Picasa.

  3099   Tue Jun 22 20:07:08 2010 JenneUpdate40m UpgradingFirst attempt at Tip Tilt hanging

[Jenne, Steve, Nancy, Gopal]

We made an attempt at hanging some of the Tip Tilt eddy current dampers today. 

Photo 1 shows the 2 ECDs suspended.

Procedure:

(1) Loosen the #4-40 screws on the side of the ECDs, so the wire can be threaded through the clamps.

(2) Place the ECDs in the locator jigs (not shown), and the locator jigs in the backplane (removed from main TT structure), all laying flat on the table.

(3) Get a length of Tungsten wire (0.007 inch OD = 180um OD), wipe it with acetone, and cut it into 4 ~8cm long segments (long enough to go from the top of the backplane to the bottom).

(4) Thread a length of wire through the clamps on the ECDs, one length going through both ECDs' clamps.

(5) One person hold the wire taught, and straight, and as horizontal as possible, the other person tightened the clamping screws on the ECDs.

(6) Again holding the wire in place, one person put the clamps onto the backplane (the horizontal 'sticks' with 3 screws in them).

(7) The end. In the future, we'll also clip off extra pieces of wire.

When we held up the backplane to check out our handy work, it was clear that the bottom ECD was a much softer pendulum than the top one, since the top one has the wire held above and below, while the bottom one only has the wire held on the top.  I assume we'll trim the wire so that the upper ECD is only held on the top as well?

Lessons learned:

* This may be a 3 person job, or a 2 people who are good at multitasking job.  The wire needs to be held, the ECDs need to be held in place so they don't move during the screwing/clamping process, and the screws need to be tightened.

* Make sure to actually hold the wire taught. This didn't end up happening successfully for the leftmost wire in the photo, and the wire is a bit loose between the 2 ECDs.  This will need to be redone.

* We aren't sure that we have the correct screws for the clamps holding the wire to the backplane.  We only have 3/16" screws, and we aren't getting very many threads into the aluminum of the backplane.  Rana is ordering some 316 Stainless Steel (low magnetism) 1/4" #4-40 screws.  We're going for Stainless because Brass (the screws in the photo), while they passed their RGA scan, aren't really good for the vacuum.  And titanium is very expensive.  

The 2nd photo is of the magnet sticking out of the optic holder.  The hole that the magnet is sitting in has an aluminum piece ~2/3 of the way through.  A steel disk has been placed on one side, and the magnet on the other.  By doing this, we don't need to do any press-fitting (which was a concern whether or not the magnets could withstand that procedure), and we don't need to do any epoxying.  We'll have to wait until the ECDs are hung, and the optic holder suspended, to see whether or not the magnet is sticking out far enough to get to the ECDs. 

  3329   Fri Jul 30 02:54:04 2010 KojiUpdate40m UpgradingMore optics installed on the BS table

July 29 Thu [Steve, Alberto, Kiwamu, Koji]

We placed some optics in the BS chamber.
The chambers are ready to be pumped down on Friday once the heavy door is placed.

- Clean room work

  • Engraved two Y2 mirrors and PBS@532nm
  • Engraved three DLC mounts
  • Each of the mounts needs a 3.5 inch post. We found there is no stock of the post in the lab! Also the clamps!
  • Took the posts from the temporarily removed optics although we need to return those optics into the table during the next vent.
  • We should count the # of the mounts and count the needed posts. Posts and clamps can be either a DLC thick post or New Focus pedestal.

- In the chamber

  • The terminal holder was moved as Alberto described
  • The green steering optics were placed as Alberto described
  • Note: the PBS is flipped in the mount (reflection side is back side)
  • The table leveling
  • Releasing EQ stops / Check OSEMs / Adjust OSEMs (BS OSEMs are untouched)

- After closing the chamber

  • The BS OSEM mumbo-jumbo

Quote:

[Koji, Steve, Kiwamu, Alberto]

- This afternoon we installed a few new optics on the BS table: GR_PBS, GRY_SM2, GRY_SM1.

