40m QIL Cryo_Lab CTN SUS_Lab TCS_Lab OMC_Lab CRIME_Lab FEA ENG_Labs OptContFac Mariner WBEEShop
  40m Log, Page 316 of 344  Not logged in ELOG logo
ID Date Author Type Categoryup Subject
  16364   Wed Sep 29 09:36:26 2021 JordanUpdateSUS2" Adapter Ring Parts for SOS Arrived 9/28/21

The remaining machined parts for the SOS adapter ring have arrived. I will inspect these today and get them ready for C&B.

Attachment 1: 20210929_092418.jpg
20210929_092418.jpg
  16371   Fri Oct 1 14:25:27 2021 yehonathanSummarySUSPRM and BS Angular Actuation transfer function magnitude measurements

{Paco, Yehonathan, Hang}

We measured the sensing PRMI sensing matrix. Attachment 1 shows the results, the magnitude of the response is not calibrated. The orthogonality between PRCL and MICH is still bad (see previous measurement for reference).

Hang suggested that since MICH actuation with BS and PRM is not trivial (0.5*BS - 0.34*PRM) and since PRCL is so sensitive to PRM movement there might be a leakage to PRCL when we are actuating on MICH. So there may be a room to tune the PRM coefficient in the MICH output matrix.

Attachment 2 shows the sensing matrix after we changed the MICH->PRM coefficient in the OSC output matrix to -0.1.

It seems like it made things a little bit better but not much and also there is a huge uncertainty in the MICH sensing.

Attachment 1: MICH_PRM_-0.34.png
MICH_PRM_-0.34.png
Attachment 2: MICH_PRM_-0.1.png
MICH_PRM_-0.1.png
  16374   Mon Oct 4 16:00:57 2021 YehonathanSummarySUSPRM and BS Angular Actuation transfer function magnitude measurements

{Yehonathan, Anchel}

In an attempt to fix the actuation of the PRMI DOFs we set to modify the output matrix of the BS and PRM such that the response of the coils will be similar to each other as much as possible.

To do so, we used the responses at a single frequency from the previous measurement to infer the output matrix coefficients that will equilize the OpLev responses (arbitrarily making the LL coil as a reference). This corrected the imbalance in BS almost completely while it didn't really work for PRM (see attachment 1).

The new output matrices are shown in attachment 2-3.

Attachment 1: BS_PRM_ANG_ACT_TF_20211004.pdf
BS_PRM_ANG_ACT_TF_20211004.pdf BS_PRM_ANG_ACT_TF_20211004.pdf BS_PRM_ANG_ACT_TF_20211004.pdf BS_PRM_ANG_ACT_TF_20211004.pdf
Attachment 2: BS_out_mat_20211004.txt
9.839999999999999858e-01 8.965770586285104482e-01 9.486710352885977526e-01 3.099999999999999978e-01
1.016000000000000014e+00 9.750242104232501594e-01 -9.291967546765563801e-01 3.099999999999999978e-01
9.839999999999999858e-01 -1.086765190351774768e+00 1.009798093279114628e+00 3.099999999999999978e-01
1.016000000000000014e+00 -1.031706735496689786e+00 -1.103142995587099939e+00 3.099999999999999978e-01
0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00
Attachment 3: PRM_out_mat_20211004.txt
1.000000000000000000e+00 1.033455230230304611e+00 9.844796282226820905e-01 0.000000000000000000e+00
1.000000000000000000e+00 9.342329554807877745e-01 -1.021296201828568506e+00 0.000000000000000000e+00
1.000000000000000000e+00 -1.009214777246558503e+00 9.965113815550634691e-01 0.000000000000000000e+00
1.000000000000000000e+00 -1.020129700278567197e+00 -9.973560027273553619e-01 0.000000000000000000e+00
0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00
  16375   Mon Oct 4 16:10:09 2021 ranaSummarySUSPRM and BS Angular Actuation transfer function magnitude measurements

not sure that this is necessary. If you look at teh previous entries Gautam made on this topic, it is clear that the BS/PRM PRMI matrix is snafu, whereas the ITM PRMI matrix is not.

Is it possible that the ~5% coil imbalance of the BS/PRM can explain the observed sensing matrix? If not, then there is no need to balance these coils.

  16383   Tue Oct 5 20:04:22 2021 PacoSummarySUSPRM and BS Angular Actuation transfer function magnitude measurements

[Paco, Rana]

We had a look at the BS actuation. Along the way we created a couple of issues that we fixed. A summary is below.

