40m QIL Cryo_Lab CTN SUS_Lab TCS_Lab OMC_Lab CRIME_Lab FEA ENG_Labs OptContFac Mariner WBEEShop
  40m Log, Page 336 of 344  Not logged in ELOG logo
ID Date Author Type Categorydown Subject
  16164   Thu May 27 11:03:15 2021 Anchal, PacoSummaryALSALS Single Arm Noise Budget

Here's an updated X ARM ALS noise budget.

Things to remember:

  • Major mistake we were making earlier was that we were missing the step of clicking  'Set Phase UGF' before taking the measurement.
  • Click the clear phase history just before taking measure.
  • Make sure the IR beatnotes are less than 50 MHz (or the left half of HP8591E on water crate). The DFD is designed for this much beatnote frequency (from Gautum).
  • We took this measurement with old IMC settings.
  • We have saved a template file in users/Templates/ALS/ALS_outOfLoop_Ref_DQ.xml . This si same as ALS_outOfLoop_Ref.xml except we changed all channels to _DQ.

Conclusions:

  • Attachment 1 shows the updated noisebudget. The estimated and measured RMS noise are very close to eachother.
  • However, there is significant excess noise between 4 Hz and 200 Hz. We're still thinking on what could be the source of these.
  • From 200 Hz to about 3 kHz, the beatnote noise is dominated by AUX residual frequency noise. This can be verified with page 2 of Attachment 2 where coherence between AUX PDH Error signal and BEATX signal is high.
  • One mystery is how the measured beatnote noise is below the residual green laser noise above 3 kHz. Could this be just because the phase tracker can't measure noise above 3kHz?
  • We have used estimated open loop transfer function for AUX from poles/zeros for uPDH box used (this was done months ago by me when I was working on ALS noise budget from home). We should verify it with a fresh OLTF measurement of AUX PDH loop. That's next on our list.
  16168   Fri May 28 17:32:48 2021 AnchalSummaryALSSingle Arm Actuation Calibration with IR ALS Beat

I attempted a single arm actuation calibration using IR beatnote (in the directions of soCal idea for DARM calibration)


Measurement and Inferences:

  • I sent 4 excitation signals at C1:SUS-ITM_LSC_EXC wit 30cts at 31Hz, 200cts at 197Hz, 600cts at 619Hz and 1000cts at 1069 Hz.
  • These were sent simultaneously using compose function in python awg.
  • The XARM was locked to mai laser and alignment was optimized with ASS.
  • The Xend Green laser was locked to XARM and alignment was optimized.
    • Sidenote: GTRX is now normalized to give 1 at near maximum power.
    • Green lasers can be locked with script instead of toggling.
    • Script can be called from sitemap->ALS->! Toggle Shutters->Lock X Green
    • Script is present at scripts/ALS/lockGreen.py.
  • C1:ALS-BEATX_FINE_PHASE_OUT_HZ_DQ was measured for 60s.
  • Also, measured C1:LSC-XARM_OUT_DQ and C1:SUS-ITMX_LSC_OUT_DQ.
  • Attachment 1 shows the measured beatnote spectrum with excitations on in units of m/rtHz.
  • It also shows resdiual displacement contribution PSD of (output referred) XARM_OUT and ITMX_LSC_OUT to the same point in the state space model.
    • Note: that XARM_OUT and ITMX_LSC_OUT (excitation signal) get coherently added in reality and hence the beatnote spectrum at each excitation frequency is lower than both of them.
    • The remaining task is to figure out how to calculate the calibration constant for ITMX actuation from this information.
    • I need more time to understand the mixture of XARM_OUT and ITMX_LSC_OUT in the XARM length node in control loop.
    • Beatnote signal tells us the actual motion of the arm length, not how much ITMX would have actuated if the arm was not locked.
  • Attachment 2 has the A,B,C,D matrices for the full state space model used. These were fed to python controls package to get transfer functions from one point to another in this MIMO.
    • Note, that here I used the calibration of XARM_OUT we measured earlies in 16127.
    • On second thought, maybe I should first send excitation in ETMX_LSC_EXC. Then, I can just measure ETMX_LSC_OUT which includes XARM_OUT due to the lock and use that to get calibration of ETMX actuation directly.

  16171   Tue Jun 1 16:55:32 2021 Anchal, PacoSummaryALSSingle Arm Actuation Calibration with IR ALS Beat

Rana suggested in today's meeting to put in a notch filter in the XARM IR PDH loop to avoid suppressing the excitation line. We tried this today first with just one notch at 1069 Hz and then with an additional notch at 619 Hz and sent two simultaneous excitations.


