40m QIL Cryo_Lab CTN SUS_Lab TCS_Lab OMC_Lab CRIME_Lab FEA ENG_Labs OptContFac Mariner WBEEShop
  40m Log, Page 333 of 341  Not logged in ELOG logo
ID Date Author Typeup Category Subject
  16597   Wed Jan 19 14:41:23 2022 KojiUpdateBHDSuspension Status

Is this the correct status? Please directly update this entry.


LO1 [Glued] [Suspended] [Balanced] [Placed In Vacuum] [OSEM Tuned] [Damped]
LO2 [Glued] [Suspended] [Balanced] [Placed In Vacuum] [OSEM Tuned] [Damped]
AS1 [Glued] [Suspended] [Balanced] [Placed In Vacuum] [OSEM Tuned] [Damped]

AS4 [Glued] [Suspended] [Balanced] [Placed In Vacuum] [OSEM Tuned] [Damped]
PR2 [Glued] [Suspended] [Balanced] [Placed In Vacuum] [OSEM Tuned] [Damped]
PR3 [Glued] [Suspended] [Balanced] [Placed In Vacuum] [OSEM Tuned] [Damped]
SR2 [Glued] [Suspended] [Balanced] [Placed In Vacuum] [OSEM Tuned] [Damped]


Last updated: Fri Jan 28 10:34:19 2022

  16598   Wed Jan 19 16:22:48 2022 AnchalUpdateBHDPR2 transmission calculation updated

I have further updated my calculation. Please find the results in the attached pdf.

Following is the description of calculations done:


Arm cavity reflection:

Reflection fro arm cavity is calculated as simple FP cavity reflection formula while absorbing all round trip cavity scattering losses (between 50 ppm to 200 ppm) into the ETM transmission loss.

So effective reflection of ETM is calculated as

r_{\rm ETMeff} = \sqrt{1 - T_{\rm ETM} - L_{\rm RT}}

r_{\rm arm} = \frac{-r_{\rm ITM} + r_{\rm ETMeff}e^{2i \omega L/c}}{1 - r_{\rm ITM} r_{\rm ETMeff}e^{2 i \omega L/c}}

The magnitude and phase of this reflection is plotted in page 1 with respect to different round trip loss and deviation of cavity length from resonance. Note that the arm round trip loss does not affect the sign of the reflection from cavity, at least in the range of values taken here.


PRC Gain

The Michelson in PRFPMI is assumed to be perfectly aligned so that one end of PRC cavity is taken as the arm cavity reflection calculated above at resonance. The other end of the cavity is calculated as a single mirror of effective transmission that of PRM, 2 times PR2 and 2 times PR3. Then effective reflectivity of PRM is calculated as:

r_{\rm PRMeff} = \sqrt{1 - T_{\rm PRM} - 2T_{\rm PR2} - 2T_{\rm PR3}}

t_{\rm PRM} = \sqrt{T_{\rm PRM}}

Note, that field transmission of PRM is calculated with original PRM power transmission value, so that the PR2, PR3 transmission losses do not increase field transmission of PRM in our calculations. Then the field gain is calculated inside the PRC using the following:

g = \frac{t_{\rm PRM}}{1 - r_{\rm PRMeff} r_{\rm arm}e^{2 i \omega L/c}}

From this, the power recycling cavity gain is calculated as:
G_{\rm PRC} = |g|^2

The variation of PRC Gain is showed on page 2 wrt arm cavity round trip losses and PR2 transmission. Note that gain value of 40 is calculated for any PR2 transmission below 1000 ppm. The black verticle lines show the optics whose transmission was measured. If V6-704 is used, PRC Gain would vary between 15 and 10 depending on the arm cavity losses. With pre-2010 ITM, PRC Gain would vary between 30 and 15.


LO Power

LO power when PRFPMI is locked is calculated by assuming 1 W of input power to IMC. IMC is assumed to let pass 10% of the power (L_{\rm IMC}=0.1). This power is then multiplied by PRC Gain and transmitted through the PR2 to calculate the LO power.

P_{\rm LO, PRFPMI} = P_{\rm in} L_{\rm IMC}G_{\rm PRC}T_{\rm PR2}

Page 3 shows the result of this calculation. Note for V6-704, LO power would be between 35mW and 15 mW, for pre-2010 ITM, it would be between 15 mW and 5 mW depending on the arm cavity losses.

The power available during alignment is simply given by:
P_{\rm LO, align, PRM} = P_{\rm in} L_{\rm IMC} T_{\rm PRM} T_{\rm PR2}

P_{\rm LO, align, no PRM} = P_{\rm in} L_{\rm IMC} T_{\rm PR2}

If we remove PRM from the input path, we would have sufficient light to work with for both relevant optics.


I have attached the notebook used to do these calculations. Please let me know if you find any mistake in this calculation.

Attachment 1: PR2transmissionSelectionAnalysis.pdf
PR2transmissionSelectionAnalysis.pdf PR2transmissionSelectionAnalysis.pdf PR2transmissionSelectionAnalysis.pdf PR2transmissionSelectionAnalysis.pdf
Attachment 2: PR2_Trans_Calc.ipynb.zip
  16599   Wed Jan 19 18:15:34 2022 YehonathanUpdateBHDAS1 resurrection

Today I suspended AS1. Anchal helped me with the initial hanging of the optics. Attachments 1,2 show the roll balance and side magnet height. Attachment 3 shows the motion spectra.

The major peaks are at 668mHz, 821mHz, 985mHz.

For some reason, I was not able to balance the pitch with 2 counterweights as I did with the rest of the thin optics (and AS1 before). Inserting the weights all the way was not enough to bring the reflection up to the iris aperture that was used for preliminary balancing. I was able to do so with a single counterweight (attachment 4). I'm afraid something is wrong here but couldn't find anything obvious. It is also worth noting that the yaw resonance 668mHz is different from the 755mHz we got in all the other optics. Maybe one or more of the wires are not clamped correctly on the side blocks?

The OSEMs were pushed into the OSEM plate and the plates were adjusted such that the magnets are at the center of the face OSEMs. The wires were clamped and cut from the winches. The SOS is ready for installation.

Also, I added a link to the OSEM assignments spreadsheet to the suspension wiki.

I uploaded some pictures of the PEEK EQ stops, both on the thick and thin optics, to the Google Photos account.

Attachment 1: AS1_roll_balance2.png
AS1_roll_balance2.png
Attachment 2: AS1_magnet_heigh2.png
AS1_magnet_heigh2.png
Attachment 3: FreeSwingingSpectra.pdf
FreeSwingingSpectra.pdf
Attachment 4: IMG_6324.JPG
IMG_6324.JPG
  16600   Wed Jan 19 21:39:22 2022 TegaUpdateSUSTemporary watchdog

After some work on the reference database file, we now have a template for temporary watchdog implementation for LO1 located here "/cvs/cds/caltech/target/c1susaux/C1_SUS-AUX_LO1.db".

