40m QIL Cryo_Lab CTN SUS_Lab TCS_Lab OMC_Lab CRIME_Lab FEA ENG_Labs OptContFac Mariner WBEEShop
  40m Log, Page 335 of 348  Not logged in ELOG logo
ID Date Author Typedown Category Subject
  4186   Fri Jan 21 23:55:25 2011 ranaConfigurationLSCPhase Noise Measurement filter

We've set up a beat note measurement between the VCO driver and the Marconi (see Suresh's elog).

Here's the 'unWhiten' filter for compensating the SR560 TF.

It has poles = 1 mHz, 5 kHz, 5 kHz

and  zeros = 30 mHz, 1 kHz

The gain is set to be ~0.001 in the 1-100 Hz band to compensate the G=1000 of the SR560.

Attachment 1: a.gif
a.gif
  4221   Fri Jan 28 13:05:56 2011 KojiConfigurationComputersscript path fixed

We had some issues in terms of the script paths. I have fixed it by replacing /cvs/cds/caltech/scripts to /cvs/cds/rtcds/caltech/c1/scripts

Here is the output of diff

----------------------------------------------


rossa:caltech>diff cshrc.40m cshrc.40m.20110128
44,47c44,45
< # OBSOLETE set path = ($path /cvs/cds/caltech/scripts/general)
< # OBSOLETE set path = ($path /cvs/cds/caltech/scripts/general/netgpibdata)
< set path = ($path /cvs/cds/rtcds/caltech/c1/scripts/general)
< set path = ($path /cvs/cds/rtcds/caltech/c1/scripts/general/netgpibdata)
---
> set path = ($path /cvs/cds/caltech/scripts/general)
> set path = ($path /cvs/cds/caltech/scripts/general/netgpibdata)
50,51c48
< # OBSOLETE setenv PERL5LIB /cvs/cds/caltech/scripts/general:/cvs/cds/caltech/scripts/general/perlmodules:/cvs/cds/caltech/libs/solaris9/usr_local_lib/perl5/5.8.0/:/cvs/cds/rtcds/caltech/c1/scripts/general:/cvs/cds/rtcds/caltech/c1/scripts/general/perlmodules
< setenv PERL5LIB /cvs/cds/caltech/libs/solaris9/usr_local_lib/perl5/5.8.0/:/cvs/cds/rtcds/caltech/c1/scripts/general:/cvs/cds/rtcds/caltech/c1/scripts/general/perlmodules
---
> setenv PERL5LIB /cvs/cds/caltech/scripts/general:/cvs/cds/caltech/scripts/general/perlmodules:/cvs/cds/caltech/libs/solaris9/usr_local_lib/perl5/5.8.0/:/cvs/cds/rtcds/caltech/c1/scripts/general:/cvs/cds/rtcds/caltech/c1/scripts/general/perlmodules
61,64c58,59
< #OBSOLETE setenv PATH ${SOLARISPATH}/bin:$GDSPATH/bin:$ROOTSYS/bin:$TDSPATH/bin:/cvs/cds/caltech/scripts/general/netgpibdata:$PATH
< setenv PATH ${SOLARISPATH}/bin:$GDSPATH/bin:$ROOTSYS/bin:$TDSPATH/bin:/cvs/cds/rtcds/caltech/c1/scripts/general/netgpibdata:$PATH
< #OBSOLETE setenv SCRIPTS /cvs/cds/caltech/scripts
< setenv SCRIPTS /cvs/cds/rtcds/caltech/c1/scripts
---
> setenv PATH ${SOLARISPATH}/bin:$GDSPATH/bin:$ROOTSYS/bin:$TDSPATH/bin:/cvs/cds/caltech/scripts/general/netgpibdata:$PATH
> setenv SCRIPTS /cvs/cds/caltech/scripts
87,88c82
< #OBSOLETE setenv PERL5LIB /cvs/cds/caltech/scripts/general:/cvs/cds/rtcds/caltech/c1/scripts/general/perlmodules
< setenv PERL5LIB /cvs/cds/rtcds/caltech/c1/scripts/general:/cvs/cds/rtcds/caltech/c1/scripts/general/perlmodules
---
> setenv PERL5LIB /cvs/cds/caltech/scripts/general:/cvs/cds/rtcds/caltech/c1/scripts/general/perlmodules
99,100c93
< #OBSOLETE setenv SCRIPTPATH /cvs/cds/caltech/scripts/general:/cvs/cds/caltech/scripts/general/netgpibdata
< setenv SCRIPTPATH /cvs/cds/rtcds/caltech/c1/scripts/general:/cvs/cds/rtcds/caltech/scripts/general/netgpibdata
---
> setenv SCRIPTPATH /cvs/cds/caltech/scripts/general:/cvs/cds/caltech/scripts/general/netgpibdata
103,104c96
< #OBSOLETE setenv SCRIPTS /cvs/cds/caltech/scripts
< setenv SCRIPTS /cvs/cds/rtcds/caltech/c1/scripts
---
> setenv SCRIPTS /cvs/cds/caltech/scripts
135,137c127
< #OBSOLETE alias listenDARM '/cvs/cds/caltech/scripts/c1/listenDARM'
< alias listenDARM '/cvs/cds/rtcds/caltech/c1/scripts/c1/listenDARM'
<
---
> alias listenDARM '/cvs/cds/caltech/scripts/c1/listenDARM'
156,157c146
< #OBSOLETE setenv PERL5LIB /cvs/cds/caltech/scripts/general:/cvs/cds/caltech/scripts/general/perlmodules
< setenv PERL5LIB /cvs/cds/rtcds/caltech/c1/scripts/general:/cvs/cds/rtcds/caltech/c1/scripts/general/perlmodules
---
> setenv PERL5LIB /cvs/cds/caltech/scripts/general:/cvs/cds/caltech/scripts/general/perlmodules
167,168c156
< #OBSOLETE setenv SCRIPTPATH /cvs/cds/caltech/scripts/general:/cvs/cds/caltech/scripts/general/netgpibdata
< setenv SCRIPTPATH /cvs/cds/rtcds/caltech/c1/scripts/general:/cvs/cds/rtcds/caltech/scripts/general/netgpibdata
---
> setenv SCRIPTPATH /cvs/cds/caltech/scripts/general:/cvs/cds/caltech/scripts/general/netgpibdata
172,173c160
< #OBSOLETE setenv SCRIPTS /cvs/cds/caltech/scripts
< setenv SCRIPTS /cvs/cds/rtcds/caltech/c1/scripts
---
> setenv SCRIPTS /cvs/cds/caltech/scripts
198,199c185
< #OBSOLETE alias listenDARM '/cvs/cds/caltech/scripts/c1/listenDARM'
< alias listenDARM '/cvs/cds/rtcds/caltech/c1/scripts/c1/listenDARM'
---
> alias listenDARM '/cvs/cds/caltech/scripts/c1/listenDARM'
288,295c274,277
< #OBSOLETE alias makefiltscreen '/cvs/cds/caltech/scripts/Admin/makeFilterScreen.pl'
< #OBSOLETE alias makelockinscreen '/cvs/cds/caltech/scripts/Admin/makeLockInScreen.pl'
< #OBSOLETE alias f_and_r '/cvs/cds/caltech/scripts/Admin/find_and_replace.pl'
< #OBSOLETE alias plotrgascan '/cvs/cds/caltech/scripts/RGA/plotrgascan'
< alias makefiltscreen '/cvs/cds/rtcds/caltech/c1/scripts/Admin/makeFilterScreen.pl'
< alias makelockinscreen '/cvs/cds/rtcds/caltech/c1/scripts/Admin/makeLockInScreen.pl'
< alias f_and_r '/cvs/cds/rtcds/caltech/c1/scripts/Admin/find_and_replace.pl'
< alias plotrgascan '/cvs/cds/rtcds/caltech/c1/scripts/RGA/plotrgascan'
---
> alias makefiltscreen '/cvs/cds/caltech/scripts/Admin/makeFilterScreen.pl'
> alias makelockinscreen '/cvs/cds/caltech/scripts/Admin/makeLockInScreen.pl'
> alias f_and_r '/cvs/cds/caltech/scripts/Admin/find_and_replace.pl'
> alias plotrgascan '/cvs/cds/caltech/scripts/RGA/plotrgascan'

  4223   Fri Jan 28 15:50:44 2011 JenneConfigurationPSLThe PSL has a name!

Back in the days when we were talking about getting a new 2W PSL, I was given naming rights by Rana for this new laser. 