Measurement and Analysis:

  • We added notch filters with Q=10, depth=50dB, freq=619 Hz and 1069 Hz using foton in SUS-ETMX_LSC filter bank at FM10.
  • We sent excitation signals with amplitudes 600cts and 1000 cts for 619 Hz and 1069 Hz signals respectively.
  • We measured time series data of C1:SUS-ITMX_LSC_OUT_DQ and C1:ALS-BEATX_FINE_PHASE_OUT_HZ_DQ for 60s.
  • Then, spectrum of both signals is measured with Hanning window using scipy.welch function with scaling set to  'spectrum', binwidth=1Hz.
  • The beatnote signal was converted into length units by multiplying it by 1064nm * 37.79m / c.
  • The ratio of the two spectrums at teh excitation frequency multiplies by excitation frequency squared gives us teh calibration constant in units of nm Hz^2/cts.
  • At 619 Hz, we got \frac{5.01}{f^2}nm/cts
  • At 1069 Hz, we got \frac{5.64}{f^2}nm/cts.
  • The calibration factor in use is from \frac{7.32}{f^2} nm/cts from 13984.
  • So, the calibration factor from this methos is about 23% smaller than measured using freeswinging MICH in 13984.
  • One possiblity is that our notch filter is not as effective in avoiding suppresion of excitation.
    • We tried increasing the notch filter depths to 100 dB but got the same result within 2%.
    • We tried changing the position of notch filters. We put them in POX filter banks. Again the result did not change more than 2%.
  • The open loop gain of green PDH at 619 Hz and 1069 Hz must be large enough for our assumption of green laser perfectly following length motion to be true. The UGF of green laser is near 11 kHz.
  • The discrepancy could be due to outdated freeswinging MICH measurement that was done 3 years ago. Maybe we should learn how to do the ITMX calibration using this method and compare our own two measurements.
  16192   Tue Jun 8 11:40:53 2021 Anchal, PacoSummaryALSSingle Arm Actuation Calibration with IR ALS Beat

We attempted to simulate "oscillator based realtime calibration noise monitoring" in offline analysis with python. This helped us in finding about a factor of sqrt(2) that we were missing earlier in 16171. we measured C1:ALS-BEATX_FINE_PHASE_OUT_HZ_DQ when X-ARM was locked to main laser and Xend green laser was locked to XARM. An excitation signal of amplitude 600 was setn at 619 hz at C1:ITMX_LSC_EXC.

Signal analysis flow:

  • The C1:ALS-BEATX_FINE_PHASE_OUT_HZ_DQ is calibrated to give value of beatntoe frequency in Hz. But we are interested in the fluctuations of this value at the excitation frequency. So the beatnote signal is first high passed with 50 hz cut-off. This value can be reduced a lot more in realtime system. We only took 60s of data and had to remove first 2 seconds for removing transients so we didn't reduce this cut-off further.
  • The I and Q demodulated beatntoe signal is combined to get a complex beatnote signal amplitude at excitation frequency.
  • This signal is divided by cts amplitude of excitation and multiplied by square of excitation frequency to get calibration factor for ITMX in units of nm/cts/Hz^2.
  • The noise spectrum of absolute value of  the calibration factor is plotted in attachment 1, along with its RMS. The calibration factor was detrended linearly so the the DC value was removed before taking the spectrum.
  • So Attachment 1 is the spectrum of noise in calibration factor when measured with this method. The shaded region is 15.865% - 84.135% percentile region around the solid median curves.

We got a value of \frac{7.3 \pm 3.9}{f^2}\, \frac{nm}{cts}.  The calibration factor in use is from \frac{7.32}{f^2} nm/cts from 13984.

Next steps could be to budget this noise while we setup some way of having this calibration factor generated in realitime using oscillators on a FE model. Calibrating actuation of a single optic in a single arm is easy, so this is a good test setup for getting a noise budget of this calibration method.

  16196   Wed Jun 9 18:29:13 2021 Anchal, PacoSummaryALSCheck for saturation in ITMX SOS Driver

We did a quick check to make sure there is no saturation in the C1:SUS-ITMX_LSC_EXC analog path. For this, we looked at the SOS driver output monitors from the 1X4 chassis near MC2 on a scope. We found that even with 600 x 10 = 6000 counts of our 619 Hz excitation these outputs in particular are not saturating (highest mon signal was UL coil with 5.2 Vpp). In comparison, the calibration trials we have done before had 600 counts of amplitude, so we can safely increase our oscillator strength by that much yes


Things that remain to be investigated -->

  • What is the actual saturation level?
  • Two-tone intermodulation?
  16242   Fri Jul 9 15:39:08 2021 AnchalSummaryALSSingle Arm Actuation Calibration with IR ALS Beat [Correction]

I did this analysis again by just doing demodulation go 5s time segments of the 60s excitation signal. The major difference is that I was not summing up the sine-cosine multiplied signals, so the error associated was a lot more. If I simply multpy the whole beatnote signal with digital LO created at excitation frequency, divide it up in 12 segments of 5 s each, sum them up individually, then take the mean and standard deviation, I get the answer as:
\frac{6.88 \pm 0.05}{f^2} nm/ctsas opposed to \frac{7.32 \pm 0.03}{f^2} nm/ctsthat was calculated using MICH signal earlier by gautum in 13984.

Attachment 1 shows the scatter plot for the complex calibration factors found for the 12 segments.