  1. First, we locked MICH. While doing this, we used the /users/Templates/ndscope/LSC/MICH.yml ndscope template to monitor some channels. I edited the yaml file to look at C1:LSC-ASDC_OUT_DQ instead of the REFL_DC. Rana pointed out that the C1:LSC-MICH_OUT_DQ (MICH control point) had a big range (~ 5000 counts rms) and this should not be like that.
  2. We tried to investigate the aforementioned thing by looking at the whitening / uwhitening filters but all the slow epics channels where "white" on the medm screen. Looking under CDS/slow channel monitors, we realized that both c1iscaux and c1auxey were weird, so we tried telnet to c1iscaux without success. Therefore, we followed the recommended wiki procedure of hard rebooting this machine. While inside the lab and looking for this machine, we touched things around the 'rfpd' rack and once we were back in the control room, we couldn't see any light on the AS port camera. But the whitening filter medm screens were back up.
  3. While rana ssh'd into c1auxey to investigate about its status, and burtrestored the c1iscaux channels, we looked at trends to figure out if anything had changed (for example TT1 or TT2) but this wasn't the case. We decided to go back inside to check the actual REFL beams and noticed it was grossly misaligned (clipping)... so we blamed it on the TTs and again, went around and moved some stuff around the 'rfpd' rack. We didn't really connect or disconnect anything, but once we were back in the control room, light was coming from the AS port again. This is a weird mystery and we should systematically try to repeat this and fix the actual issue.
  4. We restored the MICH, and returned to BS actuation problems. Here, we essentially devised a scheme to inject noise at 310.97 Hz and 313.74. The choice is twofold, first it lies outside the MICH loop UGF (~150 Hz), and second, it matches the sensing matrix OSC frequencies, so it's more appropriate for a comparison.
  5. We injected two lines using the BS SUS LOCKIN1 and LOCKIN2 oscilators so we can probe two coils at once, with the LSC loop closed, and read back using the C1:LSC-MICH_IN1_DQ channel. We excited with an amplitude of 1234.0 counts and 1254 counts respectively (to match the ~ 2 % difference in frequency) and noted that the magnitude response in UR was 10% larger than UL, LL, and LR which were close to each other at the 2% level.

[Paco]

After rana left, I did a second pass at the BS actuation. I took TF measurements at the oscilator frequencies noted above using diaggui, and summarize the results below:

TF UL (310.97 Hz) UR (313.74 Hz) LL (310.97 Hz) LR (313.74 Hz)
Magnitude (dB) 93.20 92.20 94.27 93.85
Phase (deg) -128.3 -127.9 -128.4 -127.5

This procedure should be done with PRM as well and using the PRCL instead of MICH.

  16384   Wed Oct 6 15:04:36 2021 HangUpdateSUSPRM L2P TF measurement & Fisher matrix analysis

[Paco, Hang]

Yesterday afternoon Paco and I measured the PRM L2P transfer function. We drove C1:SUS-PRM_LSC_EXC with a white noise in the 0-10 Hz band (effectively a white, longitudinal force applied to the suspension) and read out the pitch response in C1:SUS-PRM_OL_PIT_OUT. The local damping was left on during the measurement. Each FFT segment in our measurement is 32 sec and we used 8 non-overlapping segments for each measurement. The empirically determined results are also compared with the Fisher matrix estimation (similar to elog:16373).

Results:

Fig. 1 shows one example of the measured L2P transfer function. The gray traces are measurement data and shaded region the corresponding uncertainty. The olive trace is the best fit model. 

Note that for a single-stage suspension, the ideal L2P TF should have two zeros at DC and two pairs of complex poles for the length and pitch resonances, respectively. We found the two resonances at around 1 Hz from the fitting as expected. However, the zeros were not at DC as the ideal, theoretical model suggested. Instead, we found a pair of right-half plane zeros in order to explain the measurement results. If we cast such a pair of right-half plane zeros into (f, Q) pair, it means a negative value of Q. This means the system does not have the minimum phase delay and suggests some dirty cross-coupling exists, which might not be surprising. 

Fig. 2 compares the distribution of the fitting results for 4 different measurements (4 red crosses) and the analytical error estimation obtained using the Fisher matrix (the gray contours; the inner one is the 1-sigma region and the outer one the 3-sigma region). The Fisher matrix appears to underestimate the scattering from this experiment, yet it does capture the correlation between different parameters (the frequencies and quality factors of the two resonances).