Today, the 40m PSL was given its new name: Edwin.

Here he is, with his shiny new label:

EdwinTheLaser.jpg

  4258   Mon Feb 7 21:23:11 2011 ranaConfigurationPSLPSL FSS Temperature Sensor Interface box removed

I noticed that the RMTEMP channel was spiking myteriously when Kiwamu opened the PSL door. We found out that the LEMO connectors would intermittently short to the case and cause ~1 deg steps in the temeprature.

We have removed the case and examined it. Not only were the connections to the box intermittent, there was a cold solder joint inside on an unsecured flying add-on opamp. The whole thing is a giant hack.

PK was the last person to work on this box, but I'm sure that he wouldn't have left it in this state. Must be gremlins.

P2070555-1.JPG

The LEMO connectors on the front are the ones touching. The LT1021 is the badly soldered part.

  4266   Wed Feb 9 23:48:12 2011 SureshConfigurationCamerasVideo Cable work: New Labels

[Larisa, Aidan,Steve,Suresh]

   Today was the first session for implementing the new video cabling plan laid out in the document " CCD_Cable_Upgrade_Plan_Jan11_2011.pdf"  by Joon Ho attached to his elog entry 4139.  We started to check and label all the existing cables according to the new naming scheme. 

So far we have labeled the following cables. Each has been checked by connecting it to a monitor near the Video Mux and a camera at the other end.

C1:IO VIDEO 8ETMYF

C1:IO-VIDEO 6 ITMYF

C1:IO-VIDEO 21 SRMF

C1:IO-VIDEO 25 OMCT

C1:IO-VIDEO 19 REFL

C1:IO-VIDEO 22 AS

C1:IO-VIDEO 18 IMCR

C1:IO-VIDEO 14 PMCT

C1:IO-VIDEO 12 RCT

C1:IO-VIDEO 9 ETMXF

C1:IO-VIDEO 1 MC2T

 

Next we need to continue and finish the labeling of existing cables.  We then choose a specific set of cables which need to be laid together and proceed to lay them after attaching suitable lables to them.

 

 

  4273   Fri Feb 11 09:27:03 2011 steveConfigurationVACRGA scan

The RGA scan is normal at day 52 of this pump down.

Light power BS 1064nm ~25mW, ETMX 532nm ~5mW

Attachment 1: rgascan20110211.jpg
rgascan20110211.jpg
Attachment 2: pressurepd70.jpg
pressurepd70.jpg
  4301   Tue Feb 15 11:57:06 2011 steve, valeraConfigurationPSLPMC swap

 We swapped the PMC s/n 2677 for s/n lho006.

The table below summarizes the power levels before and after the PMC swap.

  old new
Ptrans 1.32 W 1.42 W
Transmission 85 % 91.5 %
Refl PDDC locked/unlocked 5.0 %  4.3 %
Loss 7-8 % 2-3 %
Leakage out of the back 10 mW 0.3 mW

 

- The power into the PMC (1.67 W) was measured with Scietech bolometer before the first steering PMC mirror. The leakage through the steering mirrors was measured with Ophir power meter to be 12+8 mW. There is also a lens between the mirrors which was not measured. 

- The power through the PMC was measured after the doubler pick off (105 mW), steering mirror (4 mW), and lens (not measured).

- The estimated reflection from four lens surfaces is 1-2% hence 1% uncertainty in the losses in the table.

- The beams into the PMC and on REFL PD were realigned. The beams downstream of the PMC are blocked as we did not realigned the PMC and doubler paths.

- The trans PD ND filters were removed. The VDC=1.28 V now.

- The NPRO current is 2.102 A

 

Atm 1 old

Atm2  new

Attachment 1: P1070421.JPG
P1070421.JPG
Attachment 2: P1070423.JPG
P1070423.JPG
  4331   Sun Feb 20 21:22:33 2011 rana, kiwamu, valeraConfigurationIOOMC Servo Change

For some reason, Kiwamu forced us to change the MC servo electronics today. We are now combining it with the FSS box.

The MC Servo by itself was locking by just driving the NPRO PZT. Becuase of the ~30 kHz mechanical resonances of that system, our badnwidth is limited. To get higher bandwidth, we can either use a wideband frequency shifter like the AOM or just use the ole FSS combo of PZT/EOM. The old MC servo was able to get 100 kHz because it used the AOM.

So we decided to try going through the FSS box. The MC servo board's FAST output now goes into the IN1 port (500 Ohm input impedance) of the TTFSS box. This allows us to use the FSS as a kind of crossover network driving the PZT/EOM combo.

At first it didn't work because of the 5V offset that Jenne, Larisa, Koji, and Suresh put into there, so I cut the wire on the board that connected the power to the summing resistor and re-installed the MC Servo board.

We also removed the old Jenne-SURF 3.7 MHz LP between the MC mixer and servo. Also removed the Kevin-box (1.6:40) stuck onto the NPRO PZT.

We have yet to measure the UGF, but it seems OK. The PCDRIVE is too high (~5-6V) so there is still some high frequency oscillation. Needs some investigation.

* To get the FSS SLOW servo to work (change NPRO temperature to minimize PZT drive onto NPRO) I set the setpoint to 5V in the script so that we operate the FSS box output at 5V mean. I set the threshold channel to point to MC_TRANS_SUM instead of RC_TRANSPD. I also had to fix the crontab on op340m so that it would point to the right scripto_cron script which runs the FSSSlowServo, RCThermalPID.pl, etc. I also had to fix scripto_cron itself since it had the old path definitions and was not loading up the EpicsTools.pm library.

** Also, I was flabbergasted by the dog clamping on the last turning mirror into the MC. Barely touching the mount changes the alignment.

  4335   Tue Feb 22 00:18:47 2011 valeraConfiguration c1ioo and c1ass work and related fb crashes/restarts

I have been editing and reloading the c1ioo model last two days. I have restarted the frame builder several times. After one of the restarts on Sunday evening the fb started having problems which initially showed up as dtt reporting synchronization error. This morning Kiwamu and I tried to restart the fb again and it stopped working all together. We called Joe and he fixed the fb problem by fixing the time stamps (Joe will add details to describe the fix when he sees this elog).

The following changes were made to c1ioo model:

- The angular dither lockins were added for each optics to do the beam spot centering on MC mirrors. The MCL signal is demodulated digitally at 3 pitch and 3 yaw frequencies. (The MCL signal was reconnected to the first input of the ADC interface board).

- The outputs of the lockins go through the sensing matrix, DOF filters, and control matrix to the MC1,2,3 SUS-MC1(2,3)_ASCPIT(YAW) filter inputs where they sum with dither signals (CLOCK output of the oscillators).

- The MCL_TEST_FILT was removed

The arm cavity dither alignment (c1ass) status:

- The demodulated signals were minimized by moving the ETMX/ITMX optic biases and simultaneously keeping the arm buildup (TRX) high by using the BS and PZT2. The minimization of the TRX demodulated signals has not been successful for some reason.

- The next step is to close the servo loops REFL11I demodulated signals -> TMs and TRX demodulated signals -> combination of BS and PZTs.

The MC dither alignment (c1ioo) status:

- The demodulated signals were obtained and sensing matrix (MCs -> lockin outputs) was measured for pitch dof.

- The inversion of the matrix is in progress.

- The additional c1ass and c1ioo medm screens and up and down scripts are being made.

  4345   Wed Feb 23 16:34:42 2011 valeraConfiguration pmc lens staged

I put the PMC last mode matching lens (one between the steering mirrors) on a translation stage to facilitate the PMC mode matching.

Currently 4% of incident power is reflected by the PMC. But the reflected beam does not look "very professional" on the camera to Rana - meaning there is too much TEM20 (bulls eye) mode in the reflected beam.

I locked the  PMC  on bulls eye mode and measured  the ratio of the TEM20/TEM00 in transmission to be 1.3%. Thus the PMC mode matching is ~99% and the incident beam HOM content is ~3%.