Basically, what I have done is swap the EPICS asyn analog input readout for the COIL and OSEM to accessible medm channels, then write out watchdog enable/disable to coil filter SW2 switch. Everything else in the file remains the same. I am worried about some of the conversions but the only way to know more is to see the output on the medm screen.

To test, I restarted c1su2 but this did not make the LO1 database available, so I am guessing that we also need to restart the c1sus, which can be done tomorrow.

  16601   Thu Jan 20 00:26:50 2022 KojiUpdateSUSTemporary watchdog

As the new db is made for c1susaux, 1) it needs to be configured to be read by c1susaux 2) it requires restarting c1susaux 3) it needs to be recorded by FB 4) and restartinbg FB.
(^-Maybe not super exact procedure but conceptually like this)

cf.
https://wiki-40m.ligo.caltech.edu/How_To/Add_or_rename_a_daq_channel

 

  16602   Thu Jan 20 01:48:02 2022 KojiUpdateBHDPR2 transmission calculation updated

IMC is not such lossy. IMC output is supposed to be ~1W.

The critical coupling condition is G_PRC = 1/T_PRM = 17.7. If we really have L_arm = 50ppm, we will be very close to the critical coupling. Maybe we are OK if we have such condition as our testing time would be much longer in PRMI than PRFPMI at the first phase. If the arm loss turned out to be higher, we'll be saved by falling to undercoupling.
When the PRC is close to the critical coupling (like 50ppm case), we roughly have Tprc x 2 and Tarm to be almost equal. So each beam will have 1/3 of the input power i.e. ~300mW. That's probably too much even for the two OMCs (i.e. 4 DCPDs). That's OK. We can reduce the input power by 3~5.

Quote:

LO Power

LO power when PRFPMI is locked is calculated by assuming 1 W of input power to IMC. IMC is assumed to let pass 10% of the power (L_{\rm IMC}=0.1).

 

  16603   Thu Jan 20 12:10:51 2022 YehonathanUpdateBHDAS1 resurrection

I was wondering whether I should take AS1 down to redo the wire clamping on the side blocks. I decided to take the OpLev spectrum again to be more certain. Attachments 1,2,3 show 3 spectra taken at different times.

They all show the same peaks 744mHz, 810mHz, 1Hz. So I think something went wrong with yesterday's measurement. I will not take AS1 down for now. We still need to apply some glue to the counterweight.

Attachment 1: FreeSwingingSpectra.pdf
FreeSwingingSpectra.pdf
Attachment 2: FreeSwingingSpectra_div_20mV.pdf
FreeSwingingSpectra_div_20mV.pdf
Attachment 3: FreeSwingingSpectra_div_50mV.pdf
FreeSwingingSpectra_div_50mV.pdf
  16604   Thu Jan 20 16:42:55 2022 PacoUpdateBHDAS4 OSEMs installation - part 2

[Paco]

Turns out, the shifting was likely due to the table level. Because I didn't take care the first time to "zero" the level of the table as I tuned the OSEMs, the installation was b o g u s. So today I took time to,

a) Shift AS4 close to the center of the table.

b) Use the clean level tool to pick a plane of reference. To do this, I iteratively placed two counterweights (from the ETMX flow bench) in two locations in the breadboard such that I nominally balanced the table under this configuration to zome reference plane z0. The counterweight placement is of course temporary, and as soon as we make further changes such as final placement of AS4 SOS, or installation of AS1, their positions will need to change to recover z=z0.

c) Install OSEMs until I was happy with the damping. ** Here, I noticed the new suspension screens had been misconfigured (probably c1sus2 rebooted and we don't have any BURT), so quickly restored the input and output matrices.


SUSPENSION STATUS UPDATED HERE

  16606   Thu Jan 20 17:21:21 2022 TegaUpdateSUSTemporary watchdog

Temp software watchdog now operational for LO1 and the remaining optics!

Koji helped me understand how to write to switches and we tried for a while to only turnoff the output switch of the filters instead of the writing a zero that resets everything in the filter.

Eventually, I was able to move this effort foward by realising that I can pass the control trigger along multiple records using the forwarding option 'FLNK'. When I added this field to the trigger block, record(dfanout,"C1:SUS-LO1_PUSH_ALL"), and subsequent calculation blocks, record(calcout,"C1:SUS-LO1_COILSWa") to record(calcout,"C1:SUS-LO1_COILSWd"), everything started working right.

Quote:

After some work on the reference database file, we now have a template for temporary watchdog implementation for LO1 located here "/cvs/cds/caltech/target/c1susaux/C1_SUS-AUX_LO1.db".

Basically, what I have done is swap the EPICS asyn analog input readout for the COIL and OSEM to accessible medm channels, then write out watchdog enable/disable to coil filter SW2 switch. Everything else in the file remains the same. I am worried about some of the conversions but the only way to know more is to see the output on the medm screen.

To test, I restarted c1su2 but this did not make the LO1 database available, so I am guessing that we also need to restart the c1sus, which can be done tomorrow.

 

  16607   Thu Jan 20 17:34:07 2022 KojiUpdateBHDV6-704/705 Mirror now @Downs

The PR2 candidate V6-704/705 mirrors (Qty2) are now @Downs. Camille picked them up for the measurements.

To identify the mirrors, I labeled them (on the box) as M1 and M2. Also the HR side was checked to be the side pointed by an arrow mark on the barrel. e.g. Attachment 1 shows the HR side up

Attachment 1: PXL_20220120_225248265_2.jpg
PXL_20220120_225248265_2.jpg
Attachment 2: PXL_20220120_225309361_2.jpg
PXL_20220120_225309361_2.jpg
  16608   Thu Jan 20 18:16:29 2022 AnchalUpdateBHDAS4 set to trigger free swing test

AS4 is set to go through a free swinging test at 10 pm tonight. We have used this script (Git/40m/scripts/SUS/InMatCalc/freeSwing.py) reliably in the past so we expect no issues, it has a error catching block to restore all changes at the end of the test or if something goes wrong.

To access the test, on allegra, type:

tmux a -t AS4

Then you can kill the script if required by Ctrl-C, it will restore all changes while exiting.

  16611   Fri Jan 21 12:46:31 2022 TegaUpdateCDSSUS screen debugging

All done (almost)! I still have not sorted the issue of pitch and yaw gains growing together when modified using ramping time. Image of custom ADC and DAC panel is attached.

 

Quote:

Seen. Thanks.

 
Quote:

Indicated by the red arrow:
Even when the side damping servo is off, the number appears at the input of the output matrix

Indicated by the green arrows:
The face magnets and the side magnets use different ADCs. How about opening a custom ADC panel that accommodates all ADCs at once? Same for the DAC.

Indicated by the blue arrows:
This button opens a custom FM window. When the pitch gain was modified with a ramping time, the pitch and yaw gain grows at the same time even though only the pitch gain was modified.

Indicated by the orange circle:
The numbers are not indicated here, but they are input-related numbers (for watchdogging) rather than output-related numbers. It is confusing to place them here.