One caveat though is that the fitting routine is not especially robust. We used the vectfit routine w/ human intervening to get some initial guesses of the model. We then used a standard scipy least-sq routine to find the maximal likelihood estimator of the restricted model (with fixed number of zeros and poles; here 2 complex zeros and 4 complex poles). The initial guess for the scipy routine was obtained from the vectfit model.  

Fig. 3 shows how we may shape our excitation PSD to maximize the Fisher information while keeping the RMS force applied to the PRM suspension fixed. In this case the result is very intuitive. We simply concentrate our drive around the resonance at ~ 1 Hz, focusing on locations where we initially have good SNR. So at least code is not suggesting something crazy... 

Fig. 4 then shows how the new uncertainty (3-sigma contours) should change as we optimize our excitation. Basically one iteration (from gray to olive) is sufficient here. 

We will find a time very recently to repeat the measurement with the optimized injection spectrum.

Attachment 1: prm_l2p_tf_meas.pdf
prm_l2p_tf_meas.pdf
Attachment 2: prm_l2p_fisher_vs_data.pdf
prm_l2p_fisher_vs_data.pdf
Attachment 3: prm_l2p_Pxx_evol.pdf
prm_l2p_Pxx_evol.pdf
Attachment 4: prm_l2p_fisher_evol.pdf
prm_l2p_fisher_evol.pdf
  16385   Wed Oct 6 15:39:29 2021 AnchalSummarySUSPRM and BS Angular Actuation transfer function magnitude measurements

Note that your tests were done with the output matrix for BS and PRM in the compensated state as done in 40m/16374. The changes made there were supposed to clear out any coil actuation imbalance in the angular degrees of freedom.

  16388   Fri Oct 8 17:33:13 2021 HangUpdateSUSMore PRM L2P measurements

[Raj, Hang]

We did some more measurements on the PRM L2P TF. 

We tried to compare the parameter estimation uncertainties of white vs. optimal excitation. We drove C1:SUS-PRM_LSC_EXC with "Normal" excitation and digital gain of 700.

For the white noise exciation, we simply put a butter("LowPass",4,10) filter to select out the <10 Hz band.

For the optimal exciation, we use butter("BandPass",6,0.3,1.6) gain(3) notch(1,20,8) to approximate the spectral shape reported in elog:16384. We tried to use awg.ArbitraryLoop yet this function seems to have some bugs and didn't run correctly; an issue has been submitted to the gitlab repo with more details. We also noticed that in elog:16384, the pitch motion should be read out from C1:SUS-PRM_OL_PIT_IN1 instead of the OUT channel, as there are some extra filters between IN1 and OUT. Consequently, the exact optimal exciation should be revisited, yet we think the main result should not be altered significantly.

While a more detail analysis will be done later offline, we post in the attached plot a comparison between the white (blue) vs optimal (red) excitation. Note in this case, we kept the total force applied to the PRM the same (as the RMS level matches).

Under this simple case, the optimal excitation appears reasonable in two folds.

First, the optimization tries to concentrate the power around the resonance. We would naturally expect that near the resonance, we would get more Fisher information, as the phase changes the fastest there (i.e., large derivatives in the TF).

Second, while we move the power in the >2 Hz band to the 0.3-2 Hz band, from the coherence plot we see that we don't lose any information in the > 2 Hz region. Indeed, even with the original white excitation, the coherence is low and the > 2 Hz region would not be informative. Therefore, it seems reasonable to give up this band so that we can gain more information from locations where we have meaningful coherence.

Attachment 1: Screenshot_2021-10-08_17-30-52.png
Screenshot_2021-10-08_17-30-52.png
  16389   Mon Oct 11 11:13:04 2021 ranaUpdateSUSMore PRM L2P measurements

For the oplev, there are DQ channels you can use so that its possible to look back in the past for long measurements. They have names like PERROR

  16390   Mon Oct 11 13:59:47 2021 HangUpdateSUSMore PRM L2P measurements

We report here the analysis results for the measurements done in elog:16388

Figs. 1 & 2 are respectively measurements of the white noise excitation and the optimized excitation. The shaded region corresponds to the 1-sigma uncertainty at each frequency bin. By eyes, one can already see that the constraints on the phase in the 0.6-1 Hz band are much tighter in the optimized case than in the white noise case. 