While working on the PMC I found that the source of PMC "blinking" is not the frequency control signal from MC to the laser (the MC servo was turned off) but possibly some oscillation which could be affected even by a small change of the pump current 2.10 A to 2.08 A. I showed this behaviour to Kiwamu and we decided to leave the the current at 2.08 A for now where things look stable and investigate later.

Attachment 1: PMCrefl.JPG
PMCrefl.JPG
Attachment 2: P1070438.JPG
P1070438.JPG
Attachment 3: P1070439.JPG
P1070439.JPG
  4350   Thu Feb 24 16:47:26 2011 steveConfigurationPSL shutter is back on the PSL output

Uniblitz mechanical shutter was placed into the beam path of the PSL output with razor beam trap. The output power was 1.39W at 2.08A

It is working from the MEDM screen "old map" C1IOO_Mech_Shutter.adl

Attachment 1: P1070441.JPG
P1070441.JPG
  4367   Wed Mar 2 16:51:53 2011 steveConfigurationGreen Lockingmech shutter in place at the south end

I moved old POX shutter from ITMY optical table to the south end. MEDM POX mechanical shutter screen is now closing the green beam  injection into the Y arm.

I kluged in a 40m long bnc cable that Alberto left on the floor for control. It is labelled POX-sht  This is a temporary set up.

  4368   Wed Mar 2 17:19:58 2011 AidanConfigurationGreen LockingMoved PDH PD on end table

As previously noted, there are multiple beams coming back from the ETM surface onto the PDH PD on the end table. They are spread out in a vertical pattern. All the spots swing together (as the ETM moves?).

I moved the PDH Green PD on the end table so that it was further away from the Faraday and I added an iris in between the Faraday and the PD. Now only the principle reflection from the ETM is incident on the PD. See attached photos. In order to sneak past the neighbouring optics, I had to steer the beam down a bit, so the PD is now lower than it previously was.

Just FYI: the angle between the returning beams is about 5 or 6 mrad at the PD. Before the beams get to the PD they go through a telescope that de-magnifies the beam by about 5 or 6 times. This implies that the angle between adjacent returning beams from the ETM is around 1 mrad at the ETM.

This does make the position of the spot on the PD more susceptible to the alignment of the ETM - we should use a short focal length lens and image the ETM plane onto the PD.

 

First image - overview of table

Second image - the three returning beams immediately before the IRIS

Third image - a close up of the IRIS and PDH PD. 

 

 

 

Attachment 1: P1000223-a.jpg
P1000223-a.jpg
Attachment 2: P1000218.jpg
P1000218.jpg
Attachment 3: P1000224.jpg
P1000224.jpg
  4402   Thu Mar 10 17:03:48 2011 Larisa ThorneConfigurationElectronicscalculations for passive low pass filter on X arm

[Kiwamu, Larisa] 

 

We want to increase gain in the lower frequencies, so a circuit must be designed (a passive low pass filter). 

 

First, measurements were taken at the X arm for impedance and capacitance, which were 104.5kOhms and 84.7pF respectively. Kiwamu decided to make the circuit resemble a voltage divider for ease of calculation, such that Vout/Vin would be a ratio of some values of the equivalent circuit reactance values. After a few algebra mistakes, this Vout/Vin value was simplified in terms of the R, C measured and the R', C' that would be needed to complete the circuit. 

Since the measured C was very small and the measure R was fairly high, the simplified form allowed us to pick values of R' and C' that would make the critical frequency occur at 0.1Hz: set the R' resistance to 1MOhm and C' capacitance to 10uF, which would yield a gain ~1.

With these values a circuit we can start actually making the circuit.

  4407   Sun Mar 13 00:00:58 2011 jzweizig, ranaConfigurationDAQNDS2 code change and restart

 John has changed the NDS2 code and restarted it on Mafalda. The issue is that it goes off the rails everytime the DAQD is restarted on FB because of filename convention war between GDS and CDS.

Until this is resolved, please make sure to restart the NDS2 process on Mafalda everytime you restart DAQD by doing this:

pkill -KILL nds2

/users/jzweizig/nds2-mafalda/start_nds2

  4416   Fri Mar 18 17:55:58 2011 SureshConfigurationGreen LockingWork Plan for Y-end Aux laser installation

A rough time-table and the various tasks are given below:

Note:  700mW NPRO sitting on AP table (Model No: 126-1064-700, Sl No. 415)  = Alberto's laser

 

 

Y-arm Aux laser installation
 1

Temperature dependence of frequency of Alberto's laser:

 a) Shifting Alberto's Laser (AL) to the PSL table and setting up a beat frequency measurement between AL and PSL

 b) Determining the frequency vs Temperature curve for the AL

Mar 21st to 25th Bryan and Suresh
2 Re-positioning the Input beam onto the IP-ANG-PD and realigning the X-arm Mar 21st to 25th Kiwamu and his 'team'  :-)
3

Repositioning the optics on the Y-end  table and relocating Alberto's laser ( at this point it will be rechiristened as Y-End-NPRO )

Mar 27th - 28th
Bryan and Suresh
4 Maximising the doubling effiiciency and obtaining the PD and QPD signals into the CDS Mar 29th - Apr 1st "
5 Aligning the Y-end green to pass through the Y-arm and locking the green to the Y arm Apr 3 - 8th "
6 Aligning the IR beam to the Y- arm and locking the Y arm to the IR Apr 10 - 15 "

 

  4422   Tue Mar 22 00:03:29 2011 BryanConfigurationGreen LockingPSL vs Y arm laser temperature pairing

 OK. Today we did the same type of measurement for the Y arm laser as was done for the X arm laser here: http://nodus.ligo.caltech.edu:8080/40m/3759 

And attached here is a preliminary plot of the outcome - oddities with adding on the fitted equations, but they go as follows

(Red)    T_yarm = 1.4435*T_PSL - 14.6222

(Blue)    T_yarm = 1.4223*T_PSL - 10.9818

(Green) T_yarm = 1.3719*T_PSL - 6.3917


 

 PSL_vs_Y_arm_Temperatures.png

It's a bit of a messy plot - should tidy it up later...

  4423   Tue Mar 22 00:23:20 2011 JenneConfigurationGreen LockingPSL vs Y arm laser temperature pairing

Quote:

 OK. Today we did the same type of measurement for the Y arm laser as was done for the X arm laser here: http://nodus.ligo.caltech.edu:8080/40m/3759 

And attached here is a preliminary plot of the outcome - oddities with adding on the fitted equations, but they go as follows

(Red)    T_yarm = 1.4435*T_PSL - 14.6222

(Blue)    T_yarm = 1.4223*T_PSL - 10.9818

(Green) T_yarm = 1.3719*T_PSL - 6.3917

 

 It's a bit of a messy plot - should tidy it up later...

 I'm going to take the easy question - What are the pink data points??

  4425   Tue Mar 22 19:03:45 2011 BryanConfigurationGreen LockingPSL vs Y arm laser temperature pairing

Quote:

 I'm going to take the easy question - What are the pink data points??

And I'm going to answer the easy question - they're additional beat frequency temperature pair positions which seem to correspond to additional lines of beat frequencies other than the three highlighted, but that we didn't feel we had enough data points to make it worthwhile fitting a curve.

It's still not entirely clear where the multiple lines come from though - we think they're due to the lasers starting to run multi-mode, but still need a bit of thought on that one to be sure...

  4437   Thu Mar 24 13:50:30 2011 BryanConfigurationGreen LockingY arm laser

 Just a quick update... the Lightwave laser has now been moved up to the end of the Y arm. It's also been mounted on the new mounting block and heatsinks attached with indium as the heat transfer medium.

A couple of nice piccies...IMG_0188.JPG

Attachment 2: IMG_0190.JPG
IMG_0190.JPG
  4439   Thu Mar 24 15:30:59 2011 BryanConfigurationGreen LockingPSL vs Y arm laser temperature pairing
Fine-grained temperature vs temperature data around the current operating point of the PSL laser.
 
The last set of data was taken in 1 degreeC steps, but we want a bit more detail to find out what happens around the current PSL operating point. So we took some data with a 0.1 degC resolution.