 

 

Attachment 1: Custom_ADC_DAC_monitors.png
Custom_ADC_DAC_monitors.png
  16612   Fri Jan 21 14:51:00 2022 KojiUpdateBHDV6-704/705 Mirror now @Downs

Camille@Downs measured the surface of these M1 and M2 using Zygo.

Result of the ROC measurements:M1: ROC=2076m (convex)M2: ROC=2118m (convex)
Here are screenshots. One file shows the entire surface and the other shows the central 30mm.
Attachment 1: M1.PNG
M1.PNG
Attachment 2: M1_30mm.PNG
M1_30mm.PNG
Attachment 3: M2.PNG
M2.PNG
Attachment 4: M2_30mm.PNG
M2_30mm.PNG
  16613   Fri Jan 21 16:40:10 2022 AnchalUpdateBHDAS4 Input Matrix Diagonalization performed.

The free swinging test was successful. I ran the input matrix diagonalization code (/opt/rtcds/caltech/c1/Git/40m/scripts/SUS/InMAtCalc/sus_diagonalization.py) on the AS4 free-swinging data collected last night. The logfile and results are stored in /opt/rtcds/caltech/c1/Git/40m/scripts/SUS/InMAtCalc/AS4 directory. Attachment 1 shows the power spectral density of the DOF basis data (POS, PIT, YAW, SIDE) before and after the diagonalization. Attachment 2 shows the fitted peaks.


Free Swinging Resonances Peak Fits
  Resonant Frequency [Hz] Q A
POS 1.025 337 3647
PIT 0.792 112 3637
YAW 0.682 227 1228
SIDE 0.993 164 3094

AS4 New Input Matrix
  UL UR LR LL SIDE
POS
0.844
0.707
0.115
0.253
-1.646
PIT
0.122
0.262
-1.319
-1.459
0.214
YAW
1.087
-0.901
-0.874
1.114
0.016
SIDE
0.622
0.934
0.357
0.045
3.822

The new matrix was loaded on AS4 input matrix and this resulted in no control loop oscillations at least. I'll compare the performance of the loops in future soon.

 

Attachment 1: AS4_SUS_InpMat_Diagnolization_20220121.pdf
AS4_SUS_InpMat_Diagnolization_20220121.pdf
Attachment 2: AS4_FreeSwingData_PeakFitting_20220121.pdf
AS4_FreeSwingData_PeakFitting_20220121.pdf
  16616   Mon Jan 24 17:12:27 2022 ranaUpdateBHDAS4 Input Matrix Diagonalization performed.

I think our suspension input matrix diagonalization is not so robust usually because we only choose a inverting matrix which gives the best separation for a single suspension alignment.

i.e. we have seen in the past that adjusting the bias for the alignment makes the matrix inversion not work well. Sometime people turn OFF the alignment bias before making the ringdown and that makes the whole measurement invalid.

This is because the sensitivity of the OSEMs to longitudinal and/or transverse motion is significantly different for different alignment.

I wonder if there's a way we can choose a better matrix by putting in random gain errors on the shadow sensor signals and then finding the matrix which gives the best diag under an ensemble of gain errors.

  16617   Mon Jan 24 17:58:21 2022 YehonathanUpdateBHDPR2 Suspension

I picked up the PR2 mirrors (labeled M1, M2) from Anchel's table and took them to the cleanroom. By inspection, I spotted some dust particles on M1. I wasn't able to remove them with clean air so I decided to use M2 which looked much cleaner. I wasn't able to discern any wedge angle on the optic. I inserted the optic into a thin optic adapter. The optic is thicker than I expected so I use long screws for the mirror clamping. I expect that the pitch balance will shift towards the front of the mirror so I assembled only 1 counterweight for now. The side blocks with wires in them were installed.

I engraved the SOS and installed the winches on it. Paco came in and helped me to hang the optic. Looking at the wire hanging angle I realize that 1 counterweight at the front is not enough. I install a second counterweight at the back and observe that I can cross the balancing point.

I locked the EQ stops. Suspension work continues tomorrow...

  16619   Mon Jan 24 20:48:48 2022 AnchalUpdateBHDAS4 Input Matrix Diagonalization performed.

I agree. That's an interesting idea. But does that mean that there is an always working inverse matrix solution or that any solution will be vulnerable to the alignment biases.

I think we can also calculate the matrix rotation required as a function of dc biases and do that rotation in the simulimk model.

Quote:

I think our suspension input matrix diagonalization is not so robust usually because we only choose a inverting matrix which gives the best separation for a single suspension alignment.

i.e. we have seen in the past that adjusting the bias for the alignment makes the matrix inversion not work well. Sometime people turn OFF the alignment bias before making the ringdown and that makes the whole measurement invalid.

This is because the sensitivity of the OSEMs to longitudinal and/or transverse motion is significantly different for different alignment.

I wonder if there's a way we can choose a better matrix by putting in random gain errors on the shadow sensor signals and then finding the matrix which gives the best diag under an ensemble of gain errors.

 

  16624   Tue Jan 25 18:37:12 2022 TYehonathanUpdateBHDPR2 Suspension

PR2's side magnet height was adjusted and its roll was balanced (attachment 1,2). I verified that the OpLev beam is still aligned. The pitch was balanced: First, using an iris for rough adjustment. Then, with the QPD. I locked the counterweight setscrew.

I turned off the HEPAs, damped PR2, and measured the QPD spectra (attachment 3). Major peaks are at 690mHz, 953mHz, and 1.05Hz. I screwed back the lower OSEM plate. The wires were clamped to the suspension block and were cut. Winch adapter plate removed. I wanted to push OSEMs into the OSEM plates but the wiki is down so I can't tell what was the plan. This will have to wait for tomorrow. Also here like with AS1 we need to apply glue to the counterweights.

Attachment 1: PR2_magnet_height.png
PR2_magnet_height.png
Attachment 2: PR2_roll_balance.png
PR2_roll_balance.png
Attachment 3: FreeSwingingSpectra_div_50mV.pdf
FreeSwingingSpectra_div_50mV.pdf
  16634   Mon Jan 31 10:39:19 2022 JordanUpdateVACTP1 and Manual Gate Valve Removal

Jordan, Chub

Today, Chub and I removed TP1 and the failed manual gate valve off of the pumping spool.

First, P2 needed to be vented in order to remove TP1. TP1 has a purge valve on the side of the pump which we slowly opened bringing the P2 volume up to atmosphere. Although, this was not vented using the dry air/N2, using this purge valve eliminated the need to vent the RGA volume.

Then we disconnected TP1 foreline, removed TP1+8" flange reducer, then the gate valve. All of the removed hardware looked good, so no need to replace bolts/nuts, only needs new gaskets. TP1 and the failed valve are sitting on a cart wrapped in foil next to the pumping station.