My aim in the previous post was however to get a time series of the complex calibration factor from which I can take a noise spectral density measurement of the calibration. I'll still look into how I can do that. I'll have to add a low pass filter to integrate the signal. Then the noise spectrum up to the low pass pole frequency would be available. But what would this noise spectrum really mean? I still have to think a bit about it. I'll put another post soon.

Quote:

We attempted to simulate "oscillator based realtime calibration noise monitoring" in offline analysis with python. This helped us in finding about a factor of sqrt(2) that we were missing earlier in 16171. we measured C1:ALS-BEATX_FINE_PHASE_OUT_HZ_DQ when X-ARM was locked to main laser and Xend green laser was locked to XARM. An excitation signal of amplitude 600 was setn at 619 hz at C1:ITMX_LSC_EXC.

Signal analysis flow:

  • The C1:ALS-BEATX_FINE_PHASE_OUT_HZ_DQ is calibrated to give value of beatntoe frequency in Hz. But we are interested in the fluctuations of this value at the excitation frequency. So the beatnote signal is first high passed with 50 hz cut-off. This value can be reduced a lot more in realtime system. We only took 60s of data and had to remove first 2 seconds for removing transients so we didn't reduce this cut-off further.
  • The I and Q demodulated beatntoe signal is combined to get a complex beatnote signal amplitude at excitation frequency.
  • This signal is divided by cts amplitude of excitation and multiplied by square of excitation frequency to get calibration factor for ITMX in units of nm/cts/Hz^2.
  • The noise spectrum of absolute value of  the calibration factor is plotted in attachment 1, along with its RMS. The calibration factor was detrended linearly so the the DC value was removed before taking the spectrum.
  • So Attachment 1 is the spectrum of noise in calibration factor when measured with this method. The shaded region is 15.865% - 84.135% percentile region around the solid median curves.

We got a value of \frac{7.3 \pm 3.9}{f^2}\, \frac{nm}{cts}.  The calibration factor in use is from \frac{7.32}{f^2} nm/cts from 13984.

Next steps could be to budget this noise while we setup some way of having this calibration factor generated in realitime using oscillators on a FE model. Calibrating actuation of a single optic in a single arm is easy, so this is a good test setup for getting a noise budget of this calibration method.

 

  16333   Wed Sep 15 23:38:32 2021 KojiUpdateALSALS ASX PZT HV was off -> restored

It was known that the Y end ALS PZTs are not working. But Anchal reported in the meeting that the X end PZTs are not working too.

We went down to the X arm in the afternoon and checked the status. The HV (KEPCO) was off from the mechanical switch. I don't know this KEPCO has the function to shutdown the switch at the power glitch or not.
But anyway the power switch was engaged. We also saw a large amount of misalignment of the X end green. The alignment was manually adjusted. Anchal was able to reach ~0.4 Green TRX, but no more. He claimed that it was ~0.8.

We tried to tweak the SHG temp from 36.4. We found that the TRX had the (local) maximum of ~0.48 at 37.1 degC. This is the new setpoint right now.

  16884   Wed Jun 1 11:56:28 2022 yutaUpdateALSShutter driver for GRY replaced

[JC, Yuta]

We replaced a shutter driver for GRY since it stopped working this morning.
We replaced it with a free driver which was sitting on the ITMY table.
The reverse polarity issue of C1:AUX-GREEN_Y_Shutter was fixed by switching one of the switches of the driver from N.O. to N.C.

Also, "Toggle" button was added to IFO_ALIGN.adl so that we can toggle shutters easily to find TEM00. It runs /home/controls/Git/40m/scripts/ALS/ShutterToggler.py.
 

Quote:
 

The green Y shutter now works but in reverese, meaning that sending 1 to C1:AUX-GREEN_Y_Shutter closes the shutter and vice versa. This needs to be fixed.

 

  16945   Fri Jun 24 17:16:59 2022 PacoUpdateALSXAUX cable in control room

[JC, Paco]

We took the long BNC cable that ran from ETMX to ETMY and ran it from ETMX into the control room instead. This way Cici and Deeksha can send small voltage signals to the AUX PZT and read back using the beatnote pickoff that is usually connected to the spectrum analyzer.

  16956   Tue Jun 28 16:59:35 2022 PacoSummaryALSALS beat allan deviation (XARM)

[Paco]

I took ~ 7 minutes of XALS beatnote data with the XAUX laser locked to the XARM cavity, and the XARM locked to PSL to develop an allan deviation estimator. The resulting timeseries for the channel C1:ALS-BEATX_FINE_PHASE_OUT_HZ_DQ (decimated timeseries in Attachment #1) was turned into an allan variance using the "overlapped variable tau estimator":

\sigma_y^2(n\tau_0, N) = \frac{1}{2n^2\tau_0^2(N - 2n)} \sum_{i=0}^{N-2n-1} (x_{i+2n} - 2x_{i+n} + x_i)^2

Where x_k represents the k-th data point in the raw timeseries, and n\tau_0 are the variable integration intervals under which two point variances are computed (the allan variance is a special case of M-point variance, where M=2). Then, the allan deviation is just the square root of that. Attachment #2 shows the fractional deviation (normalized by the mean beat frequency ~ 3 MHz for this measurement) for 100 integration times spanning the full duration (~ 7 min = 420 s).