The good news is that we seem to be running in a linear region of the PSL laser with a degree or so of range before the PSL Innolight laser starts to run multi-mode. On the attached graph we are currently running the PSL at 32.26degrees (measured) which puts us in the lower left corner of the plot. The blue data is the Lightwave set temperature (taken from the display on the laser controller) and the red data is the Lightwave laser crystal measured temperature (taken from the 10V/degC calibrated diagnostic output on the back of the laser controller - between pins 2 and 4).

The other good news is that we can see the transition between the PSL laser running in one mode and running in the next mode along. The transition region has no data points because the PMC has trouble locking on the multi-mode laser output - you can tell when this is happening because, as we approach the transition the PMC transmitted power starts to drop off and comes back up again once we're into the next mode region (top left portion of the plot).

 

The fitted lines for the region we're operating in are:

Y_arm_Temp_meas = 0.95152*T_PSL + 3.8672

Y_arm_Temp_set = 0.87326*T_PSL + 6.9825

Temp_Beating_Day02_html_m2d719182.jpg

 

  4440   Thu Mar 24 16:33:32 2011 BryanConfigurationGreen LockingPSL vs Y arm laser temperature pairing

X_arm and Y_arm vs PSL comparison.

 

 

Just a quick check of the performance of the X arm and Y arm lasers in comparison to the PSL. Plotting the data from the X arm vs PSL and Y arm vs PSL on the same plot shows that the X arm vs the PSL has no observable trending of mode-hopping in the laser, while the Y arm vs the PSL does. Suspect this is due to the fact that the X arm and PSL are both Innolight lasers with essentially identical geometry and crystals and they'll tend to mode-hop at roughly the same temperatures - note that the Xarm data is rough grained resolution so it's likely that any mode-hop transitions have been skipped over. The Lightwave on the other hand is a very different beast and has a different response, so won't hop modes at the same temperatures.

Given how close the PSL is to one of the mode-transition regions where it's currently operating (32.26 degC) it might be worth considering shifting the operating temperature down one degree or so to around 31 degC? Just to give a bit more headroom. Certainly worth bearing in mind if problems are noticed in the future.

PSL_vs_X-end_T_data_fine.jpg

  4459   Wed Mar 30 02:55:02 2011 SureshConfigurationElectronicsRF System : Status and Plans

I have prepared several diagrams outlining the current state of the RF System.

These are uploaded into the svn40m here  and will be kept uptodate as we complete various parts of the task.  These plans have taken into account

the new priorities of the LSC (set out by Koji here )

We (Koji, Kiwamu and I) took stock of the RF cables which we have inherited from the earlier RF system and have made new plans for them.

I took stock of the filters purchased for the modifying the demod boards.  We have pretty much everything we need so I will start modifying the boards right away.   The following table summarises the modifications

 

PD freq # of PDs

LP Filter (U5)

  Demod board

Qty available Inline HP filter Qty available
11 MHz 5 SCLF-10.75 7 - -
22 MHz 1 SCLF-21.4 3 - -
33 MHz 2 SCLF-36 3 SHP-25 1
55 MHz 3 SCLF-65 4 SHP-50 2
110 MHz 1 SCLF-135 3 SHP-100 1
165MHz 3 SCLF-190 1 SHP-150 1

We seem to have a spare SHP-175.  I was wondering where that is supposed to go. 

This is the status and tentative schedule for completing the various tasks.  I have put the dates based on priority and state of the hardware.

 

The RF Cable layout plans are drawn on top of a Lab Layout.  The various subsystems are drawn (not to scale) on separate layers.  The graffle files are located here  .  I thought they might come in handy for others as well.

 

 

  4460   Wed Mar 30 16:32:29 2011 AidanConfigurationComputer Scripts / ProgramsAdded a sitemap alias

I added an alias to the sitemap MEDM screen in /cvs/cds/caltech/target/cshrc.40m

Now you can enjoy launching sitemap from a terminal.

alias sitemap 'medm -x /cvs/cds/rtcds/caltech/c1/medm/sitemap.adl'

  4463   Wed Mar 30 18:50:57 2011 KojiConfigurationComputer Scripts / ProgramsAdded a sitemap alias

I thought that "m40m" was the traditional alias for the sitemap...

rossa:~>alias
...

m40m ${medm_base} ${medm_newtail} &
...
sitemap medm -x /cvs/cds/rtcds/caltech/c1/medm/sitemap.adl

rossa:~>set|grep medm
medm_base       medm
medm_newtail    -x /opt/rtcds/caltech/c1/medm/sitemap.adl

medm_tail       -x /cvs/cds/caltech/medm/sitemap.adl

Quote:

I added an alias to the sitemap MEDM screen in /cvs/cds/caltech/target/cshrc.40m

Now you can enjoy launching sitemap from a terminal.

alias sitemap 'medm -x /cvs/cds/rtcds/caltech/c1/medm/sitemap.adl'

 

 

  4464   Wed Mar 30 19:43:33 2011 BryanConfigurationGreen LockingThe wonderful world of mode-matching

Right. I've got a whole load of info and data and assorted musings I've been saving up and cogitating upon before dumping it into these hallowed e-pages. there's so much I'll probably turn it into a threaded entry rather than put everything in one massive page.

An overview of what's coming:

I started out using http://lhocds.ligo-wa.caltech.edu:8000/40m/Advanced_Techniques/Green_Locking?action=AttachFile&do=get&target=modematch_END.png as a reference for roughly what we want to achieve... and from http://nodus.ligo.caltech.edu:8080/40m/100730_093643/efficiency_waist_edit.png we need a waist of about 50um at the green oven. Everything else up to this point is pretty much negotiable and the only defining things that matter are getting the right waist at the doubling oven with enough available power and (after that point) having enough space on the bench to separate off the green beam and match it into the Y arm.

 

So…

Step 1: Measure the properties of the beam out of the laser. Really just need this for reference later because we'll be using more easily measurable points on the bench.


Step 2:
Insert a lens a few cm from the laser to produce a waist of about of a few 100um around the Faraday. Note that there's really quite a lot of freedom here as to where the FI has to be - on the X arm it's around columns 29/30 on the bench, but as long as we get something that works we can get it closer to the laser if we need to.


Step 3:
After inserting the FI need to measure the beam after it (there *will* be some distortion and the beam is non-circular to begin with)


Step 3b:
If beam is non-circular, make it circular.


Step 4:
Insert a lens to produce a 50um waist at the doubling oven position. This is around holes 7/8 on the X arm but again, we're free to change the position of the oven if we find a better solution. The optical set-up is a little bit tight near that side of the bench on the X end so we might want to try aiming for something a bit closer to the middle of the bench? Depends how the lenses work out, but if it fits on the X end it will fit on the Y end.

 
Oh... almost forgot. While I've been doing most of the grunt-work and heavy lifting - thanks go out to Suresh, Kiwamu, Koji, Steve and everyone else who's helped out with discussion of results and assorted assists to numerous to mention.

 

  4465   Wed Mar 30 19:54:19 2011 BryanConfigurationGreen LockingThe wonderful world of mode-matching

RIght! Overview out of the way - now comes the trivial first bit

 

Step 1: Beam out of the laser - this will be tricky, but we'll see what we can actually measure in this set-up. Can't get the Beamscan head any closer to the laser and using a lambda/2 plate + polariser to control power until the Faraday isolator is in place. Using 1 inch separation holes as reference points for now - need better resolution later, but this is fine for now and gives an idea of where things need to go on the bench. The beam is aligned to the 3rd row up (T) for all measurements, the Beamscan spits out diameters (measuring only the 13.5% values) so convert as required to beam radius and the beam is checked to ensure a reasonable Gaussian profile throughout.

 

Position A1_13.5%_width A2_13.5%_width

(bench) (um mean) (um mean)

32 2166.1 1612.5

31 2283.4 1708.3

30 2416.1 1803.2

29 2547.5 1891.4

27 2860.1 2070.3

26 2930.2 2154.4

25 3074.4 2254.0

24 3207.0 2339.4

 

OK. As expected, this measurement is in the linear region of the beampath - i.e. not close to the  waist position and beyond the Rayleigh length) so it pretty much looks like two straight lines. There's no easy way to get into the path closer to the laser, so reckon we'll just need to infer back from the waist after we get a lens in there. Attached the plot, but about all you really need to get from this is that the beam out of the laser is very astigmatic and that the vertical axis expands faster than the horizontal.