Attachment 1: 20220131_100637.jpg
20220131_100637.jpg
Attachment 2: 20220131_102807.jpg
20220131_102807.jpg
Attachment 3: 20220131_102818.jpg
20220131_102818.jpg
Attachment 4: 20220131_100647.jpg
20220131_100647.jpg
  16636   Tue Feb 1 20:16:09 2022 TegaUpdateBHDPR2 candidate mirror analysis

git repo: git@git.ligo.org:tega-edo/charmirrormap.git

The analysis code takes in a set of raw images, 10 in our case,  for each mirror and calculates the zernike aberration coefficients for each image, then takes their average. This average value is used to reconstruct the mirror height map.  Finally, the residual error between the reconstructed image and the raw data is calculated.

We repeat the analysis for different field of views (FoV) namely 10mm, 20mm, 30mm, 40mm and 46.5mm and save the results in the output folder of the repo.

The analysis output for a 10mm FoV aperture at the mirror center is shown in the attachement. These three images show the input data, the reconstructed mirror surface map and the residual error.

Attachment 1: PR2_M2_data.png
PR2_M2_data.png
Attachment 2: PR2_M2_recon_FoV_10mm.png
PR2_M2_recon_FoV_10mm.png
Attachment 3: PR2_M2_residual_FoV_10mm.png
PR2_M2_residual_FoV_10mm.png
  16643   Thu Feb 3 10:25:59 2022 JordanUpdateVACTP1 and Manual Gate Valve Install

Jordan, Chub

Chub and I installed the new manual gate valve (Nor-Cal GVM-6002-CF-K79) and reinstalled TP1. The new gate valave was placed with the sealing side towards the main 40m volume, then TP1 was installed on top and the foreline reattched to TP1.

This valve has a hard stop in the actuator to prevent over torquing.

 

Attachment 1: 20220203_101455.jpg
20220203_101455.jpg
Attachment 2: 20220203_094831.jpg
20220203_094831.jpg
Attachment 3: 20220203_094823.jpg
20220203_094823.jpg
  16644   Thu Feb 3 14:47:12 2022 ChubUpdateElectronicsnew UPS in place

Received the new 1100VA APC UPS today and placed it at the bottom of the valve rack.  I'd connected the battery and plugged the unit into the AC outlet, but did not turn it on due to the power outage this weekend.

  16646   Fri Feb 4 10:04:47 2022 ChubUpdateGeneraldish soap and clean scrub sponges!

Bought dish soap and scrub sponges today and placed them under the sink with the other dish supplies.

Attachment 1: 40m_supplies.jpg
40m_supplies.jpg
  16648   Mon Feb 7 09:00:26 2022 PacoUpdateGeneralScheduled power outage recovery

[Paco]

Started recovering from scheduled (Feb 05) power outage. Basically, time-reversing through this list.


== Office area ==

  • Power martian network switches, WiFi routers on the north-rack.
  • Power windows (CAD) machine on.

== Main network stations ==

  • Power on nodus, try ping (fail).
  • Power on network switches, try ping (success), try ssh controls@nodus.ligo.caltech.edu (success).
  • Power on chiara to serve names for other stations, try ssh chiara (success).
  • Power on fb1, try ping (success), try ssh fb1 (success).
  • Power on paola (xend laptop), viviana (yend laptop), optimus, megatron.

== Control workstations ==

  • Power on zita (success)
  • Power on giada (success), run system upgrade.
  • Power on donatella (success)
  • Power on allegra (fail)  **
  • Power on pianosa (success)
  • Power on rossa (success)
  • From nodus, started elog (success).

== PSL + Vertex instruments ==

  • Turn on newport PD power supplies on PSL table.
  • Turn on TC200 temp controller on (setpoint --> 36.9 C)
  • Turn on two oscilloscopes in PSL table.
  • Turn on PSL (current setpoint --> 2.1 A, other settings seem nominal)
  • Turn on Thorlabs HV pzt supply.
  • Turn on ITMX OpLev / laser instrument AC strip.

== YEND and XEND instruments ==

  • Turn on XEND AUX pump on (current setpoint -->1.984 A)
  • Turn on XEND AUX SHG oven on (setpoint --> 37.1 C) (see green beam)
  • Turn on XEND AUX shutter controller on.
  • Turn on DCPD supply, and OpLev supply AC strip on.
  • Turn on YEND AUX pump on (fail) *
    • With the controller on STDBY, I tried setting up the current but got HD FAULT (or according to the manual this is what the head reports when the diode temperature is too high...)
    • Upon power cycling the controller, even the controller display stopped working... YAUX controller + head died? maybe just the diode? maybe just the controller?
      • I borrowed a spare LW125 controller from the PSL table (Yehonathan pointed me to it) and swapped it in.
      • Got YEND AUX to lase with this controller, so the old controller is busted but at least the laser head is fine.
      • Even saw SHG light. We switched the laser head off to "STDBY" (so it remains warm) and took the faulty controller out of there.
  • Turn on YEND AUX SHG oven on (setpoint -->35.7 C)
  • Turn on YEND AUX shutter controller on.

== YARM Electronic racks ==

== XARM Electronic racks ==

 


* Top priority, this needs to be fixed.

** Non-priority, but to be debugged

  16649   Mon Feb 7 15:32:48 2022 YehonathanUpdateGeneralY End laser controller

I went to the Y end. The AUX laser was on Standby. I pushed the Standby button. The laser turned on and there was some green light. However, the controller displayed the message "CABLE?" which according to the manual means that the laser head is powered but there is no control over the laser (e.g. the control cable is disconnected). I turned off the controller and disconnected both the power and control cables. I put them back and turned the controller back on.

I pushed the Standby button, the laser turned on and this time the controller displayed the laserhead's state. I was able to change the current/temperature. The problem seems to be resolved.

  16650   Mon Feb 7 16:14:37 2022 TegaUpdateComputersrealtime system reboot problem

I was looking into plotting temperature sensor data trend and why we currently do not have frame data written to file (on /frames) since Friday, and noticed that the FE models were not running. So I spoke to Anchal about it and he mentioned that we are currently unable to ssh into the FE machines, therefore we have been unable to start the models. I recalled the last time we enountered this problem Koji resolved it on Chiara, so I search the elog for Koji's fix and found it here, https://nodus.ligo.caltech.edu:8081/40m/16310. I followed the procedure and restarted c1sus and c1lsc machine and we are now able to ssh into these machines. Also restarted the remaining FE machines and confirm that can ssh into them. Then to start models, I ssh into each FE machine (c1lsc, c1sus, c1ioo, c1iscex, c1iscey, c1sus2) and ran the command

rtcds start --all

to start all models on the FE machine. This procedure worked for all the FE machines but failed for c1lsc. For some reason after starting the first the IOP model - c1x04, c1lsc and c1ass, the ssh connection to the machine drops. When we try to ssh into c1lsc after this event, we get the following error :  "ssh: connect to host c1lsc port 22: No route to host".  I reset the c1lsc machine and deecided to to start the IOP model for now. I'll wait for Anchal or Paco to resolve this issue.