The code used for this lives in Git/40m/labutils/measuremens/ALS/


If this estimate is any good, wherever the fractional beatnote deviation reaches a minimum value can be used as a proxy for the longest averaging time that give a statistical increase in SNR. After this timescale, the frequency comparison is usually taken over by "environmental instabilities" which I don't think I can comment further on. In our particular estimate, the 100 second integration gives a fractional deviation of ~ 0.44 %, or absolute deviation of 12.925 kHz.

  16959   Tue Jun 28 18:53:16 2022 ranaSummaryALSALS beat allan deviation (XARM)

what's the reasoning behind using df/f_beat instead of df/f_laser ?

Quote:

[Paco]

I took ~ 7 minutes of XALS beatnote data with the XAUX laser locked to the XARM cavity, and the XARM locked to PSL to develop an allan deviation estimator.

 

  16962   Wed Jun 29 14:28:06 2022 PacoSummaryALSALS beat allan deviation (XARM)

I guess it didn't make sense since f_beat can be arbitrarily moved, but the beat is taken around the PSL freq ~ 281.73 THz. Attachment #1 shows the overlapping tau allan deviation for the exact same dataset but using the python package allantools, where this time I used the PSL freq as the base frequency. This time, I can see the minimum fractional deviation of 1.33e-13 happening at ~ 20 seconds.

Quote:

what's the reasoning behind using df/f_beat instead of df/f_laser ?


Another, more familiar interpretation

The allan variance is related to the beatnote spectral density as a mean-square integral (the deviation is then like the rms) with a sinc window.

\sigma^2_\nu = 2 \int_0^{\infty} S_\nu(f) \lvert \frac{\sin({\pi f \tau})}{\pi f \tau} \lvert ^2 df

  16965   Thu Jun 30 18:06:22 2022 PacoUpdateALSOptimum ALS recovery - part I

[Paco]

In the morning I took some time to align the AUX beams in the XEND table. Later in the afternoon, I did the same on the YEND table. I then locked the AUX beams to the arm cavities while they were stabilized using POX/POY and turned off the PSL hepa off temporarily (this should be turned on after today's work).

After checking the the temperature slider sign on the spectrum analyzer of the control room I took some out-of-loop measurements of both ALS beatnotes (Attachment #1) by running diaggui /users/Templates/ALS/ALS_outOfLoop_Ref_DQ.xml and by comparing them against their old references (red vs magenta and blue vs cyan); it seems that YAUX is not doing too bad, but XAUX has increased residual noise around and above 100 Hz; perhaps as a result of the ongoing ALS SURF loop investigations? It does look like the OLTF UGF has dropped by half from ~ 11 kHz to ~ 5.5 kHz.

Anyways let this be a reference measurement for current locking tasks, as well as for ongoing SURF projects.

  16994   Tue Jul 12 19:46:54 2022 PacoSummaryALSHow (not) to take NPRO PZT transfer function

[Paco, Deeksha, rana]

Quick elog for this evening:

  • Rana disabled MC servo .
  • Slow loop also got disengaged.
  • AUX PSL beatnote is best taken with *free running lasers* since their relative frequency fluctuations are lowest than when locked to cavities.
  • DFD may be better to get PZT transfer funcs, or get higher bandwidth phase meter.
  • Multi instrument to be done with updated moku
  • Deeksha will take care of updated moku
  17123   Wed Aug 31 12:57:07 2022 ranaSummaryALScontrol of ALS beat freq from command line -easy

The PZT sweeps that we've been making to characterize the ALS-X laser should probably be discarded - the DFD was not setup correctly for this during the past few months.

Since the DFD only had a peak-peak range of ~5 MHz, whenever the beat frequency drifts out of the linear range (~2-3 MHz), the data would have an arbitrary gain. Since the drift was actually more like 50 MHz, it meant that the different parts of a single sweep could have some arbitrary gain and sign !!! This is not a good way to measure things.

I used an ezcaservo to keep the beat frequency fixed. The attacehed screenshot shows the command line. We read back the unwrapped beat frequency from the phase tracker, and feedback on the PSL's NPRO temperature. During this the lasers were not locked to any cavities (shutters closed, but servos not disabled).

For the purposes of this measurement, I reduced the CAL factor in the phase tracker screen so that the reported FINE_PHASE_OUT is actually in kHz, rather than Hz on this plot. So the green plot is moving by 10's of MHz. When the servo is engaged, you can see the SLOWDC doing some action. We think the calibration of that channel is ~1 GHz/V, so 0.1 SLOWDC Volts should be ~100 MHz. I think there's a factor of 2 missing here, but its close.