Not terribly exciting, but have to start somewhere.

 

laser_output_non_circular.png

 

 

 

  4466   Wed Mar 30 20:08:34 2011 BryanConfigurationGreen LockingThe wonderful world of mode-matching

Step 2: Getting the beam through the Faraday isolator (FI).

Started out with an f=100mm lens at position 32,T on the bench which gave a decent looking waist of order 100 um in the right sort of position for the FI, but after checking the FI specs, it's limited to 500W/cm^2. In other words, if we have full power from the laser passing into it we'd need a beam width of more than 211 um. Solution? Use an f=150mm lens instead and don't put the FI at the waist. I normally don't put a FI at a waist anyway, for assorted reasons - scattering, thermal lensing, non-linear magnetic fields, the sharp changing of the field components in an area where you want as constant a beam as possible.  Checked with others to make sure they don't do things differently around these parts… Koji says it doesn't matter as long as it passes cleanly through the aperture. So… next step is inserting the Faraday.

The beam profiles in vertical and horizontal around the FI position with the f=150mm lens in place are attached. Note that the FI will be going in at around 0.56m.

Beam_Matching_02c_Vertical.pngBeam_Matching_02c_Horizontal.png

 

 

 

  4467   Wed Mar 30 20:14:17 2011 BryanConfigurationGreen LockingThe wonderful world of mode-matching

Additional:

I fired up some old waistplotter routines, and set the input conditions as the measured waist after the lens and used that to work out what the input waist is at the laser. It may not be entirely accurate, but it /will/ be self consistent later on.

 

Vertical waist      = 105.00 um at 6.282 cm after laser output (approx)

Horizontal waist = 144.63 um at 5.842 cm after laser output (approx)

 

Definitely astigmatic.

 

  4468   Wed Mar 30 20:31:30 2011 BryanConfigurationGreen LockingThe wonderful world of mode-matching

Step 3: Inserting FI and un-eliptical-ification of the beam

The FI set up on it's mount and the beam passes through it - centrally through the apertures on each side. Need to make sure it doesn't clip and also make sure we get 93% through (datasheet specs say this is what we should achieve). We will not achieve this, but anything close should be acceptable.

Setting up for minimum power through the FI is HWP @125deg.

Max is therefore @ 80deg

 

Power before FI = 544 mW

Power after FI =     496 mW (after optimising input polarisation)

Power dumped at input crystal = 8.6mW

Power dumped at input crystal from internal reflections etc = 3.5mW

Power dumped at output crystal on 1st pass = approx 8mW

 

OK. that gives us a 90.625% transmission and a 20.1mW absorption/unexplained loss.

 

Well - OK. The important part about isolators isn't their transmission, it's about how well they isolate. Let's see how much power gets ejected on returning through the isolator…

 

Using a beam splitter to pick off light going into and returning from the FI. A 50/50 BS1-1064-50-1025-45P. And using a mirror near the waist after the FI to send the beam back through. There are better ways to test the isolation performance of FI's but this will suffice for now - really only want to know if there's any reasonable isolation at all or if all of the beam is passing backwards through the device.

 

Power before BS = 536 mW (hmmn - it's gone down a bit)

Power through BS = (can't access ejected on first pass)

Power through FI = 164 mW (BS at odd angle to minimise refractive effect so less power gets through)

Power lost through mirror = 8.3mW (mirror is at normal incidence so a bit transmissive)

 

Using earlier 90.6% measurement as reference, power into FI = 170.83 mW

So BS transmission = 170.83/536 = 0.3187

BS reflectivity therefore = 1 - 0.3187 = 0.6813

 

Power back into FI = Thru FI - Thru mirror = 155.7 mW

 

Power reflected at BS after returning through FI = 2.2mW

Baseline power at BS reflection from assorted internal reflections in FI (blocked return beam) = 1.9mW

Note - these reflections don't appear to be back along the input beam, but they *are* detectable on the power meter.

 

Actual power returning into FI that gets reflected by BS = 0.3 mW

(note that this is in the fluctuating noise level of measurement so treat as an upper limit)

 

Accounting for BS reflectivity at this angle, this gives a return power = 0.3/0.6813 = 0.4403 mW

 

Reduction ratio (extinction ratio) of FI =  0.4403/155.7 = 0.00282

 

Again - note that this upper limit measurement is as rough and ready as it gets. It's easy to optimise this sort of thing later, preferable on a nice open bench with plenty of space and a well-calibrated photodiode. It's just to give an idea that the isolator is actually isolating at all and not spewing light back into the NPRO.

 

Next up… checking the mode-matching again now that the FI is in place. The beam profile was scanned after the FI and the vertical and horizontal waists are different...

  4469   Wed Mar 30 20:50:43 2011 BryanConfigurationGreen LockingThe wonderful world of mode-matching

Step 3b: Non-circular? We can fix that...

A quick Beamscan sweep of the beam after the Faraday:

Position A1_13.5%_width A2_13.5%_width

(bench) (um mean) (um mean)

25.8 503.9 478.8

25 477.5 489.0

24 447.1 512.4

21 441.6 604.5

20 476.3 645.4

19 545.4 704.1

18 620.3 762.8

 

After_Faraday.png

 

OK. It looks not too bad - doesn't look too different from what we had. Note that the x axis is in local table units - I found this useful for working out where things were relative to other things (like lenses and the FI) - but it means the beam propagates from right to left in the plot. in other words, the horizontal waist occurs first and is larger than the vertical waist. Also - they're not fitted curves - they're by-eye, best guesses and there's no solution for the vertical that doesn't involve offsets... discussion in a later part of the thread.

 

Anyway! The wonderful thing about this plot is that the horizontal and vertical widths cross and the horizontal focussing at this crossing point is shallower than the vertical. This means that we can put a lens in at the crossing point and rotate it such that the lens is stronger in the horizontal plane. The lens can be rotated until the effective horizontal focal length is right to fix the astigmatism.

 

 

I used a 200mm lens I had handy - a rough check sweeping the Beamscan quickly indicated should be about right though. Adjusting the angle until the beam size at a distant point is approx circular - I then move the profiler and adjust again. Repeat as required. Now… taking some data. with just that lens in:

 

Position A1_13.5%_width A2_13.5%_width

(bench) (um mean) (um mean)

24 371.7 366.1

21 360.3 342.7

20 447.8 427.8

19 552.4 519.0

18 656.4 599.2

17 780.1 709.9

16 885.9 831.1

 

After_Faraday_and_Rotated_Lens.png

 

Well now. That looks quite OK. Fit's a bit rubbish on vertical but looks like a slight offset on the measurement again.

The angle of the lens looks awful, but if it's stupid and it works then it isn't stupid. If necessary, the lens can be tweaked a bit more, but there's always more tweaking possible further down the line and most of the astigmatic behaviour has been removed. It's now just a case of finding a lens that works to give us a 50 um beam at the oven position...

 

 

  4470   Wed Mar 30 21:21:15 2011 BryanConfigurationGreen LockingThe wonderful world of mode-matching

Step 4: Matching into the oven

 

 

Now that the astigmatism is substantially reduced, we can work out a lens solution to obtain a 50um waist *anywhere* on the bench as long as there's enough room to work with the beam afterwards. The waist after the Faraday and lens is at position 22.5 on the bench. A 50 mm lens placed 18 cm after this position (position 14.92 on the bench) should give a waist of 50 um at  24.57 cm after the waist (position 12.83 on the bench). This doesn't give much room to measure the beam waist in though - the Beamscan head has a fairly large finite size… wonder if there's a slightly less strong lens I could use…

OK. With a 66 mm lens at 23 cm (position 13.45 on the bench) after the waist we get a 50 um waist at 31.37 cm after the waist (position 10.15 on the bench). 

 

Oven_Lens_Solution_66mm.png

 

Closest lens I found was 62.9mm which will put the 50um point a bit further towards the wall, but on the X-arm the oven is at position 8.75 ish. So anything around there is fine.