- We pulled up the cables so that we had more freedom to move one of the cable towers farther South.

- Then we re-leveled the table. PRM OSEMs were adjusted to be nominal insertions.

- Koji released the earthquake stops on BS but the readout of the OSEMs was apparently frozen on the MEDM screens.
Initially we thought it was a software problem. a nuclear reboot didn't solve it. We spent the following three hours investigating the cause.
Eventually it turned out that the earthquake stops on BS weren't actually fully released.

We opened the tank and accessed to BS. Releasing the earthquake stops in full solved the issue. The OSEMs readout went back to normal.

 

  3332   Fri Jul 30 12:46:38 2010 KojiConfiguration40m UpgradingBS chamber status
  4214   Thu Jan 27 21:10:47 2011 OsamuUpdate40m UpgradingCalibrated noise of green

I calibrated noise spectrum of green lock.

1. Measurement of conversion factor of ADC input from V to ct:

As a preparation, first I measured a conversion factor at ADC input of C1;GCX1SLOW_SERVO1.

It was measured while the output of AI ch6 as the output of C1;GCX1SLOW_SERVO2 with 1Hz, 1000ct(2000ct_pp) was directly connected into AA ch7 as the input of C1;GCX1SLOW_SERVO1. Amplitude at the output at AI ch6 was 616mVpp measured by oscilloscope, and C1;GCX1SLOW_SERVO1_IN1 read as 971.9ct_pp. So the conversion factor is calculated as 6.338e-4[V/ct].

2. Injection of a calibration signal:

When Green laser was locked to cavity with fast PZT and slow thermal, I injected 100Hz, 1000ct EXC at ETMX ASL. The signal was measured at C1:GCX1SLOW_SERVO1_IN1 as 5.314ct_rms. It can be converted into 3.368e-3Vrms using above result, and then converted into 3368Hz_rms using PZT efficiency as 1MHz/V. This efficiency was obtained from Koji's knowledge, but he says that it might have 30% or higher error. If somebody get more accurate value, put it into the conversion process from V to Hz here.

3. Conversion;

Frequency of green f=c/532nm=5.635e14[Hz] is fluctuating with above 3368Hz_rms,so the fluctuation ratio is 3368/5.635=5.977e-12, and it corresponds to length fluctuation of 37.5m. So, cavity fluctuation will be 5.977e-12*37.5=2.241e-10m_rms by 100Hz, 1000ct EXC at ETMX ASL.

4. Results;

Finally, we knew 5.314ct corresponds to 3368Hz and 2.241e-10m, so conversion factor from ct to Hz and ct to m are ;

633.8[Hz/ct] @ C1:GCX1SLOW_SERVO1

4.217e-11[m/ct] @ C1:GCX1SLOW_SERVO1

 

5. Calibration:

You can measure green noise spectrum at C1;GCX1SLOW_SERVO1_IN1 during lock,  and mutiply above result to convert Hz or m.

This calibration is effective above corner frequency of slow and fast servo around 0.5Hz and UGF of fast servo around 4kHz.

I show an example of calibrated green noise.

20110127_Calibrated_grrennoise.jpg

20110127_Calibrated_grrennoise.pdf

Each color show different band-width. Of course this results of calibration cactor does not depend on band-width. Noise around 1.2Hz is 6e-8Hz/rHz. It sounds a bit too good by factor ~2. The VCO efficiency might be too small.

 

Note that there are several assumptions in this calibration;

1. TF from actual PZT voltage to PZT mon is assumed to be 1 in all frequency. Probably this is not a bad assumption because circuit diagram shows monitor point is extracted PZT voltage directly.

2. However above assumption is not correct if the input impedance of AI is low.

3. As I said, PZT efficiency of 1MHz/V might be wrong.

 

I also measured a TF from C1:SUS-ETMX_ALS_EXC to C1:GCX1SLOW_SERVO1_IN1. It is similar as calibration injection above but for wide frequency. This shows a clear line of f^-2 of suspension.