[Anchal, Tega]

I informed Anchal of the problem and ask if he could take a look. It turn out 9 FE models across 3 FE machines (c1lsc, c1sus, c1ioo) have a certain interdependece that requires careful consideration when starting the FE model. In a nutshell, we need to first start the IOP models in all three FE machines before we start the other models in these machines. So we turned off all the models and shutdown the FE machines mainly bcos of a daq issue, since the DC (data concentrator) indicator was not initialised. Anchal looked around in fb1 to figure out why this was happening and eventually discovered that it was the same as the ms_stream issue encountered earlier in fb1 clone (https://nodus.ligo.caltech.edu:8081/40m/16372). So we restarted fb1 to see if things clear up given that chiara dhcp sever is now working fine. Upon restart of fb1, we use the info in a previous elog that shows if the DAQ network is working or not, r.e. we ran the command

$ /opt/mx/bin/mx_info
MX:fb1:mx_init:querying driver:error 5(errno=2):No MX device entry in /dev.

 The output shows that MX device was not initialiesd during the reboot as can also be seen below.

$ sudo systemctl status daqd_dc -l

● daqd_dc.service - Advanced LIGO RTS daqd data concentrator
   Loaded: loaded (/etc/systemd/system/daqd_dc.service; enabled)
   Active: failed (Result: exit-code) since Mon 2022-02-07 18:02:02 PST; 12min ago
  Process: 606 ExecStart=/usr/bin/daqd_dc_mx -c /opt/rtcds/caltech/c1/target/daqd/daqdrc.dc (code=exited, status=1/FAILURE)
 Main PID: 606 (code=exited, status=1/FAILURE)

Feb 07 18:01:56 fb1 systemd[1]: Starting Advanced LIGO RTS daqd data concentrator...
Feb 07 18:01:56 fb1 systemd[1]: Started Advanced LIGO RTS daqd data concentrator.
Feb 07 18:02:00 fb1 daqd_dc_mx[606]: [Mon Feb  7 18:01:57 2022] Unable to set to nice = -20 -error Unknown error -1
Feb 07 18:02:00 fb1 daqd_dc_mx[606]: Failed to do mx_get_info: MX not initialized.
Feb 07 18:02:00 fb1 daqd_dc_mx[606]: 263596
Feb 07 18:02:02 fb1 systemd[1]: daqd_dc.service: main process exited, code=exited, status=1/FAILURE
Feb 07 18:02:02 fb1 systemd[1]: Unit daqd_dc.service entered failed state.


NOTE: We commented out the line

Restart=always

in the file "/etc/systemd/system/daqd_dc.service" in order to see the error, BUT MUST UNDO THIS AFTER THE PROBLEM IS FIXED!

  16651   Mon Feb 7 16:53:02 2022 KojiUpdateGeneralScheduled power outage recovery

I went to the X end and found it was warm. Turned out that not all the A/Cs were on. They were turned on now.

Attachment 1: PXL_20220208_001646282.jpg
PXL_20220208_001646282.jpg
Attachment 2: PXL_20220208_001657871.jpg
PXL_20220208_001657871.jpg
  16652   Wed Feb 9 11:56:24 2022 AnchalUpdateGeneralBringing back CDS

[Anchal, Paco]

Bringing back CDS took a lot of work yesterday. I'm gonna try to summarize the main points here.


mx_start_stop

For some reason, fb1 was not able to mount mx devices automatically on system boot. This was an issue I earlier faced in fb1(clone) too. The fix to this problem is to run the script:

controls@fb1:/opt/mx/sbin/mx_start_stop start

To make this persistent, I've configured a daemon (/etc/systemd/system/mx_start_stop.service) in fb1 to run once on system boot and mount the mx devices as mentioned above. We did not see this issue of later reboots yesterday.


gpstime

Next was the issue of gpstime module out of date on fb1. This issue is also known in the past and requires us to do the following:

controls@fb1:~ 0$ sudo modprobe -r gpstime
controls@fb1:~ 1$ sudo modprobe gpstime

Again, to make this persistent, I've configured a daemon (/etc/systemd/system/re-add-gpstime.service) in fb1 to run the above commands once on system boot. This corrected gpstime automatically and we did not face these problems again.


time synchornization

Later we found that fb1-FE computers, ntp time synchronization was not working and the main reason was that fb1 was unable to access internet. As a rule of thumb, it is always a good idea to try pinging www.google.com on fb1 to ensure that it is connected to internet. The issue had to do with fb1 not being able to find any namespace server. We fixed this issue by reloading bind9 service on chiara a couple of times. We're not really sure why it wasn't working.

~>sudo service bind9 stop
~>sudo service bind9 start
~>sudo service bind9 status
* bind9 is running

After the above, we saw that fb1 ntp server is working fine. You see following output on fb1 when that is the case:

controls@fb1:~ 0$ ntpq -p
     remote           refid      st t when poll reach   delay   offset  jitter
==============================================================================
-table-moral.bnr 110.142.180.39   2 u  399  512  377  195.034  -14.618   0.122
*server1.quickdr .GPS.            1 u   67   64  377  130.483   -1.621   1.077
+ntp2.tecnico.ul 56.99.239.27     2 u  473  512  377  184.648   -0.775   2.231
+schattenbahnhof 129.69.1.153     2 u  365  512  377  144.848    3.841   1.092
 192.168.123.255 .BCST.          16 u    -   64    0    0.000    0.000   0.000

On the FE models, timedatectl should show that NTP synchronized feild is yes. That wasn't happening even after us restarting the systemd-timesyncd service. After this, I just tried restarting all FE computers and it started working.


CDS

We had removed all db9 enabling plugs on the new SOSs beforehand to keep coils off just in case CDS does not come back online properly.

Everything in CDS loaded properly except the c1oaf model which kepy showing 0x2bad status. This meant that some IPC flags are red on c1sus, c1mcs and c1lsc as well. But everything else is green. See attachment 1. I then burtrestroed everything in the /opt/rtcds/caltech/c1/burt/autoburt/snapshots/2022/Feb/4/12:19 directory. This includes the snapshot of c1vac as well that I added on autoburt that day. All burt restore statuses were green OK. I think we are in good state now to start watchdogs on the new SOSs and put back the db9 enabling plugs.


Future work:

When somebody gets time, we should make cutom service files in fb1:/etc/systemd/system/ symbolic links to a repo directory and version control these important services. We should also make sure that their dependencies and startup order is correctly configured. I might have done a half-assed job there since I recently learned how to make unit files. We should do the same on nodus and chiara too. Our hope is that on one glorious day, the lab can be restarted without spending more than 20 min on booting up the computers and network.

 

Attachment 1: Screenshot_2022-02-09_12-11-33.png
Screenshot_2022-02-09_12-11-33.png
  16653   Wed Feb 9 13:55:05 2022 KojiUpdateGeneralBringing back CDS

Great recovery work and cleaning of the rebooting process.

I'm just curious: Did you observe that the c1sus2 cards have different numbering order than the previous along with the power outage/cycling?