We found the transfer function was best described by two real poles + one pair of complex poles (i.e., resonance) + one pair of complex zeros in the right-half plane (non-minimum phase delay). The measurement in fact suggested a right-hand pole somewhere between 0.05-0.1 Hz which cannot be right. For now, I just manually flipped the sign of this lowest frequency pole to the left-hand side. However, this introduced some systematic deviation in the phase in the 0.3-0.5 Hz band where our coherence was still good. Therefore, a caveat is that our model with 7 free parameters (4 poles + 2 zeros + 1 gain as one would expect for an ideal signal-stage L2P TF) might not sufficiently capture the entire physics. 

In Fig. 3 we showed the comparison of the two sets of measurements together with the predictions based on the Fisher matrix. Here the color gray is for the white-noise excitation and olive is for the optimized excitation. The solid and dotted contours are respectively the 1-sigma and 3-sigma regions from the Fisher calculation, and crosses are maximum likelihood estimations of each measurement (though the scipy optimizer might not find the true maximum).

Note that the mean values don't match in the two sets of measurements, suggesting potential bias or other systematics exists in the current measurement. Moreover, there could be multiple local maxima in the likelihood in this high-D parameter space (not surprising). For example, one could reduce the resonant Q but enhance the overall gain to keep the shoulder of a resonance having the same amplitude. However, this correlation is not explicit in the Fisher matrix (first-order derivatives of the TF, i.e., local gradients) as it does not show up in the error ellipse. 

In Fig. 4 we show the further optimized excitation for the next round of measurements. Here the cyan and olive traces are obtained assuming different values of the "true" physical parameter, yet the overall shapes of the two are quite similar, and are close to the optimized excitation spectrum we already used in elog:16388

 

Attachment 1: prm_l2p_tf_meas_white.pdf
prm_l2p_tf_meas_white.pdf
Attachment 2: prm_l2p_tf_meas_opt.pdf
prm_l2p_tf_meas_opt.pdf
Attachment 3: prm_l2p_fisher_vs_data_white_vs_opt.pdf
prm_l2p_fisher_vs_data_white_vs_opt.pdf
Attachment 4: prm_l2p_Pxx_evol_v2.pdf
prm_l2p_Pxx_evol_v2.pdf
  16393   Tue Oct 12 11:32:54 2021 YehonathanSummarySUSPRM and BS Angular Actuation transfer function magnitude measurements

Late submission (From Thursday 10/07):

I measured the PRMI sensing matrix to see if the BS and PRMI output matrices tweaking had any effect.

While doing so, I noticed I made a mistake in the analysis of the previous sensing matrix measurement. It seems that I have used the radar plot function with radians where degrees should have been used (the reason is that the azimuthal uncertainty looked crazy when I used degrees. I still don't know why this is the case with this measurement).

In any case, attachment 1 and 2 show the PRMI radar plots with the modified output matrices and and in the normal state, respectively.

It seems like the output matrix modification didn't do anything but REFL55 has good orthogonality. Problem gone??

Attachment 1: modified_output_matrices_radar_plots.png
modified_output_matrices_radar_plots.png
Attachment 2: normal_output_matrices_radar_plots.png
normal_output_matrices_radar_plots.png
  16394   Tue Oct 12 16:39:52 2021 ranaSummarySUSPRM and BS Angular Actuation transfer function magnitude measurements

should compare side by side with the ITM PRMI radar plots to see if there is a difference. How do your new plots compare with Gautam's plots of PRMI?

  16402   Thu Oct 14 13:40:49 2021 YehonathanSummarySUSPRM and BS Angular Actuation transfer function magnitude measurements

Here is a side by side comparison of the PRMI sensing matrix using PRM/BS actuation (attachment 1) and ITMs actuation (attachment 2). The situation looks similar in both cases. That is, good orthogonality on REFL55 and bad seperation in the rest of the RFPDs.

Quote:

should compare side by side with the ITM PRMI radar plots to see if there is a difference. How do your new plots compare with Gautam's plots of PRMI?

 

Attachment 1: BSPRM_Actuation_Radar_plots.png
BSPRM_Actuation_Radar_plots.png
Attachment 2: ITM_Actuation_Radar_plots.png
ITM_Actuation_Radar_plots.png
  16419   Thu Oct 21 11:38:43 2021 JordanUpdateSUSStandoffs for Side Magnet on 3" Adapter Ring SOS Assembly

I had 8 standoffs made at the Caltech chemistry machine shop to be used as spacers for the side magnets on the 3" Ring assembly. This is to create enough clearance between the magnet and the cap screws directly above on the wire clamp.

These are 0.075" diameter by .10" length. Putting them through clean and bake now.