As you can see in the top plot, even with the frequency stabilized by this slow feedback (-1000 to -600 seconds), the I & Q outputs are going through multiple cycles, and so they are unusable for even a non serious measurement.

The only way forward is to use less of a delay in the DFD: I think Anchal has been busily installing this shorter cable (hopefully, its ~3-5 m long so that the linear range is more. I think a 10 m cable is too long.), and the sweeps taken later today should be more useful.

  17131   Fri Sep 2 15:40:25 2022 AnchalSummaryALSDFD cable measurements

[Anchal, Yehonathan]

I laid down another temporary cable from Xend to 1Y2 (LSC rack) for also measuring the Q output of the DFD box. Then to get a quick measurement of these long cable delays, we used Moku:GO in oscillator mode, sent 100 ns pulses at a 100 kHz rate from one end, and measured the difference between reflected pulses to get an estimate of time delay. The other end of long cables was shorted and left open for 2 sets of measurements.

I-Mon Cable delay: (955+/- 6) ns / 2 = 477 +/- 3 ns

Q-Mon Cable delay: (535 +/- 6) ns / 2 = 267 +/- 3 ns

Note: We were underestimating the delay in I-Mon cable by about a factor of 2.

I also took the opportunity to take a delay time measurement of DFD delayline. Since both ends of cable were present locally, it made more sense to simply take a transfer function to get a clean delay measurement. This measurement resulted with value of 197.7 +/- 0.1 ns. See attached plot. Data and analysis here.

  17300   Tue Nov 22 20:46:11 2022 RadhikaUpdateALSXARM green laser lock debugging

[Paco, Anchal, Radhika]

We tried to debug why the XARM green laser isn't catching lock with the arm cavity. First I tried to improve alignment:

- Aligned the arm cavity axes by maximizing IR transmission.

- Adjusted M1 and M2 steering mirrors to align the X green beam into the arm. GTRX reached ~0.3.

     - At the vertex table, I adjusted the lens in the GTRX path to focus the beam onto the DCPD. This increased GTRX to ~0.7.

- Visually I confirmed that TEM00 of the green laser was flashing in the arm cavity, fairly centered. But it was not catching lock.

We suspected the XARM AUX PZT might be damaged/unresponsive. Paco, Anchal, and I fed several frequency signals to the PZT and looked for a peak in the AUX-PSL beatnote spectra at the expected frequency. We confirmed that the X-arm AUX PZT is responsive up to 12 kHz (limited by ADC samping rate). We have no reason to suspect the PZT wouldn't be responsive at the PDH modulation frequency of 231 kHz.

Next steps:

- Investigate PDH servo box / error signal.

  17306   Wed Nov 23 17:12:34 2022 RadhikaUpdateALSXARM green laser lock debugging

I tested the mixer by feeding it a 300 kHz signal sourced from a Moku:Go. I kept the LO input the same - 231.25 kHz from the signal generator. The mixer output was a ~70 kHz waveform as expected, so demodulation is not the issue in green locking.

Next I'll align the arm cavities with IR and check to see if the green REFL signal looks as expected. If not, we'll have to invesitage the REFL PD. If the signal looks fine, and we now know it's being properly demodulated, the issue must lie further downstream.

  677   Wed Jul 16 09:27:17 2008 steveUpdateALARMPSL-FSS_RMTEMP alarm is false
Morning alarm sound is good for people who does not drink coffee.
Our 40m alarm is on every morning.
Those whom are not here in the morning thinks that this beeping sound is inspirational.
Would someone change this sound into less punishing form, like mockingbird chirp....

The C1PSL_SETTINGS.adl (40mm PSL Settings ) indicating that
C1:PSL-FSS_INOFFSET (Input Offset Adjust ) should be 0.3 +-0.05 V (red warning tag )

Alarm Handler: 40M pointing to yellow grade warning of PSL-FSS_RMTEM
This is a false alarm.

Two years trend of these channels are here:
  1615   Thu May 21 12:58:32 2009 robConfigurationALARMPEM count-half disabled

I've disabled the alarm for PEM_count_half, using the mask in the 40m.alhConfig file.  We can't do anything about it, and it's just annoying.

  2549   Tue Jan 26 20:18:32 2010 ranaConfigurationALARMop540m: alarms and BLRMS and StripTool restored

I turned the StripTool and ALARMS and BLRMS back on on op540m. Looks like it has been rebooted 5 days ago and no one turned these back on. Also, there was a bunch of junk strewn around its keyboard which I restrained myself from throwing in the trash.

The BLRMS trends should be active now.

  11241   Thu Apr 23 23:07:23 2015 DugoliniFrogsALARMlaptops warning

Please!

Don't put laptops on the ISC Tables!

  11893   Sun Dec 20 23:23:54 2015 ericqUpdateALARMRats.

A small rat / large mouse just ran through the control room. Ugh.

  11901   Wed Dec 23 16:15:47 2015 ranaOmnistructureALARMfire alarm

Fire alarm went off several minutes ago. Talked to security and they said there was no fire. It beeped twice again just now. No one has been working on the IFO today.