 

Using this lens and after a bit of manual fiddling and checking with the Beamscan, I figured we needed a close in, fine-grained measurement so set the Beamscan head up on a micrometer stage Took a whoie bunch of data around position 9 on the bench:

 

 

Position A1_13.5%_width A2_13.5%_width

(mm) (um mean) (um mean)

-15 226.8 221.9

-14 210.9 208.3

-13 195.5 196.7

-12 181.0 183.2

-11 166.0 168.4

-10 154.0 153.1

-9 139.5 141.0

-8 127.5 130.0

-7 118.0 121.7

-6 110.2 111.6

-5 105.0 104.8

-4 103.1 103.0

-3 105.2 104.7

-2 110.9 110.8

-1 116.8 117.0

0 125.6 125.6

0 125.6 125.1

1 134.8 135.3

2 145.1 145.6

3 155.7 157.2

4 168.0 168.1

5 180.5 180.6

6 197.7 198.6

7 211.4 209.7

8 224.0 222.7

9 238.5 233.7

10 250.9 245.8

11 261.5 256.4

12 274.0 270.4

13 291.3 283.6

14 304.2 296.5

15 317.9 309.5

 

Matching_Into_Green_Oven_zoomed_out.pngMatching_Into_Green_Oven_zoomed_in.png

 

And at this point the maximum power available at the oven-waist is 298mW. With 663mW available from the laser with a desired power setting of 700mW on the supply. Should make sure we understand where the power is being lost. The beam coming through the FI looks clean and unclipped, but there is some stray light around.

 

Position A1_13.5%_width A2_13.5%_width

(bench) (um mean) (um mean)

7 868.5   739.9

6 1324 1130

5 1765 1492

4 2214 1862

 

The plot looks pretty good, but again, there looks to be an offset on the 'fitted' curve. Taking a couple of additional points further on to make sure it all works out as the beam propagates. I took a few extra points at the suggestion of Kiwamu and Koji - see the zoomed out plot.  The zoomed in plot has by-eye fit lines - again, because to get the right shape to fit the points there appears to be an offset. Where is that coming from? My suspicion is that the Beamscan doesn't take account of the any background zero offsets when calculating the 13.5% and we've been using low power when doing these measurements - very small focussed beams and didn't want to risk damage to the profiler head.

 

Decided to take a few measurements to test this theory. Trying different power settings and seeing if it gives different offset and/or a changed width size

 

7 984.9 824.0 very low power

7 931.9 730.3 low power

7 821.6 730.6 higher power

7 816.4 729.5 as high as I'm comfortable going

 

Trying this near the waist…

 

8.75 130.09 132.04 low power

8.75 106.58 105.46 higher power

8.75 102.44 103.20 as high as it can go without making it's saturated

 

So it looks like offset *is* significant and the Beamscan measurements are more accurate with more power to make the offsets less significant. Additionally, if this is the case then we can do a fit to the previous data (which was all taken with the same power setting) and simply allow the offset to be a free parameter without affecting the accuracy of the waist calculation. This fit and data coming to an e-log near you soon.

 

Of course, it looks from the plots above (well... the code that produces the plots above) that the waist is actually a little bit small (around 46um) so some adjustment of the last lens back along the beam by about half a cm or so might be required.

 
  4473   Thu Mar 31 02:59:49 2011 KojiConfigurationGreen LockingThe wonderful world of mode-matching

 I went through the entries.

1. Give us a photo of the day. i.e. Faraday, tilted lens, etc...

2. After all, where did you put the faraday in the plot of the entry 4466?

3. Zoomed-in plot for the SHG crystal show no astigmatism. However, the zoomed out plot shows some astigmatism.
How consistent are they? ==> Interested in seeing the fit including the zoomed out measurements.

  4475   Thu Mar 31 11:30:51 2011 steveConfigurationGeneralstrain relieved rf cables

I strain relieved RF cables labeled 33 MHZ LO and 166 MHZ to EOM at 1X2  This is a temporary setup for the 11 MHZ

The coax N  bulkheads connectors are mounted on the plastic front panel now.

Attachment 1: P1070491.JPG
P1070491.JPG
  4476   Thu Mar 31 14:10:00 2011 BryanConfigurationGreen LockingThe wonderful world of mode-matching

Quote:

 I went through the entries.

1. Give us a photo of the day. i.e. Faraday, tilted lens, etc...

2. After all, where did you put the faraday in the plot of the entry 4466?

3. Zoomed-in plot for the SHG crystal show no astigmatism. However, the zoomed out plot shows some astigmatism.
How consistent are they? ==> Interested in seeing the fit including the zoomed out measurements.

 OK. Taking these completely out of order in the easiest first...

2. The FI is between positions 27.75 and 32 on the bench - i.e. this is where the input and output apertures are. (corresponds to between 0.58 and 0.46 on the scale of those two plotsand just before both the vertical and horizontal waists) At these points the beam radius is around 400um and below, and the aperture of the Faraday is 4.8mm (diameter).

1. Photos...

Laser set up - note the odd angles of the mirrors. This is where we're losing a goodly chunk of the light. If need be we could set it up with an extra mirror and send the light round a square to provide alignment control AND reduce optical power loss...

P3310028.JPG

 

Faraday and angled lens - note that the lens angle is close to 45 degrees. In principle this could be replaced with an appropriate cylindrical lens, but as long as there's enough light passing through to the oven I think we're OK.

P3310029.JPG

3. Fitting... coming soon once I work out what it's actually telling me. Though I hasten to point out that the latter points were taken with a different laser power setting and might well be larger than the actual beam width which would lead to astigmatic behaviour.

  4477   Thu Mar 31 15:23:14 2011 BryanConfigurationGreen LockingThe wonderful world of mode-matching

Quote:

3. Zoomed-in plot for the SHG crystal show no astigmatism. However, the zoomed out plot shows some astigmatism.

How consistent are they? ==> Interested in seeing the fit including the zoomed out measurements.

Right. Fitting to the data. Zoomed out plots first. I used the general equation f(x) = w_o.*sqrt(1 + (((x-z_o)*1064e-9)./(pi*w_o.^2)).^2)+c for each fit which is basically just the Gaussian beam width parameter calculation but with an extra offset parameter 'c'

Vertical fit for zoomed out data:

Coefficients (with 95% confidence bounds):

       c =   7.542e-06  (5.161e-06, 9.923e-06)

       w_o =   3.831e-05  (3.797e-05, 3.866e-05)

       z_o =       1.045  (1.045, 1.046)

 

Goodness of fit:

  SSE: 1.236e-09

  R-square: 0.9994

 
Horizontal fit for zoomed out data:
 

Coefficients (with 95% confidence bounds):

       c =   1.083e-05  (9.701e-06, 1.195e-05)

       w_o =   4.523e-05  (4.5e-05, 4.546e-05)

       z_o =       1.046  (1.046, 1.046)

 

Goodness of fit:

  SSE: 2.884e-10

  R-square: 0.9998

  Adjusted R-square: 0.9998

  RMSE: 2.956e-06

 

Zoomed_out_fitting01.png

-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-

 

OK. Looking at the plots and residuals for this, the deviation of the fit around the waist position, and in fact all over, looks to be of the order 10um. A bit large but is it real? Both w_o values are a bit lower than the 50um we'd like, but… let's check using only the zoomed in data -  hopefully more consistent since it was all taken with the same power setting.

 

 

Vertical data fit using only the zoomed in data:

 

Coefficients (with 95% confidence bounds):

       c =   1.023e-05  (9.487e-06, 1.098e-05)

       w_o =   4.313e-05  (4.252e-05, 4.374e-05)

       z_o =       1.046  (1.046, 1.046)

 

Goodness of fit:

  SSE: 9.583e-11

  R-square: 0.997

 

Horizontal data fit using only the zoomed in data:

 

Coefficients (with 95% confidence bounds):

       c =   1.031e-05  (9.418e-06, 1.121e-05)

       w_o =    4.41e-05  (4.332e-05, 4.489e-05)

       z_o =       1.046  (1.046, 1.046)

 

Goodness of fit:

  SSE: 1.434e-10

  R-square: 0.9951

 

-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-

Zoomed_in_fitting01.png

 

The waists are both fairly similar this time 43.13um and 44.1um and the offsets are similar too  - residuals are only spread by about 4um this time.