  16655   Wed Feb 9 16:43:35 2022 PacoUpdateGeneralScheduled power outage recovery - Locking mode cleaner(s)

[Paco, Anchal]

  • We went in and measured the power after the power splitting HWP at the PSL table. Almost right before the PSL shutter (which was closed), when the PMC was locked we saw ~ 598 mW (!!)
  • Checking back on ESP300, it seems the channel was not enabled even though the right angle was punched in, so it got enabled.
    • No change.
  • The power adjustment MEDM screen is not really working...
  • Going back to the controller, press HOME on the Axis 1 (our HWP) and see it go to zero...
    • Now the power measured is ~ 78 mW.
  • Not sure why the MEDM screen didn't really work (this needs to be fixed later)

We proceeded to align the MC optics because all offsets in MC_ALIGN screen were zeroed. After opening the PSL shutter, we used values from last year as a reference, and try to steadily recover the alignment. The IMC lock remains at large.

  16657   Thu Feb 10 15:41:00 2022 AnchalUpdateGeneralScheduled power outage recovery - Locking mode cleaner(s)

I found out that the ESP300 service needs to be run in root mode for it to be able to connect to the USB port of HWP motor controller. While doing this change, I noticed that the channels hosted by c1psl might have a duplication conflict with some other channel hosting computer, because a lot of them show the Warning: "Identical process variable names on multiple servers" which is not good. Someone should look into this conflict.

I added instructions on the power control MEDM screen as it was very non-trivial to use. I have set the power such that the C1:IOO-MC_RFPD_DCMON is 5.6 and this happened at C1:IOO-HWP_POS_SET 2.29.

  16658   Thu Feb 10 17:57:48 2022 AnchalUpdateGeneralScheduled power outage recovery - Locking mode cleaner(s)

Something is wrong with the Video MUX. The system did not turn back on with full functionality. Even though we see the screens as they were before the power shutdown, we have lost control on switching any of the videos. I went to check the wiki page about Video MUX which told be we should be able to see the configuration screen on this link, but the page wasn't opening. I went and removed the power cable and put it back in. That brought back the configuration page. Still, I could not change any of the video feeds however this time, I could see the EPICS channel values (like C1:VID-QUAD1_4) change. I tired to go to the configuration page and change the matrix values from the control tab there. I found out that the matrix was mislabeled and while making the changes, I started seeing blue screen on QUAD1_3 (where MC2T was set before). I set the QUAD1_3 (output 23) to MC2T (input 16), but no change. The EPICS values are also set properly, so I don't understand the reason behind blue screen. The same happened when I tried to use:

~>/opt/rtcds/caltech/c1/scripts/general/videoscripts videoswitch3 QUAD1_3 MC2T

Weirdly, this caused the QUAD1_4 screen to go blue. Running following had no effect:

~>/opt/rtcds/caltech/c1/scripts/general/videoscripts videoswitch3 QUAD1_4 MCR

So, I'm not sure what to do. This really needs to be fixed! I wanted to see teh MC2F camera so that I can align IMC, that was the whole reason for this rabit hole. Help needed.

Attachment 1: PXL_20220211_021509819.jpg
PXL_20220211_021509819.jpg
  16659   Thu Feb 10 19:03:23 2022 KojiUpdateGeneralScheduled power outage recovery - Locking mode cleaner(s)

I came back to the 40m and started the investigation.

If I ping 192.168.113.92, it responds. But telnet (port 23) was rejected. I somehow tried ssh and it responds! I even could login to the host using usual password. Here is the prompt.

controls@nodus|~> ssh 192.168.113.92
controls@192.168.113.92's password:

...
controls@c1sus2:~ 0$

Oh no...

Looks like c1sus2 and the videomux have the IP address conflict.

Here are the useful ELOG links:

https://nodus.ligo.caltech.edu:8081/40m/4498

https://nodus.ligo.caltech.edu:8081/40m/4529

  16660   Thu Feb 10 19:46:37 2022 KojiUpdateGeneralScheduled power outage recovery - Locking mode cleaner(s)

== Assign new IP address to c1sus2 ==

cf: [40m ELOG 16398] [40m ELOG 16396]

- Shutdown c1sus2 (Oh, no. This killed c1lsc/c1sus/c1ioo... This should be taken care of later)

- Confirmed 192.168.113.87 is not alive

- Go to chiara
- Modify /diskless/root/etc/hosts

192.168.113.87  c1sus2 c1sus2.martian

- Modify /etc/dhcp/dhcpd.conf

host c1sus2 {
  hardware ethernet 00:25:90:06:69:C2;
  fixed-address 192.168.113.87;
}

- Modify /var/lib/bind/martian.hosts

c1sus2          A    192.168.113.87
videomux        A    192.168.113.92

- Modify /var/lib/bind/martian.hosts/rev.113.168.192.in-addr.arpa

87            PTR    c1sus2.martian
92            PTR    videomux.martian

- Reload/restart bind9 / dhcpd. Run the following command

sudo service bind9 reload
sudo service isc-dhcp-server restart

- Restart c1sus2 and confirm if the IP address was actually changed

controls@c1sus2:~ 0$ /sbin/ifconfig
eth0      Link encap:Ethernet  HWaddr 00:25:90:06:69:c2
          inet addr:192.168.113.87  Bcast:192.168.113.255  Mask:255.255.255.0
...

== Restart c1lsc / c1sus /c1ioo ==

- Reboot c1lsc/c1sus/c1ioo

- Go to scripts/cds

- Run startC1LSC.sh and follow the instruction

 

  16661   Thu Feb 10 21:10:43 2022 KojiUpdateGeneralVideo Mux setting reset

Now the video matrix is responding correctly and the web interface shows up. (Attachment 1)

Also the video buttons respond as usual. I pushed Locking Template button to bring the setting back to nominal. (Attachment 2)

Attachment 1: Screenshot_2022-02-10_21-11-21.png
Screenshot_2022-02-10_21-11-21.png
Attachment 2: Screenshot_2022-02-10_21-11-54.png
Screenshot_2022-02-10_21-11-54.png
  16663   Thu Feb 10 21:51:02 2022 KojiUpdateCDS[Solved] Huge random numbers flowing into ETMX/ETMY ASC PIT/YAW

Huge random numbers are flowing into ETMX/ETMY ASC PIT/YAW. Because of this, I could not damp the ETMX/ETMY suspension at the beginning during the recovery from rebooting. (Attachment 1)
By turning off the output of the ASC filters, the mirrors were successfully damped.

Looking at the FE model view of the end RTSs, there were two possibilities: (Attachment 2)

- They are coming from RFM connection
- They are coming from ASXASY

ASX/ASY are not active and I could not see anything producing these numbers. Burtrestore didn't help.

The possibility was something at the other side of the RFM, or corruption of the RFM signal.

- Looking at the RFM model (Attachment 3), the ASC signals are coming from ASS and IOO. The ASS path has the filter module (C1:RFM-ETMX_PIT and etc). This FM is quiet and not guilty.

- Why do we have the RFM from IOO? I went to IOO and found the new ASC (WFS) model is there. I didn't realize the presence of this model. In fact ASC screen showed that these random numbers are flowing into the end SUSs.
So I did burtrestore of c1iooepics. Alas! they are gone.