20110127_TF_ETMXSUSEXC_to_PZTOUT.pdf

 

Files are located in /users/osamu/:20110127_Green_calibration.

  5696   Wed Oct 19 12:25:58 2011 SureshUpdate40m UpgradingActive Tiptilts from LLO moved to clean shelf along X arm

I have moved the active tip tilts that we brought over from LLO to the Clean Bureau along the X arm (closest to the ETMX). There are two tip tilts and a pack of spare parts.

  5697   Wed Oct 19 13:45:11 2011 SureshUpdate40m UpgradingActive Tiptilts from LLO moved to clean shelf along X arm

I have moved the active tip tilts that we brought over from LLO to the Clean Bureau along the X arm (closest to the ETMX). There are two tip tilts and a pack of spare parts.  I am sure that the tip tilts are clean, packed in the clean room at LLO.  I am not sure whether the spares are clean.  I have kept them together for now.

We need to open one of the Tip tilt packages to be sure what we have got.

  7090   Mon Aug 6 11:07:06 2012 ManasaUpdate40m UpgradingOptical layout updated

ACAD files of the 40m optical layout have been updated as per the vent in Aug 2011.

Files are available at the 40m svn docs-->Upgrade12-->Opt_Layout2011.

 

  7125   Wed Aug 8 20:51:56 2012 ManasaUpdate40m UpgradingOptical layout updated

Quote:

ACAD files of the 40m optical layout have been updated as per the vent in Aug 2011.

Files are available at the 40m svn docs-->Upgrade12-->Opt_Layout2011.

 

 To ease the pain of hunting files, optical layout ACAD files have been moved to a new directory 40M_Optical Layout in the repository. Relevant files from directories Upgrade12 and upgrade 08 will be moved to "40M_Optical Layout" very soon and eventually these old directories will be removed. 

  7222   Fri Aug 17 18:49:55 2012 ManasaUpdate40m UpgradingOptical layout updated

Quote:

Quote:

ACAD files of the 40m optical layout have been updated as per the vent in Aug 2011.

Files are available at the 40m svn docs-->Upgrade12-->Opt_Layout2011.

 

 To ease the pain of hunting files, optical layout ACAD files have been moved to a new directory 40M_Optical Layout in the repository. Relevant files from directories Upgrade12 and upgrade 08 will be moved to "40M_Optical Layout" very soon and eventually these old directories will be removed. 

Changes mentioned by Koji and Steve have been updated to the files (except for the cable connector which have been added but whose part number has to be found to match accurately with the current layout). The file in the directory should now match the current setup after the last vent Aug 2011.

Let me know if you find any mismatch between the current setup and the layout.

Plans about new installations/reconfiguration during the new vent will be carried out in a separate file.

  7245   Tue Aug 21 18:23:58 2012 ManasaUpdate40m UpgradingETMX table layout

Optical layout of the current endtable at ETMX has been updated in the svn repository (directory: 40M_Optical Layout). This layout will help in redesigning the table for the proposed replacement.

Some part numbers of mounts/optics are missing and will be updated once I find them. If you find anything wrong with the layout, do let me know.

 

  7354   Thu Sep 6 19:21:58 2012 ManasaConfiguration40m UpgradingBaffle problem

For the current baffle (dia. 40mm) centered along the beamline place at 1.77" from the test mass, the baffle will allow ~8.6mm visibility on the camera from the center of the test mass (in case of ETMY).

*assuming the pick off mirror is placed at the edge of the tunnel

  7359   Fri Sep 7 11:58:12 2012 ManasaConfiguration40m UpgradingBaffle problem

Quote:

The required diameter for the baffle if it sits on the cage at 1.77" from the test masses: the current baffle (dia. 40mm) centered along the beamline, will allow ~8.6mm visibility from the center of the test mass (in case of ETMY).

*assuming the pick off mirror is placed at the edge of the tunnel

Estimations of the visibility region (r1 on the test mass) with baffle (aperture size 40mm).

The baffle is installed on the cage at 1.125" from the test mass (distance changed from the previous elog after a double check).