  12216   Mon Jun 27 15:26:03 2016 SteveOmnistructureALARMfire alarm test

The fire alarm came on around 15:05  for about 2-3 minutes. We all  left the lab and counted heads.  I called Paul Mackel x2646 (cell 626/ 890- 3259) at Fire Protection Services. He said that this alarm test was planned and we should of got an email notice. Perhaps I missed that notes.

Quote:

Fire alarm went off several minutes ago. Talked to security and they said there was no fire. It beeped twice again just now. No one has been working on the IFO today.

 

  14294   Wed Nov 14 14:35:38 2018 SteveUpdateALARM emergency calling list for 40m Lab

It is posted at the 40m wiki with Gautam' help. Printed copies posted around doors also.

  14863   Fri Sep 6 16:38:24 2019 aaronUpdateALARMAlarm noise from smart-ups machine under workstation?

There was an alarm sound from the Smart-UPS 2200 sitting under the workstation. I see that the 'replace battery' light is red, and this elog tells me that these batteries are replaced every ~1-4 years; the last replacement was march 2016. Holding down the 'test' button for 2-3 seconds results in the alarm sound and does not clear the replace battery indicator.

  2053   Mon Oct 5 14:37:29 2009 AlbertoUpdateABSLAbsolute Length Meaasurement NPRO is on

In the revival of the experiement length measurement for the recycling cavities, I turned the auxiliary NPRO back on. The shutter is closed.

I also recollected all the equipment of the experiment after that during the summer it had been scattered around the lab to be used for other purposes (Joe and Zach's cameras and Stephanie and Koji's work with the new EOM).

  2209   Mon Nov 9 11:14:57 2009 AlbertoUpdateABSLStarted working on the PSL table

I'm working on the PSL table to set up the PLL setup for the AbsL experiment.

  2211   Mon Nov 9 13:17:07 2009 AlbertoConfigurationABSLNPRO on

I turned the auxialiary NPRO for the AbsL Experiment on. Its shutter stays closed.

  2229   Tue Nov 10 19:19:57 2009 AlbertoUpdateABSLRotated polarizer on the PSL table, along the MC input pick off beam

Aligning the beam for the PLL of the AbsL Experiement I rotated the polarizer along the path of the MC Input pick off beam (= the pick off coming from the MC periscope).

  2230   Tue Nov 10 19:21:53 2009 AlbertoUpdateABSLPLL Alignment

I've been trying to lock the PLL for the AbsL Experiment but I can't see the beat (between the auxiliary NPRO and the PSL).

I believe the alignment of the PLL is not good. The Farady Isolator is definitely not perfectly aligned (you can see it from the beam spot after it) but still it should be enough to see something at the PLL PD.

it's probably just that the two beams don't overlap well enough on the photodiode. I'll work on that later on.

I'm leaving the lab now. I left the auxiliary NPRO on but I closed its shutter.

All the flipping mirrors are down.

  2238   Wed Nov 11 15:04:52 2009 AlbertoUpdateABSLWorking on the AP table

I've opened the AP table and I'm working on it.

  2239   Wed Nov 11 16:18:57 2009 AlbertoUpdateABSLWorking on the AP table

Quote:

I've opened the AP table and I'm working on it.

I re-aligned the Faraday on the AP table. I also aligned the beam to the periscope on the PSL and all the other optics along the beam path.  Now I have a nice NPRO beam at the PLL which overlaps with the PSL beam. The alignment has to be further improved because I see no beat yet.

I wonder if the all the tinkering on the PSL laser done recently to revive the power has changed the PSL NPRO temperature and so its frequency. That could also explain why the beat doesn't show up at the same temperature of the NPRO as I used to operate it. Although I scanned the NPRO temperature +/- 2 deg and didn't see the beat. So maybe the misalignment is the casue.

Not feeling very well right now. I need to go home for a while.

AP table closed at the moment.

NPRO shutter closed

  2240   Wed Nov 11 17:10:51 2009 JenneUpdateABSLWorking on the AP table

Quote:

Quote:

I've opened the AP table and I'm working on it.

I re-aligned the Faraday on the AP table. I also aligned the beam to the periscope on the PSL and all the other optics along the beam path.  Now I have a nice NPRO beam at the PLL which overlaps with the PSL beam. The alignment has to be further improved becasue I see no beat yet.

I wonder if the all the tinkering on the PSL laser done recently to revive the power have changed the PSL NPRO temperature and so its frequency. That could also explain why the beat doesn't show up at the same temperature of the NPRO as I used to operate it. Although I scanned the NPRO temperature +/- 2 deg and didn't see the beat. So maybe the misalignment is the casue.

Not feeling very well right now. I need to go home for a while.

AP table closed at the moment.