 

I'm inclined to trust the zoomed in measurement more due to the fact that all the data was obtained under the same conditions, but either way, the fitted waist is a bit smaller than the 50um we'd like to see. Think it's worthwhile moving the 62.9mm lens back along the bench by about 3/4 -> 1cm to increase the waist size.

 

 

 

 

 

  4481   Fri Apr 1 18:54:41 2011 BryanConfigurationGreen LockingY end doubling oven

The doubling oven is now ready to go for the Y arm. The PPKTP crystal is mounted in the oven:

P4010036.JPG

Note - the crystal isn't as badly misaligned as it looks in this photo. It's just an odd perspective shot. I then closed it up and checked to make sure the IR beam on the Y bench passes through the crystal. It does. Just need to tweak the waist size/position a bit and then we can actually double some frequencies!

P4010041.JPG

  4485   Mon Apr 4 14:20:32 2011 BryanConfigurationGreen LockingThe wonderful world of mode-matching

Last bit of oven matching for now.

 

I moved the lens before the oven position back along the beam path by about 1cm - waist should be just above position 9 in this case. Note - due to power-findings from previous time I'm maximising the power into the head to reduce the effect of offsets.

 

From position 9:

Position A1_13.5%_width A2_13.5%_width

(mm) (um mean) (um mean)

-1 121.1 123.6

0 112.5 113.8

1 106.4 106.1

2 102.9 103.4

3 103.6 103.6

4 106.6 107.4

5 111.8 112.5

6 118.2 120.1

7 126.3 128.8

8 134.4 137.1

9 143.8 146.5

10 152.8 156.1

11 163.8 167.1

12 175.1 176.4

13 186.5 187.0

14 197.1 198.4

15 210.3 208.9

16 223.5 218.7

17 237.3 231.0

18 250.2 243.9

19 262.8 255.4

20 274.7 269.0

21 290.4 282.3

22 304.3 295.5

23 316.7 303.1

 

Note - had to reduce power due to peak saturation at 15mm - don't think scale changed, but be aware just in case. And saturated again at 11. And again at 7. A little bit of power adjustment each time to make sure the Beamscan head wasn't saturating. Running the fit gives...

 

Waist_Fits_from_laser.pngWaist_Fits_Bench_Position.png

 

OK. The fit is reasonably good. Residuals around the area of interest (with one exception) are <+/- 2um and the waists are 47.5um (vertical) and 50.0um (horizontal) at a position of 9.09 on the bench. And the details of the fitting output are given below.

 

-=-=-=-=-=-=-=-=-=-=-=-

Vertical Fit

 

cf_ =

 

     General model:

       cf_(x) = w_o.*sqrt(1 + (((x-z_o)*1064e-9)./(pi*w_o.^2)).^2)+c

     Coefficients (with 95% confidence bounds):

       c =   5.137e-06  (4.578e-06, 5.696e-06)

       w_o =   4.752e-05  (4.711e-05, 4.793e-05)

       z_o =        1.04  (1.039, 1.04)

 

 

cfgood_ = 

 

           sse: 1.0699e-11

       rsquare: 0.9996

           dfe: 22

    adjrsquare: 0.9996

          rmse: 6.9738e-07

 

-=-=-=-=-=-=-=-=-=-=-=-

Horizontal Fit

 

cf_ =

 

     General model:

       cf_(x) = w_o.*sqrt(1 + (((x-z_o)*1064e-9)./(pi*w_o.^2)).^2)+c

     Coefficients (with 95% confidence bounds):

       c =    3.81e-06  (2.452e-06, 5.168e-06)

       w_o =   5.006e-05  (4.909e-05, 5.102e-05)

       z_o =        1.04  (1.04, 1.04)

 

 

cfgood_ = 

 

           sse: 4.6073e-11

       rsquare: 0.9983

           dfe: 22

    adjrsquare: 0.9981

          rmse: 1.4471e-06

 

 

 

  4486   Mon Apr 4 18:58:44 2011 BryanConfigurationGreen LockingA beam of purest green

We now have green light at the Y end. 

The set-up (with careful instructions from Kiwamu) - setting up with 100mW of IR into the oven.

Input IR power = 100mW measured.

 

Output green power = 0.11mW

(after using 2 IR mirrors to dump IR light before the power meter so losing a bit of green there light too)

 

And it's pretty circular-looking too. Think there might be a bit more efficiency to be gained near the edges of the crystal with internal reflections and suchlike things but that gives us an UGLY looking beam.  Note - the polarisation is wrong for the crystal orientation so used a lambda/2 plate to get best green  power out.

 

Efficiency is therefore 0.11/100 = 0.0011 (0.11%) at 100mW input power.

 

Temperature of the oven seems to be around 35.5degC for optimal conversion.

Took a picture. Ta-dah! Green light, and lots more where that came from! Well... about 3x more IR available anyway.

 

P4040042.JPG

 

 

  4493   Wed Apr 6 18:55:49 2011 Jamie, LarisaConfigurationLSCmajor AP table cleanup

We ripped out all of the old AS, PLL, and REFL paths, green, orange, and cyan respectively on the old AP table layout photo:

  • AS (green): had already been re-purposed by putting a ThorLabs diode right after the first steering mirror.   Everything downstream of that has been removed.
  • PLL (orange): everything removed.
  • REFL (cyan): CCD was left in place, so everything upstream of that was not touched.  Everything else was removed, including all of the REFL detectors.
  • OMCT (purple): previously removed
  • OMCR (blue): left in place, but the diode and CCD are not connected (found that way).
  • MCT (magenta): previously removed.
  • IMRC (red): untouched

All optics and components were moved to the very south end of the SP table.

We also removed all spurious cables from the table top, and from underneath, as well as pulled out no-longer-needed power supplies.

  4495   Wed Apr 6 22:13:24 2011 BryanConfigurationGreen LockingResonating green light!

Every so often things just work out. You do the calculations, you put the lenses on the bench, you manually adjust the pointing and fiddle with the lenses a bit, you get massive chunks of assistance from Kiwamu to get the alignment controls and monitors set up and after quite a bit of fiddling and tweaking the cavity mirror alignment you might get some nice TEM_00 -like shapes showing up on your Y-arm video monitors.

So. We have resonating green light in the Y-arm. The beam is horribly off-axis and the mode-matching, while close enough to give decent looking spots, has in no way been optimised yet. Things to do tomorrow - fix the off-cavity-axis problem and tweak up the mode-matching... then start looking at the locking...

  4520   Wed Apr 13 16:56:08 2011 BryanConfigurationGreen LockingY-ARM Green-Locked!

 Locked!

The Y-arm can now be locked with green light using the universal PDH servo. Modulation frequency is now 277kHz - chosen because it seems to produce smaller offsets due to AM effects

To lock, turn on the servo, align the system to give nice circular-looking TEM_00 resonances, and wait for a good one. It'll lock on a decent mode for a few seconds and then you can turn on the local boost and watch it lock for minutes and minutes and minutes.

The suspensions are bouncing around a bit on the Y-arm and the spot is quite low on the ETMY and a little low on ITMY, but from this point it can be tweaked and optimised.

 

 

 

  4521   Wed Apr 13 23:32:07 2011 Aidan, JamieConfigurationLSCAS PD and Camera installed

I spent some time tracking down the AS beam which had vanished from the AP table. Eventually, by dramatically mis-aligning SRM, PRM and ITMY, returning BS to its Jan 1st PITCH and YAW values and tweaking the ITMX alignment [actual values to follow], I was able to get an AS beam out onto the AP table. I verified that it was the prompt reflection off ITMX by watching it move as I changed the YAW of that optic and watching it stay stationary as I changed the YAW of ITMY.

Jamie and I then steered the beam through a 2" PLCX-50.8-360.6 lens and placed the RF PD (AS55) at the focus. Additionally, we installed the AS camera to observe the leakage field through a Y1S steering mirror (as shown in the attached diagram).

Currently the PD has power but the RF and DC outputs are not connected to anything at the moment.