Now I can go home.

Attachment 1: Screenshot_2022-02-10_21-46-02.png
Screenshot_2022-02-10_21-46-02.png
Attachment 2: Screen_Shot_2022-02-10_at_21.54.21.png
Screen_Shot_2022-02-10_at_21.54.21.png
Attachment 3: Screen_Shot_2022-02-10_at_22.14.23.png
Screen_Shot_2022-02-10_at_22.14.23.png
  16664   Fri Feb 11 10:56:38 2022 AnchalUpdateCDS[Solved] Huge random numbers flowing into ETMX/ETMY ASC PIT/YAW

Yeah, this is a known issue actually. We go to ASC screen and manually swich off all the outputs after every reboot. We haven't been able to find a way to set default so that when the model comes online, these outputs remain switched off. We should find a way for this.

 

  16665   Fri Feb 11 11:17:00 2022 AnchalUpdateGeneralScheduled power outage recovery

I found that two computers are not powering up in the control room, Ottavia and Allegra. Allegra was important for us as it had the current version of LIGO CDS workstation installed on, providing us with options to use latest packages written by LIGO CDS team. I think the power issue should be resolvable if someone opens it and knows what thye are doing. Do we have any way of getting fuse repairs on such computers? Both these computers are Dell XPS 420.

 

  16666   Fri Feb 11 12:22:19 2022 ranaUpdateCDS[Solved] Huge random numbers flowing into ETMX/ETMY ASC PIT/YAW

you can hand edit the autoBurt file which the FE uses to set the values after boot up. Just make a python script that amends all of the OFF or ZERO that are needed to make things safe. This would be the autoBurt snap used on boot up only, and not the hourly snaps.

 

Yeah, this is a known issue actually. We go to ASC screen and manually swich off all the outputs after every reboot. We haven't been able to find a way to set default so that when the model comes online, these outputs remain switched off. We should find a way for this.

 

  16667   Fri Feb 11 16:09:11 2022 AnchalUpdateGeneralScheduled power outage recovery - Input power increased

We increased the input power to IMC by replacing the 98% transmission BS by a 10% transmission BS on the detection table (reverse of what mentioned in 40m/16408 see attachment 8-9laugh). We then realigned the BS so that MC RFPD is centered. Then we realigned two steering mirrors to get the beam centered on the WFS1 and WFS2 QPD. Then we increased the power of the input beam to get 5.307 reading on the C1:IOO-MC_RFPD_DCMON channel. We did this so that we can align the IMC. Once we have it aligned, we'll go back to low poer for doing chamber work.

Beware, there is about 1W beam on the detection table right now.

 

  16668   Fri Feb 11 17:07:19 2022 AnchalUpdateCDS[Solved] Huge random numbers flowing into ETMX/ETMY ASC PIT/YAW

The autoBurt file for FE already has the C1:ASC-ETMX_PIT_SW2 (and other channels for ETMY, ITMX, ITMY, BS and for YAW) present, and I checked the last snapshot file from Feb 7th, 2022, which has 0 for these channels. So I'm not sure why when FE boots up, it does not follow the switch configuration. Fr safety, I changed all the gains of these filter modules, named like C1:ASC-XXXX_YYY_GAIN (where XXXX is ETMX, ETMY, ITMX, ITMY, or BS , and YYY is PIT or YAW) to 0.0. Now, even if the FE loads with switches in ON configuration, nothing should happen. In future, if we use this model for anything, we can change the gain values which won't be hard to track as the reason why no signal moves forward. Note, the BS connections from this model to BS suspension model do not work.

Quote:

you can hand edit the autoBurt file which the FE uses to set the values after boot up. Just make a python script that amends all of the OFF or ZERO that are needed to make things safe. This would be the autoBurt snap used on boot up only, and not the hourly snaps.

 

Yeah, this is a known issue actually. We go to ASC screen and manually swich off all the outputs after every reboot. We haven't been able to find a way to set default so that when the model comes online, these outputs remain switched off. We should find a way for this.

 

 

  16669   Mon Feb 14 18:31:50 2022 PacoUpdateGeneralScheduled power outage recovery - IMC recovery progress

[Paco, Anchal, Tega]

We have been realigning the IMC as of last Friday (02/11). Today we made some significant progress (still at high input power), but the IMC autolocker is unable to engage a stable mode lock. We have made some changes to reach this point, including re-centering of the MC1 REFL beam on the ccd, centering of MC2 QPD trans (using flashes), and centering of the MC REFL RFPD beam. The IMC is flashing to peak transmission of > 50% its max (near 14,000 counts average on 2021), and all PDs seem to be working ok... We will keep the PSL shutter closed (especially with high input power) for now.

  16671   Mon Feb 14 21:03:25 2022 KojiUpdateGeneralScheduled power outage recovery

I opened the boxes. Allegra has obvious vent of at least 4 caps. And the power supply did not respond even a paper clip test was performed. https://www.silverstonetek.com/downloads/QA/PSU/PSU-Paper%20Clip-EN.pdf (Paper Clip Test)
=> The mother board and the PSU are dead.

Then Ottavia was also checked. The mother board looked OK, but the PSU did not respond. I quickly opened the PSU and it had a bunch of bulged capacitors in it. => PSU dead

Conclusion: Save the cards/memory etc as much as possible. Migrate the allegra HDD to any other healthy PC or obtain a new used PC from Larry. Otherwise, we just want to buy another WS and copy the disk in it.

 

Attachment 1: PXL_20220215_025325118.jpg
PXL_20220215_025325118.jpg
  16672   Tue Feb 15 19:32:50 2022 KojiUpdateGeneralScheduled power outage recovery - IMC recovery progress

Reduced the IMC power to 100mW

Setup: The power meter was placed right before the final aperture (Attachment 1)

Before the adjustment: Initial position of the HWP was 37.29deg and the input power was 987mW (Attachments 2/3)

After the adjustment: Initial position of the HWP was 74.00deg and the input power was 100mW (Attachments 4/5)

This made the MCREFL reading 0.549.

The MC refl path optics has not been modified.

Attachment 1: PXL_20220216_001731377.jpg
PXL_20220216_001731377.jpg
Attachment 2: Screen_Shot_2022-02-15_at_16.18.16.png
Screen_Shot_2022-02-15_at_16.18.16.png
Attachment 3: PXL_20220216_001727465.jpg
PXL_20220216_001727465.jpg
Attachment 4: Screen_Shot_2022-02-15_at_16.22.16.png
Screen_Shot_2022-02-15_at_16.22.16.png
Attachment 5: PXL_20220216_002229572.jpg
PXL_20220216_002229572.jpg
  16673   Tue Feb 15 19:40:02 2022 KojiUpdateGeneralIMC locking

IMC is locking now. There was nothing wrong: just a careful alignment + proper gain adj

=== Primary Alignment ===

- I used WFS error signals as the indicator of the PDH error signals. Checked C1:IOO-WFS1_(I/Q)n_ERR and ended up C1:IOO-WFS1_I4_ERR as it showed the largest PDH error PP.