NPRO shutter closed

 We definitely changed the PSL NPRO temp while fiddling around, trying to increase the laser power.  I think it's noted in the elog both times that it's happened in the last few months (once when Rana, Koji and I worked on it, and then again when it was just Koji), but we opened up the side of the MOPA box so that we could get at (and change) the potentiometer which adjusts the NPRO temp.  So you may have to search around for a while.

  2241   Wed Nov 11 17:33:54 2009 KojiUpdateABSLWorking on the AP table

Yes it did.

For long time, the crystal temperature C1:PSL-126MOPA_LTMP was 43~46deg. Now it is 34deg. Try ~10deg lower temperature.

Quote:

I wonder if the all the tinkering on the PSL laser done recently to revive the power have changed the PSL NPRO temperature and so its frequency. That could also explain why the beat doesn't show up at the same temperature of the NPRO as I used to operate it. Although I scanned the NPRO temperature +/- 2 deg and didn't see the beat.

 

  2250   Thu Nov 12 10:45:36 2009 AlbertoUpdateABSLWorking on the AP table

I've opened the AP table and I'm working on it.

Also auxiliary NPRO turned on and mechanical shutter opened.

  2252   Thu Nov 12 11:34:38 2009 AlbertoUpdateABSLWorking on the AP table

Quote:

Yes it did.

For long time, the crystal temperature C1:PSL-126MOPA_LTMP was 43~46deg. Now it is 34deg. Try ~10deg lower temperature.

Quote:

I wonder if the all the tinkering on the PSL laser done recently to revive the power have changed the PSL NPRO temperature and so its frequency. That could also explain why the beat doesn't show up at the same temperature of the NPRO as I used to operate it. Although I scanned the NPRO temperature +/- 2 deg and didn't see the beat.

 

 Beat found at 30MHz with auxiliary NPRO temperature of 37.19 degrees, vs. ~48 deg as it used to be.

The beat is small (-70dBm). PLL alignment has to be improved.

  2254   Thu Nov 12 12:51:45 2009 AlbertoUpdateABSLWorking on the AP table

Quote:

I've opened the AP table and I'm working on it.

Also auxiliary NPRO turned on and mechanical shutter opened.

AP table and aux NPRO shutter just closed.

  2257   Thu Nov 12 16:53:59 2009 AlbertoUpdateABSLWorking on the AP table

Quote:

Quote:

Yes it did.

For long time, the crystal temperature C1:PSL-126MOPA_LTMP was 43~46deg. Now it is 34deg. Try ~10deg lower temperature.

Quote:

I wonder if the all the tinkering on the PSL laser done recently to revive the power have changed the PSL NPRO temperature and so its frequency. That could also explain why the beat doesn't show up at the same temperature of the NPRO as I used to operate it. Although I scanned the NPRO temperature +/- 2 deg and didn't see the beat.

 

 Beat found at 30MHz with auxiliary NPRO temperature of 37.19 degrees, vs. ~48 deg as it used to be.

The beat is small (-70dBm). PLL alignment has to be improved.

 PLL alignment improved. Beat amplitude = -10dBm. Good enough.

DC readouts at the PLL photodiode:

V_NPRO = -4.44V

V_PSL = -3.76V

The NPRO beam is attenuated by a N.D.=1 attenuator just before going to the photodiode.

Something strange happened at the last. Right before -10dBm, the amplitude of the beat was about -33dBm. Then I was checking the two interfering beams with the IR card and saw that they overlapped quite well. I then turned my head back to the spectrum analyzer and suddenly the beat was at -10dBm. Not only, but a bunch of new peaks had appeared on the spectrum. Either I inadvertently hit the PD moving it to a better position or something else happened.

Like if someone was making some other modulation on the beam or the modulation depth of the PSL's sidebands had gone up.

  2261   Thu Nov 12 18:10:27 2009 AlbertoUpdateABSLPLL Locked

I locked the PLL and made some first measuremtns of the spectrum of the error signal. I'll post them later.

I closed the shutter of the NPRO.

  2321   Tue Nov 24 14:33:22 2009 AlbertoUpdateABSLworking on the AP table

I'm working on the AP table. I also opened the auxiliary NPRO shutter. The auxiliary beam is on its path on the AP table and PSL table.

  2324   Tue Nov 24 19:16:02 2009 AlbertoUpdateABSLworking on the AP table

Quote:

I'm working on the AP table. I also opened the auxiliary NPRO shutter. The auxiliary beam is on its path on the AP table and PSL table.

 Closing the AP table and the NPRO shutter now.

  2326   Wed Nov 25 08:43:08 2009 AlbertoUpdateABSLWorking on the AP table

I'm working on the AP table. I also opened the auxiliary NPRO shutter. The auxiliary beam is on its path on the AP table and PSL table.

  2328   Wed Nov 25 10:20:47 2009 AlbertoUpdateABSLAbsL PLL not able to lock

Last night something happened on the beat between the PSL beam and the auxiliary NPRO beam, that spoiled the quality of the beating I had before. As a result the PLL has become unable to lock the two lasers.

The amplitude of the beat at the spectrum analyzer has gone down to -40 dBm from -10 that it was earlier. The frequency has also become more unstable so that now it can be seen writhing within tens of KHz.