Attachment 1: Magnet_Standoffs.jpg
Magnet_Standoffs.jpg
  16447   Wed Nov 3 16:55:23 2021 Ian MacMillanSummarySUSSUS Plant Plan for New Optics

[Ian, Tega, Raj]

This is the rough plan for the testing of the new suspension models with the created plant model. We will test the suspensions on the plant model before we implement them into the full

  • Get State-space matrices from the surf model for the SOS. Set up simplant model on teststand
    • The state-space model is only 3 degrees of freedom. (even the surf's model)
    • There are filter modules that have the 6 degrees of freedom for the suspensions. We will use these instead. I have implemented them in the same suspension model that would hold the state space model. If we ever get the state space matrices then we can easily substitute them.
  • Load new controller model onto test stand. This new controller will be a copy of an existing suspension controller.
  • Hook up controller to simplant.  These should form a closed loop where the outputs from the controller go into the plant inputs and the plant outputs go to the controller inputs.
  • Do tests on set up.
    • Look at the step response for each degree of freedom. Then compare them to the results from an existing optic. 
      • Also, working with Raj let him do the same model in python then compare the two.
  • Make sure that the data is being written to the local frame handler.

MEDM file location

/opt/rtcds/userapps/release/sus/common/medm/hsss_tega_gautam

run using 

For ITMX display, use:

hsss_tega_gautam>medm -x -macro "site=caltech,ifo=c1,IFO=C1,OPTIC=ITMX,SUSTYPE=IM,DCU_ID=21,FEC=45" SUS_CUST_HSSS_OVERVIEW.adl

  16449   Thu Nov 4 18:29:51 2021 TegaUpdateSUSSetting up suspension test model

[Ian,Tega]

Today we continued working on setting up the 6 degrees of freedom model for testing the suspension which we copied over from  "/cvs/cds/rtcds/userapps/release/sus/c1/models/c1sup.mdl" to c1sp2.mdl in the same folder. We then changed the host from c1lsc to c1sus2, changed cpu # from 7 to 3 bcos c1sus2 has 6 cores. Then ran the following commands to build and install the model on c1sus2:

$ ssh c1sus2

$ rtcds make c1sp2

$ rtcds install c1sp2

where we encountered the following installation error:

ERROR: This node 62 is already installed as:

hostname=c1lsc

system=c1sup

The new entry you are trying to write is as follows:

hostname=c1sus2

system=c1sp2

This script will not overwrite existing entries in testpoint.par

If this is an attempt to move an existing system from one host to another,

please remove conflicting entry from testpoint.par file

It seems that changing the model name and host did not change the node allocation, so will remove the previous entries in testpoint.par to see if that helps. After deleting the following lines

[C-node62]
hostname=c1lsc
system=c1sup

from the file "/opt/rtcds/caltech/c1/target/gds/param/testpoint.par", the installation went fine and the above entries were replaced by 

[C-node62]
hostname=c1sus2
system=c1sp2

BTW, I now believe the reason we had the node conflict earlier was bcos both models still had the same value of  dcuid=62, so I think changing this value in our model file would be a better solution. Work is ongoing.

 

  16451   Fri Nov 5 12:49:32 2021 ranaUpdateSUSSetting up suspension test model

Please don't put it on c1sus2. Put it on the completely independent test stand as we discussed Wednesday. You must test the controller on the simplant and verify that they thing is stable and works, before putting it in the 40m network.

  16457   Mon Nov 8 17:52:22 2021 Ian MacMillanUpdateSUSSetting up suspension test model

[Ian, Tega]

We combined a controler and a plant model into a single modle (See first attachment) called x1sus_cp.mdl in the userapps folder of the cymac in c1sim. This model combines 2 blocks: the controler block which is used to control the current optics and is found in cvs/cds/rtcds/userapps/release/sus/c1/models/c1sus.mdl further the control block we are using comes from the same path but from the c1sup.mdl model. This plant model is the bases for all of my custom plant models and thus is a good starting point for the testing. It is also ideal because I know it can beeasily altered into a my state-space plant model. However, we had to make a few adjustments to get the model up to date for the cds system. So it is now a unique block.

These two library blocks are set in the userapps/lib folder on the cymac. This is the lib file that the docker system looks to when it is compiling models. For a quick overview see this. All other models have been removed from the MatLab path so that when we open x1sus_cp.mdl in MatLab it is using the same models it will compile with.

We could not find the rtbitget library part, but chris pointed us to userapps, and we copied it over using: scp /opt/rtcds/userapps/trunk/cds/common/models/rtbitget.mdl controls@c1sim:/home/controls/simLink/lib.