The 40mm aperture is in no way going to help get clear view of the ITMs; 

  7361   Fri Sep 7 13:01:53 2012 ManasaConfiguration40m UpgradingBaffle problem

Quote:

Quote:

The required diameter for the baffle if it sits on the cage at 1.77" from the test masses: the current baffle (dia. 40mm) centered along the beamline, will allow ~8.6mm visibility from the center of the test mass (in case of ETMY).

*assuming the pick off mirror is placed at the edge of the tunnel

Estimations of the visibility region (r1 on the test mass) with baffle (aperture size 40mm).

The baffle is installed on the cage at 1.125" from the test mass (distance changed from the previous elog after a double check).

The 40mm aperture is in no way going to help get clear view of the ITMs; 

Required baffle diameter to have a visibility region r1 = 3 times the beam diameter

Picture1.png

  7449   Thu Sep 27 19:03:06 2012 ManasaUpdate40m UpgradingNew ETMX layout - Version 1.0

 I am working towards redesigning the endtables. I've attached the first version of the layout. As per Steve's comment I've tried to leave a 2" empty space on all sides of the table. It still has to be updated with the whole 40m layout to be more precise about the pickoff and the ingoing beam directions.

  7450   Thu Sep 27 20:05:57 2012 KojiUpdate40m UpgradingNew ETMX layout - Version 1.0

1. I wonder how the mode profiling/matching was considered in the new layout.

I can see the distances between the components and lenses are largely different from the old ones.

This is OK if you plan to go through a new mode matching solution with new lenses.
But it takes
 a certain amount of time.

Note that we don't care the distance after the last lens as the Rayleigh range there is supposed
to be long enough to allow this kind of change.

2. The huge frustration of the green alignment in the old setup was caused by the 3D beam steering
at the last two 2" mirrors. i.e. the beam elevation on the table does not match with the beam elevation of the cavity.
In order to avoid this, I suggest you to use three 45 deg 2" mirrors instead of two. In fact these mirrors are supposed to be used at 45deg incidence!

3. The incident green beam and the transmitted IR beam should share a same path as they
 share a same cavity mode.
This means that you should use a harmonic separator for the transmitted light pick-off.

4. Use the harmonic separator for the fiber path too. Get the mirror spec from Jamie.

5. Since the optical window on the chamber has a wedge angle, the beam paths are not straightforward.
The cavity beams can't be moved as they are constrained by the arm cavity.
Probably there is almost no freedom to move even for the oplev beams.
It would be safe just to follow the old positions and angles on the window.
Make sure the beam on the drawing is realistic. The angles of the oplev beams in the old setup look strange.

Is there a possibility to replace the optical window so that it has an AR for 532 and 1064 at least???

6. I wonder if the rejected beam by the Farady have a realistic angle or not. Check it with the old setup.
It is definitely better to have a steering mirrror and a lens before the refl PD.

7. The IR QPD and trans PD are intended to be used for the low and high power detection.
I forgot which is which. So check the range of them and think about the power distribution.

8. We should have separated CCDs for IR Trans and Green Refl.
We had a terrible ghost green beam on the IR trans CCD.
Thus, think about the amount of ghost reflection and consider filtering if necessary.

  7451   Fri Sep 28 07:49:30 2012 SteveUpdate40m UpgradingNew ETMX layout - Version 1.0

  Where is IP-ANG ? It is good practice to use two mirrors at launching and detecting the beam, so you can walk it - precisely adjust it.

The window can be replaced at  ~$1,500 ea. 10 weeks as optical quality BK7 with dual AR

  7704   Tue Nov 13 11:30:54 2012 ManasaConfiguration40m UpgradingEndtable upgrade for auxiliary green laser

I'm set on the mission to get the new bigger endtables setup for the auxiliary green laser; now that the tables are already here.

I want to have everything documented in this same thread for future reference. It has been a pain trying to filter relevant elogs. I'll be working on the layout redesign one at a time....starting with the ETMX end.