- Then used MC2 and MC3 to align the IMC by maximizing the PDH error and the MC trans (C1:IOO-MC_TRANS_SUM_ERR)

=== Locking procedure ===

Note that the MC REFL path is still configured for the full power input

- (Only at the beginning) Run scripts/MC/mcdown for initialization / Run scripts/MC/MC2tickleOFF just in case

- Enable IOO-MC-SW1 (MC SERVO switch right after "IN1 Gain (dB)").
- Disable 40:4000 boost
- Increase VCO Gain from -15 to 0
- Jiggle IN1 Gain from low to +31 until the lock is achieved

- As soon as the lock is acquired, enable 40:4000
- Increase VCO Gain to +10
- Turn up "SUPER BOOST" from 0 to 3

=== Lock loss procedure ===

Note that the MC REFL path is still configured for the full power input

- Disable IOO-MC-SW1
- Disable 40:4000 boost
- Reduce VCO Gain 0
- Turn down "SUPER BOOST" to 0

- Then jiggle IN1 Gain again to lock the IMC

=== MC2 spot ===

- It was obvious that the MC2F spot was not on the center of the optic.
- I tried to move the spot on the camera as much as possible, but this did not make the trans beam to the center of the MC end QPD
- I had the impression that the trans beam started to be clipped when the beam was moved towards the end QPD,

We need to reestablish the reasonable/consistent MC2 spot on the mirror, the MC end optics, and the QPD.
We will need to use MC2 dithering and A2L coupling to determine the center of the mirror

But as long as the transmission is maximized, the transmitted beam thru MC1 and MC3 follows the input beam. So we can continue the vent work

The current maximized transmission was ~1300. MC1 refl CCD view was largely off -> The camera path was adjusted.

=== MC2 alignment note ===

During the alignment, I noticed a sudden change of the MC2 alignment. There might be some hysteresis in the MC2 suspension. If you are locking the IMC and noticed significant misalignment, the first thing to try is to touch MC2 alignment.

  16674   Wed Feb 16 15:19:41 2022 AnchalUpdateGeneralReconfigured MC reflection path for low power

I reconfigured the MC reflection path for low power. This meant the following changes:

  • Replaced the 10% reflection BS by 98% reflection beam splitter
  • Realigned the BS angle to get maximum on C1:IOO-MC_RFPD_DCMON when cavity is unlocked.
  • Then realigned the steering mirrors for WFS1 and WFS2.
  • I tried to align the light for MC reflection CCD but then I realized that the pickoff for the camera is too low for it to be able to see anything.

Note, even the pick-off for WFS1 and WFS2 is too low I think. The IOO WFS alignment does not work properly for such low levels of light. I tried running the WFS loop for IMC and it just took the cavity out of the lock. So for low power scenario, we would keep the WFS loops OFF.

 

  16675   Tue Feb 22 18:47:51 2022 Ian MacMillanUpdateSUSETMY SUS Electronics Replacement

[Ian, Koji]

In preparation for the replacement of the suspension electronics that control the ETMY, I took measurments of the system excluding the CDS System. I took transfer functions from the input to the coil drivers to the output of the OSEMs for each sensor: UL, UR, LL, LR,  and SIDE. These graphs are shown below as well as all data in the compressed file.

We also had to replace the oplev laser power supply down the y-arm. The previous one was not turning on. the leading theory is that it's failure was caused by the power outage. We replaced it with one Koji brought from the fiber display setup.

I also am noting the values for the OSEM DC output

 OSEM  Value
 UL  557
 UR 568
 LR 780
 LL 385
 SIDE 328

In addition the oplev position was:

 OPLEV_POUT  4.871
 OPLEV_YOUT  -0.659
 OPLEV_PERROR  -16.055
 OPLEV_YERROR  -6.667

(KA ed) We only care about PERROR and YERROR (because P/YOUT are servo output)

Edit: corrected DC Output values

Attachment 1: ALL_TF_Graph.pdf
ALL_TF_Graph.pdf ALL_TF_Graph.pdf ALL_TF_Graph.pdf ALL_TF_Graph.pdf ALL_TF_Graph.pdf
Attachment 2: 20220222_SUSElectronicsReplacement.7z
  16676   Wed Feb 23 15:08:57 2022 AnchalUpdateGeneralRemoved extra beamsplitter in MC WFS path

As discussed in the meeting, I removed the extra beam splitter that dumps most of the beam going towards WFS photodiodes. This beam splitter needs to be placed back in position before increasing the input power to IMC at nominal level. This is to get sufficient light on the WFS photodiodes so that we can keep IMC locked for more than 3 days. Currently IMC is unlocked and misaligned. I have marked the position of this beam splitter on the table, so putting it back in should be easy. Right now, I'm trying to align the mode cleaner back and start the WFS loops once we get it locked.

  16677   Thu Feb 24 14:32:57 2022 AnchalUpdateGeneralMC RFPD DCMON channel got stuck to 0

I found a peculiar issue today. The C1:IOO-MC_RFPD_DCMON remains constantly 0. I wonder if the RFPF output is being read properly. I opened the table and used an oscilloscope to confirm that the DC output from the MC REFL photodiode is coming consistently but our EPICs channel is not reading it. I tried restarting the modbusIOC service but that did not affect anything. I power cycled the acromag chassis while keeping the modbusIOC service off, and then restarted teh modbusIOC service. After this, I saw more channels got stuck and became unresponsive, including the PMC channels. So then I rebooted c1psl without doing anything to the acromaf chasis, and finally things came back online. Everything looks normal to me now but I'm not sure if one of the many channels is not in the right state. Anyways, problem is solved now.

 

  16678   Thu Feb 24 18:05:58 2022 YehonathanUpdateBHDRe-susspension of AS1

{Yehonathan, Anchal, Paco}

Yesterday, Anchal and Paco removed AS1 from the vacuum chamber and moved it into the cleanroom. The suspension wires were cut and the AS1 optic was put on the table.

Two things were noticed:

1. One of the wires was not sitting inside the side block groove (attachment 1)

2. One of the face magnets was grossly tilted (attachment 2). Probably due to uneven polishing of the dumbbell.

We put new wires into the side blocks making sure they sit in their grooves and we removed the tilted magnet. A different, more straight magnet was picked from the remaining spare magnets. The dumbbell and adapter were cleaned from glue residues and a batch of glue was prepared.

In the process of gluing a different magnet was knocked off. We cleaned that magnet too. The 2 magnets were glued on the adapter.

Today I came and saw that the gluing failed completely. One of the magnets was completely away from its socket and the other one wasn't glued at all.

I prepared a new batch of glue and glued the two magnets.

Attachment 1: signal-2022-02-24-173933_003.jpeg
signal-2022-02-24-173933_003.jpeg
Attachment 2: signal-2022-02-24-173933_002.jpeg
signal-2022-02-24-173933_002.jpeg
ELOG V3.1.3-