NOTE TO FUTURE IAN: don't forget that unit delays exist.

Next step: now that we have a model that is compiling and familiar we need to make medm screens. We will use the auto mdl2adl for this so that it is quick. Then we can start adding our custom pieces one by one so that we know that they are working. We will also work with Raj to get an independent python model working. Which will allow us to compare the cds and python models.

Attachment 1: x1sus_cp.png
x1sus_cp.png
  16464   Thu Nov 11 00:11:39 2021 KojiSummarySUS2" to 3" sleeve issue

Yehonathan and Tega found that the new PR3 and SR3 delivered in 2020 is in fact 3/4" in thickness (!). Digging the past email threads, it seems that the spec was 10mm but the thickness was increased for better relieving the residual stress by the coatings.

There are a few issues.

1. Simply the mirror is too thick for the ring. It sticks out from the hole. And the mirror retainers (four plastic plates) are too far from the designed surface, which will make the plates tilted.

2. The front side of the mirror assembly is too heavy and the pitch adjustment is not possible with the balance mass.

Some possible solutions:

- How about making the recess deeper?
In principle this is possible, but the machining is tricky because the recess is not a simple round hole but has "pads" where the mirror sits. And the distance of the retainer to the thread is still far.
And the lead time might become long.

- How about making new holes on the ring to shift the clamp?
Yes it is possible. This will shift the mirror assembly by a few mm. Let's consider this.

- How about modifying the wire blocks?
Yes it is equivalent to shift the holes on the ring. Let's consider this too.

1. How to hold the mirror with the retainer plates

[Attachment 1] The expected distance between the retainer plate and the threaded hole is 13.4mm. We can insert a #4-40 x L0.5" stand off (McMaster-Carr 91197A150, SUS316) there. This will make the gap down to 0.7mm. With a washer, we can handle this gap with the plate. Note that we need to use vented & silver plated #4-40 screws to hold the plates.

[Attachment 2] How does this look like when the CoM is aligned with the wire plane? Oh, no... the lower two plates will interfere with the EQ stops and the EQ stop holders. We have to remove them. [Attachment 3]
We need to check with the suspension if the EQ stop screws may hit the protruded optics and can cause chipping/cracking.

2. Modifying the wire block

[Attachment 4] The 4x thru holes of the wire block were extended to be +/-0.1" slots. The slots are too long to form ovals and produce thin areas. With the nominal position of the balance mass, the clamp coordinates are y=1.016 (vertical) and z=-2.54mm (longitudinal).
==> The CoM is 0.19mm backside (magnet side) and 0.9134 mm lower from the wire clamping points. This looks mathematically doable, but the feasibility of the manufacturing is questionable.

[Attachment 5] Because the 0.1" shift of the CoM is large, we are able to make new #2-56 thread holes right next to the original ones. The clamp coordinates are y=1.016 (vertical) and z=-2.54mm (longitudinal).
==> The CoM is 0.188mm backside (magnet side) and 0.9136 mm lower from the wire clamping points. With the given parameters, the expected pitch resonant frequency is 0.756Hz

My Recommendation

- Modify the metal ring to shift the #2-56 threads by 0.1"

- The upper two retainer plates will have #4-40 x 0.5" stand off. Use vented Ag-coated #4-40 screws.

- The lower two are to be removed.

- Take care of the EQ stops.

- Of course, the best solution is to redesign the holder for 3/4" optics. Can we ask Protolab for rapid manufacturing???


Why did we need to place the mass forward to align the 1/4" thick optic?

We were supposed to adjust the CoM not to have too much adjustment. But we had to move the balance mass way too front for the proper alignment with a 1/4" thick optic. Why...?
This is because the ring was designed for a 3/8" thick optic... It does not make sense because the depth of the thread holes for the retainer plate was designed for 1/4" optics...

When the balance mass is located at the neutral position, the CoM coordinate is

x 0.0351mm (x+: left side at the front view)
y 0.0254mm (y+: vertical up)
z 0.4493mm (z+: towards back)

So, the CoM is way too behind. When the balance mass was stacked and the moved forward (center of the axis was moved forward by 0.27"), the CoM coordinate is (Attachment 6)

x 0.0351mm
y 0.0254mm
z 0.0011mm

This makes sens why we had to move the balance mass a lot for the adjustment.