This is the simplest cartoon layout of  ETMX endtable (not the actual table layout):

ETMX_sch.png

I have been searching through the elogs for the beam parameters measured earlier. I'm assuming they would not have changed much and will make calculations based on them.

However, we will have to change a few not-so-good mounts and include/exclude some optics.

 

P.S. HR (steer) are necessary steering mirrors and HR are just folding mirrors for the drawing.

 

 

 

  7705   Tue Nov 13 16:18:51 2012 ManasaConfiguration40m UpgradingEndtable upgrade for auxiliary green laser : Circularize the 1W NPRO beam profile

With reference to measurements made earlier: elog

Beam parameters for Innolight 1W NPRO are:

wx0 = 160 um 

wy0 = 181.1 um

z0x = -9.17 cm

z0y = -10.19 cm

The beam is clearly elliptical.  We will introduce an additional pair of cylindrical lenses to circularize the beam before it enters the faraday.

I made calculations for the beam divergence ratio and checked with thor labs catalogue of cylindrical lenses to find pairs that will match the ratio. 

I propose to use lenses with focal lengths f1 = 22.2 mm and f2 = 25 mm. The beam diameter after the lenses will be dx = 164.05 um and dy = 163.19 um.

  7706   Tue Nov 13 20:13:07 2012 KojiConfiguration40m UpgradingEndtable upgrade for auxiliary green laser : Circularize the 1W NPRO beam profile

These fs are too short.

Quote:

I propose to use lenses with focal lengths f1 = 22.2 mm and f2 = 25 mm. The beam diameter after the lenses will be dx = 164.05 um and dy = 163.19 um.

 

  7726   Mon Nov 19 20:03:53 2012 ManasaConfiguration40m UpgradingEndtable upgrade for auxiliary green laser : ETMX layout on new table

I have attached the possible layout of the optics on the new ETMX endtable. More optics have been added when compared to the early cartoon layout considering that we need additional steering mirrors for reasons like: the table height in and out-of vac are different and several mounts have restricted movement in certain degrees of freedom. 

As you can see, there is enough room for filters and other last time additions that may arise.

I will proceed with calculations based on the distances from the CAD drawing and the spec of the optics if there are no comments or suggestions about the layout.

 

 

  7727   Mon Nov 19 20:17:53 2012 JenneConfiguration40m UpgradingEndtable upgrade for auxiliary green laser : ETMX layout on new table

 

For convenience, I would include a steering mirror in front of the TRX PD.  Also, don't we usually have lenses in the oplev paths?  Also, also, do we need lenses in front of the green refl and TRX PDs?  Do you have a place in mind for the shutter?  Is there a way to compactify the layout a little bit, so that even if the lenses are different for each table, the general layout for both ETMX and ETMY is the same (with an empty space on ETMX where IPANG belongs on ETMY)?  I'm sure it is, since you've talked to Steve about this, but just to check: is the green refl PD far enough away from the edge of the table to accommodate the fancy new box?

  7728   Mon Nov 19 22:42:14 2012 KojiConfiguration40m UpgradingEndtable upgrade for auxiliary green laser : ETMX layout on new table
  • I don't like the idea to place the cylindrical lenses right in front of the laser.
    This design requires the CLs to be tilted to avoid direct reflections going into the laser.
    It is also required that they are made of UV fused silica to avoid thermal lensing.

     
  • Instead, move the CLs after the farday while we keep L1, HWP, QWP after the laser.
    L1 should be UV fused silica lens. I should be placed with slight tilt.
    It is preferrable to place CLs after the faraday at somewhere the beam is not too small.
     
  • The HWP before the SHG can be moved to downstream of the steering mirrors as they can change the poralization.
    (Probably I am too paranoic.)
     
  • Why don't you use the harmonic separator right after the SHG crystal in stead of relying on an arbitrary transmission of the 532nm mirrors?
     
  • I am not confident about such a "nice" separation angle of the returning beam from the green faraday.
    Confirm the separation angle on the actual setup.