Meanwhile the power of the single beams at the PLL photodiode hasn't changed, suggesting that the alignment of the two beam didn't change much.

Changes in the efficiency of the beating between the two beams are not unusual. Although that typically affects only the amplitude of the beat and wouldn't explain why also its frequency has become unstable. Tuning the alignment of the PLL optics usually brings the amplitude back, but it was uneffective today.

It looks like something changed in either one of the two beams. In particular the frequency of one of the two lasers has become less stable.

Another strange thing that I've been observing is that the amplitude of the beat goes down (several dBm) as the beat frequency is pushed below 50 MHz. Under 10 MHz it even gets to about -60 dBm.

I noticed the change yesterday evening at about 6pm, while I was taking measurements of the PLL open loop tranfer function and everything was fine. I don't know whether it is just a coincidence or it is somehow related to this, but Jenne and Sanjit had then just rebooted the frame builder.

  2329   Wed Nov 25 11:02:54 2009 AlbertoUpdateABSLAbsL PLL not able to lock

Quote:

Last night something happened on the beat between the PSL beam and the auxiliary NPRO beam, that spoiled the quality of the beating I had before. As a result the PLL has become unable to lock the two lasers.

The amplitude of the beat at the spectrum analyzer has gone down to -40 dBm from -10 that it was earlier. The frequency has also become more unstable so that now it can be seen writhing within tens of KHz.

Meanwhile the power of the single beams at the PLL photodiode hasn't changed, suggesting that the alignment of the two beam didn't change much.

Changes in the efficiency of the beating between the two beams are not unusual. Although that typically affects only the amplitude of the beat and wouldn't explain why also its frequency has become unstable. Tuning the alignment of the PLL optics usually brings the amplitude back, but it was uneffective today.

It looks like something changed in either one of the two beams. In particular the frequency of one of the two lasers has become less stable.

Another strange thing that I've been observing is that the amplitude of the beat goes down (several dBm) as the beat frequency is pushed below 50 MHz. Under 10 MHz it even gets to about -60 dBm.

I noticed the change yesterday evening at about 6pm, while I was taking measurements of the PLL open loop tranfer function and everything was fine. I don't know whether it is just a coincidence or it is somehow related to this, but Jenne and Sanjit had then just rebooted the frame builder.

 I confirm what I said earlier. The amplitude of the beat is -10 dBm at 300MHz. It goes down at lower frequencies. In particular it gets to-60 dBm below 20 MHz. For some strange reason that I couldn't explain the beating efficiency has become poorer at low frequencies.

  2334   Wed Nov 25 15:42:27 2009 AlbertoUpdateABSLWorking on the AP table

Quote:

I'm working on the AP table. I also opened the auxiliary NPRO shutter. The auxiliary beam is on its path on the AP table and PSL table.

 NPRO shutter closed

  2337   Wed Nov 25 20:14:58 2009 AlbertoUpdateABSLAbsL PLL not able to lock: problem fixed

Quote:

Last night something happened on the beat between the PSL beam and the auxiliary NPRO beam, that spoiled the quality of the beating I had before. As a result the PLL has become unable to lock the two lasers.

The amplitude of the beat at the spectrum analyzer has gone down to -40 dBm from -10 that it was earlier. The frequency has also become more unstable so that now it can be seen writhing within tens of KHz.

Meanwhile the power of the single beams at the PLL photodiode hasn't changed, suggesting that the alignment of the two beam didn't change much.

Changes in the efficiency of the beating between the two beams are not unusual. Although that typically affects only the amplitude of the beat and wouldn't explain why also its frequency has become unstable. Tuning the alignment of the PLL optics usually brings the amplitude back, but it was uneffective today.

It looks like something changed in either one of the two beams. In particular the frequency of one of the two lasers has become less stable.

Another strange thing that I've been observing is that the amplitude of the beat goes down (several dBm) as the beat frequency is pushed below 50 MHz. Under 10 MHz it even gets to about -60 dBm.

I noticed the change yesterday evening at about 6pm, while I was taking measurements of the PLL open loop tranfer function and everything was fine. I don't know whether it is just a coincidence or it is somehow related to this, but Jenne and Sanjit had then just rebooted the frame builder.

 

Problem found. Inspecting with Koji we found that there was a broken SMA-to-BNC connector in the BNC cable from the photodiode.

  2338   Wed Nov 25 20:24:49 2009 AlbertoUpdateABSLPLL Open Loop Gain Measured

I measured the open loop gain of the PLL in the AbsL experiment.

I repeated the measurement twice: one with gain knob on the universal PDH box g=3.0; the second measurement with g=6.0

The UGF were 60 KHz and 100 KHz, respectively.

That means that one turn of the knob equals to about +10 dB.

  2339   Wed Nov 25 20:28:17 2009 AlbertoUpdateABSLStopped working on the AbsL

I closed the shutter of the NPRO for the night.

ELOG V3.1.3-