Attachment 1: Screenshot_2021-11-11_001050.png
Screenshot_2021-11-11_001050.png
Attachment 2: Screenshot_2021-11-11_010405.png
Screenshot_2021-11-11_010405.png
Attachment 3: Screenshot_2021-11-11_010453.png
Screenshot_2021-11-11_010453.png
Attachment 4: Screenshot_2021-11-11_012213.png
Screenshot_2021-11-11_012213.png
Attachment 5: Screenshot_2021-11-11_011336.png
Screenshot_2021-11-11_011336.png
Attachment 6: Screenshot_2021-11-10_235100.png
Screenshot_2021-11-10_235100.png
  16467   Tue Nov 16 11:37:26 2021 HangHowToSUSFitting suspension model--large systematic errors

One goal of our sysID study is to improve the aLIGO L2A feedforward. Our algorithm currently improves only the statistical uncertainty and assumes the systematic errors are negligible. However, I am currently baffled by how to fit a (nearly) realistic suspension model...

My test study uses the damped aLIGO QUAD suspension model. From the Matlab model I extract the L2 drive in [N] to L3 pitch in [rad] transfer function (given by a SS model with the A matrix having a shape of 103x103). I then tried to use VectFIT to fit the noiseless TF. After removing nearby z-p pairs (defined by less than 0.2 times the lowest pole frequency) and high-frequency zeros, I got a model with 6 complex pole pairs and 4 complex zero pairs (21 free parameters in total). I also tried to fit the TF (again, noiseless) with an MCMC algorithm assuming the underlying model has the same number of parameters as the VectFIT results. 

Please see the first attached plots for a comparison between the fitted models and the true one. In the second plot, we show the fractional residual

    | TF_true - TF_fit | / | TF_true |,

and the inverse of this number gives the saturating SNR at each frequency. I.e., when the statistical SNR is more than the saturating value, we are then limited by systematic errors in the fitting. And so far, disappointingly I can only get an SNR of 10ish for the main resonances...

I wonder if people know better ways to reduce this fitting systematic... Help is greatly appreciated!

Attachment 1: L2L_L3P_fit.pdf
L2L_L3P_fit.pdf
Attachment 2: L2L_L3P_residual.pdf
L2L_L3P_residual.pdf
  16502   Fri Dec 10 21:35:15 2021 KojiSummarySUSVertex SUS DAC adapter ready

4 units of Vertex SUS DAC adapter (https://dcc.ligo.org/LIGO-D2100035) ready.

https://dcc.ligo.org/LIGO-S2101689

https://dcc.ligo.org/LIGO-S2101690

https://dcc.ligo.org/LIGO-S2101691

https://dcc.ligo.org/LIGO-S2101692

The units are completely passive right now and has option to extend to have a dewhitening board added inside.
So the power switch does nothing.

Some of the components for the dewhitening enhancement are attached inside the units.

 

 

Attachment 1: PXL_20211211_053155009.jpg
PXL_20211211_053155009.jpg
Attachment 2: PXL_20211211_053209216.jpg
PXL_20211211_053209216.jpg
Attachment 3: PXL_20211211_050625141-1.jpg
PXL_20211211_050625141-1.jpg
  16519   Fri Dec 17 12:32:35 2021 KojiUpdateSUSRemaining task for 2021

Anything else? Feel free to edit this entry.

- SUS: AS1 hanging

- SUS: PR3/SR2/LO2 3/4" thick optic hanging

v Electronics chain check (From DAC to the end of the in-air cable / From the end of the in-air cable to the ADC)
[ELOG 16522]

- Long cable installation (4x 70ft)

- In-air cable connection to the flange

- In-vac wiring (connecting LO1 OSEMs)

- LO1 OSEM insertion/alignment

- LO1 Damping test

 

  16522   Fri Dec 17 19:19:42 2021 KojiUpdateSUSRemaining task for 2021

I had the fear that any mistake in the electronics chain could have been the show stopper.

So I quickly checked the signal assignments for the ADC and DAC chains.

I had initial confusion (see below), but it was confirmed that the electronics chains (at least for LO1) are correct.

Note: One 70ft cable is left around the 1Y0 rack

 


There are a few points to be fixed:

- It looks like the ADC/DAC card # assignment has been messed up.

CDS ADC0 -> Cable label ADC1 -> AA A1 -> ...
CDS ADC1 -> Cable label ADC0 -> AA A0 -> ...
CDS DAC0 -> Cable label DAC2 -> AI D2 -> ...
CDS DAC1 -> Cable label DAC0 -> AI D0 -> ...
CDS DAC2 -> Cable label DAC1 -> AI D1 -> ...
(What is going on here... please confirm and correct as they become straight forward)

Once this puzzle was solved I could confirm reasonable connections from the end of the 70 cables to the ADC/DAC.