    The beams split in the polarizer rather than in the air like in your diagram.
    Then because of this small angle separation, the pick-off mirror may have a bit more critical distance than you indicated.
    (I could be wrong.)
  • I don't think the green faraday is IO-5-532-HP. It should be IO-?-532-LP.
    Rotate the tilt aligner 180deg so that we can easily access to the adjusting screws
     
  • The green PDA36A path needs more length and probably a focusing lens too.
     
  • After the PLCX lens, the beam is big (w=3mm) everywhere. Don't you want to use 2" mirrors and mounts?
     
  • We eventually will install steering PZTs for the green.
    On which mirrors do you want to install the PZTs?
    Do you have enough spare space for them?
     
  • The mount indicated "HS" is one of the trickiest mounts on the table as the big beam goes through the mirror.
    Probably you want to use 2" suprema mount with correct chirality.
     
  • How is the power budget of the IR trans path? Which is the low power PD and which is the high power PD?
    What's the transimpedance of them? Where is the crossover?
    How much power does go into the CCD? Is it a reasonable amount?

     
  • The IR transmon beam is even larger than the green beam (w=5mm)
    You definitely need a lens to shrink the beam. But we don't want to have the QPD and the CDD at the focus.
     
  • As Jenne pointed out, having a steering mirror for the IR PDA36A is a good idea.
    But do you really want to use the Si PD for the IR tmonitor?
  • I feel I don't want to have the pair of steering mirrors in the oplev incident path. One is enough.
    We should be able to accommodate optional mode-matching lenses in the incident path.
    We definitely don't want to have any lens in the returning path of the oplev.
  7813   Wed Dec 12 11:04:45 2012 ManasaConfiguration40m UpgradingEndtable upgrade for auxiliary green laser : ETMX layout on new table

I have updated the layout to fix all the issues brought up. The last couple of 2" green steering mirrors will hold the PZTs for input steering. I will update with the list of optical components that we will be ordering for this layout. The ETMY endtable layout will be similar to this one, except that we will have IPANG setup at the empty space in the right top corner.

ETMX_endtable_New_Model.png

  7815   Wed Dec 12 14:59:49 2012 ManasaConfiguration40m UpgradingNew tip-tilts layout in BSC

I have updated the BSC layout to include the new tip-tilts. The bigger footprints of the tiptilts are on in the way of the existing PRM oplev path. So I have recalculated new PRM oplev paths. The proposed layout requires a new oplev mirror to be included.

 

bs.png

  7889   Thu Jan 10 12:41:06 2013 ManasaConfiguration40m UpgradingEndtable upgrade for auxiliary green laser : wiki page

 

I have created a wiki page linked here with all details about the endtable upgrade.

The page has links to the new drawing for doubler post to hold the tilt-aligner that holds it. The Faradays will also be mounted similarly on tilt aligners placed on these posts. The bulk mounts will be made of aluminium similar to the colorful cylindrical mounts (images of which can be seen in the archived layouts on the wiki) that hold the He-Ne lasers and few faradays now.

  8228   Tue Mar 5 00:24:52 2013 ManasaConfiguration40m UpgradingEndtable upgrade for auxiliary green laser : customized mount

 Drawing of customized mount for endtable doubler crystal (PV40+PVP2+NP9071) modified and updated on the endtable upgrade wiki page.

  8310   Tue Mar 19 14:21:57 2013 ManasaUpdate40m UpgradingEndtable upgrade : INVENTORY

THE INVENTORY FOR ETMY ENDTABLE.

We definitely need the polaris mirror mounts and cylindrical lenses. As for the rest, we can still go ahead and do the swapping without them.

 

  8312   Tue Mar 19 19:19:50 2013 JenneUpdate40m UpgradingEndtable upgrade : INVENTORY

Does "Ready (in stock)" for the base plates mean in stock at the company, or in hand and already here in the lab?

For the 2" mirror mounts, are we planning on making a decision soon, or a long time in the future....i.e. is this something that should go in the temporary solution column?

For the mode matching and collimating lenses, do we actually have the ones you want in our lens kits?  A lot of those kits are half empty.

ELOG V3.1.3-