Atm 2 by Steve

 

 

Attachment 1: AS_beam.jpg
AS_beam.jpg
Attachment 2: P1070546.JPG
P1070546.JPG
  4525   Thu Apr 14 17:45:59 2011 BryanConfigurationGreen LockingI leave you with these messages...

OK… the Y-arm may be locked with green light, which was the goal, and this is all good but it's not yet awesome. Awesome would be locked and aligned properly and quiet and optimised. So...  in order to assist in increasing the awesome-osity, here are a few stream-of-consciousness thoughts and stuff I've noticed and haven't had time to fix/investigate or have otherwise had pointed out to me that may help...

 

Firstly, the beam is not aligned down the centre of the cavity. It's pretty good horizontally, but vertically it's too low by about 3/4->1cm on ETMY. The mirrors steering the beam into the cavity have no more vertical range left, so in order to get the beam higher the final two mirrors will have to be adjusted on the bench. Adding another mirror to create a square will give more range AND there will be less light lost due to off 45degree incident angles. When I tried this before I couldn't get the beam to return through the Faraday, but now the cavity is properly aligned this should not be a problem.

 

A side note on alignment - while setting cameras and viewports and things up, Steve noticed that one of the cables to one of the coils (UL) passes behind the ETMY. One of the biggest problems in getting the beam into the system to begin with was missing this cable. It doesn't fall directly into the beam path if the beam is well aligned to the cavity, but for initial alignment it obscures the beam - this may be a problem later for IR alignment.

 

Next, the final lambda/2 waveplate is not yet in the beam. This will only become a problem when it comes to beating the beams together at the vertex, but it WILL be a problem. Remember to put it in before trying to extract signals for full LSC cavity locking.

 

Speaking of components and suchlike things, the equipment for the green work was originally stored in 3 plastic boxes which were stored near the end of the X-arm. These boxes, minus the components now used to set up the Y-end, are now similarly stored near the end of the Y-arm.

 

Mechanical shutter - one needs to be installed on the Y-end just like the X-end. Wasn't necessary for initial locking, but necessary for remote control of the green light on/off.

 

Other control… the Universal PDH box isn't hooked up to the computers. Connections and such should be identical to the X-arm set-up, but someone who knows what they're doing should hook things up appropriately.

 

More control - haven't had a chance to optimise the locking and stability so the locking loop, while it appears to be fairly robust, isn't as quiet as we would like. There appears to be more AM coupling than we initially thought based on the Lightwave AM/PM measurements from before. It took a bit of fiddling with the modulation frequency to find a quiet point where the apparent AM effects don't prevent locking. 279kHz is the best point I've found so far. There is still a DC offset component in the feedback that prevents the gain being turned up - unity gain appears limited to about 1kHz maximum. Not sure whether this is due to an offset in the demod signal or from something in the electronics and haven't had time left to check it out properly yet. Again, be aware this may come back to bite you later.

 

Follow the bouncing spot - the Y-arm suspensions haven't been optimised for damping. I did a little bit of fiddling, but it definitely needs more work. I've roughly aligned the ETMY oplev since that seems to be the mass that's bouncing about most but a bit of work might not go amiss before trusting it to damp anything.

 

Think that's about all that springs to mind for now…

 

Thanks to everyone at the 40m lab for helping at various times and answering daft questions, like "Where do you keep your screwdrivers?" or "If I were a spectrum analyser, where would I be?" - it's been most enjoyable!

 
  4532   Fri Apr 15 13:43:23 2011 BryanConfigurationGreen LockingI leave you with these messages...

Y-end PDH electronics.

The transfer function of the Y-end universal PDH box:

Y_End_Electronics_TF.png

 

  4536   Fri Apr 15 22:57:38 2011 Aidan, JamieConfigurationLSCAS PD and Camera installed

AS port ITMX YAW  range where AS beam was visible = [-1.505, -1.225] - these extrema put the beam just outside of some aperture in the system -> set ITMX YAW to -1.365

ITMX PITCH range = [-0.7707, -0.9707] -> set to ITMX PITCH to -0.8707

Quote:

I spent some time tracking down the AS beam which had vanished from the AP table. Eventually, by dramatically mis-aligning SRM, PRM and ITMY, returning BS to its Jan 1st PITCH and YAW values and tweaking the ITMX alignment [actual values to follow], I was able to get an AS beam out onto the AP table. I verified that it was the prompt reflection off ITMX by watching it move as I changed the YAW of that optic and watching it stay stationary as I changed the YAW of ITMY.

Jamie and I then steered the beam through a 2" PLCX-50.8-360.6 lens and placed the RF PD (AS55) at the focus. Additionally, we installed the AS camera to observe the leakage field through a Y1S steering mirror (as shown in the attached diagram).

Currently the PD has power but the RF and DC outputs are not connected to anything at the moment.

Atm 2 by Steve

 

 

 

  4540   Mon Apr 18 17:47:41 2011 kiwamuConfigurationLSCLSC rack's ADC cabling

To understand the situation of the ADC cabling at the LSC rack I looked around the rack and the cables.

The final goal of this investigation is to have nice and noise less cables for the ADCs (i.e. non-ribbon cable)

Here is just a report about the current cabling.

 

(current configuration)

At the moment there is only one ribbon-twisted cable going from 1Y2 to 1Y3. (We are supposed to have 4 cables).

At the 1Y2 rack the cable is connected to an AA board with a 40 pin female IDC connector.

At the 1Y3 rack the cable is connected to an ADC board with a 37 pin female D-sub connector.

The ribbon cable is 28AWG with 0.05" conductor spacing and has 25 twisted pairs (50 wires).

LSCrack.png

 

(things to be done)

 - searching for a twisted-shielded cable which can nicely fits to the 40 pin IDC and 37 pin D-sub connectors.

 - estimating how long cable we need and getting the quote from a vendor.

 - designing a strain relief support

  4541   Mon Apr 18 21:09:45 2011 JamieConfigurationComputersnew control room machine: pianosa

I've just installed the new control room machine: "pianosa".   It is a replacement for the old sun machine "op440m" [0].

Hardware:

  • dual dual-core Intel Core i7-2600 CPU @ 3.40GH, hyperthreaded to provide 8 effective cores
  • 16G memory (4x 4G dimms)
  • nVidia GF108 GeForce GT 430

It's now running Ubuntu 10.04 LTS 64bit.  Unfortunately, the default 10.04 kernel is 2.6.32, which does not support pianosa's apparently very new network adapter, which is (from lspci):

00:19.0 Ethernet controller: Intel Corporation 82579LM Gigabit Network Connection (rev 04)

To get around this I temporarily added a PCI nic so that I could get on the network.  I then added the Ubuntu kernel team PPA archive and installed linux-image-2.6.38-2, which is new enough to have the needed network driver, but not completely bleeding edge:

sudo add-apt-repository ppa:kernel-ppa/ppa
sudo apt-get update
sudo apt-get install linux-image-2.6.38-2-generic linux-headers-2.6.38-2-generic

Once the built in nic was working I removed the temporary one.  Everything seems to be working fine now.

I have not yet done any configuration to integrate pianosa into the CDS network.  I'll do that tomorrow.

[0] op44m has been moved into the control room rack next to linux1, in headless mode.  If there is still a need to run scripts that only run on solaris, op440m can still be accessed via ssh as normal.  Hopefully we can fully decommission this machine soon.

[1] https://launchpad.net/~kernel-ppa/+archive/ppa

  4542   Mon Apr 18 21:14:53 2011 JamieConfigurationComputersnew control room machine: pianosa
Also, op440m's Sun monitor did not work well with pianosa, so I'm lending pianosa my HP monitor until we can get a suitable replacement.
  4547   Wed Apr 20 21:53:01 2011 SureshConfigurationRF SystemRF system: Stray heliax cable

We found a stray unused heliax cable running from the LSC rack 1Y2 to a point between the cabinets 1X3 and 1X4. This cable will need to be redirected to the AS table in the new scheme.   It is labled C1LSC-PD5  The current situation has been updated as seen in the layout below

rogue_cable_1.png

Attachment 1: rogue_cable_1.png
rogue_cable_1.png
ELOG V3.1.3-