- We also want to change the ADC card assignment. The face OSEM readings must be assigned to ADC1 and the side OSEM readings to ADC0.
  My system wiring diagram needs to be fixed accordingly too.
  This is because the last channel of the first ADC (ADC0) is not available for us and is used for DuoTone.

Attachment 1: PXL_20211218_030145356.MP.jpg
PXL_20211218_030145356.MP.jpg
  16525   Sun Dec 19 07:52:51 2021 AnchalUpdateSUSRemaining task for 2021

The I/O chassis reassigns the ADC and DAC indices on every power cycle. When we moved it, it must have changed it from the order we had. We were aware of this fact and decided to reconnect the I/O chassis to AA/AI to relect the correct order. We forgot to do that but this is not an error, it is expected behavior and can be solved easily.

Quote:

I had the fear that any mistake in the electronics chain could have been the show stopper.

So I quickly checked the signal assignments for the ADC and DAC chains.

I had initial confusion (see below), but it was confirmed that the electronics chains (at least for LO1) are correct.

Note: One 70ft cable is left around the 1Y0 rack

 


There are a few points to be fixed:

- It looks like the ADC/DAC card # assignment has been messed up.

CDS ADC0 -> Cable label ADC1 -> AA A1 -> ...
CDS ADC1 -> Cable label ADC0 -> AA A0 -> ...
CDS DAC0 -> Cable label DAC2 -> AI D2 -> ...
CDS DAC1 -> Cable label DAC0 -> AI D0 -> ...
CDS DAC2 -> Cable label DAC1 -> AI D1 -> ...
(What is going on here... please confirm and correct as they become straight forward)

Once this puzzle was solved I could confirm reasonable connections from the end of the 70 cables to the ADC/DAC.

- We also want to change the ADC card assignment. The face OSEM readings must be assigned to ADC1 and the side OSEM readings to ADC0.
  My system wiring diagram needs to be fixed accordingly too.
  This is because the last channel of the first ADC (ADC0) is not available for us and is used for DuoTone.

 

  16534   Wed Dec 22 18:16:23 2021 KojiUpdateSUSRemaining task for 2021

The in-vacuum installation team has reported that the side OSEMs of ITMX and LO1 are going to be interfering if place LO1 at the planned location.
I confirmed that ITMX has the side magnet on the other side (Attachment 1 ITMX photo taken on 2016/7/21). So we can do this swap.

The ITMX side OSEM is sticking out most. By doing this operation, we will recover most of the space between the ITMX and LO1. (Attachment 2)

Attachment 1: ITMX_2016_07_21.jpg
ITMX_2016_07_21.jpg
Attachment 2: Screen_Shot_2021-12-22_at_18.03.42.png
Screen_Shot_2021-12-22_at_18.03.42.png
  16538   Sun Jan 2 20:46:46 2022 KojiUpdateSUSEnd SUS Electronics building

19:00~ Start working on the electronics bench

The following units were tested and ready to be installed. These are the last SUS electronics units and we are now ready to upgrade the end SUS electronics too.

40m End ADC Adapter Unit D2100016 / 2 Units (S2200001 S2200002)

40m End DAC Adapter Unit D2100647/ 2 Units (S2200003 S2200004)

These are placed on Tega's desk together with the vertex DAC adapters

0:30 End work

Attachment 1: PXL_20220103_081133119.jpg
PXL_20220103_081133119.jpg
  16549   Thu Jan 6 15:10:38 2022 KojiUpdateSUSITMX Chamber work

[Anchal, Koji]

=== Summary ===
- ITMX SD OSEM migration done
- LO1 OSEM insertion and precise adjustment (part 1) done
- LO1 POS/PIT/YAW/SD motions were damped


=== General Remarks ===
- 15:00 Entered into ITMX.
- We were equipped with N95 and took physical distance as much as possible.
- 17:00 Temporarily came out from the lab.
- 18:30? Came into the chamber again
- 20:00 Sus damped. OSEM work continues
- 21:00 OSEM installation work done. Exit.

=== ITMX SD OSEM position swap ===
- Moved the LO1 suspension to the center of the chamber
- Removed the ITMX SD OSEM from the right side (west side) and tried to move it to the other side.
- Noted that the open light output of the ITMX SD was 908 at the output of the SDSEN filter module. So the half-light target is 454. These numbers include the "cnt2um" calibration of 0.36. That means the open light raw ADC count was supposed to be 2522.

- The OSEM set screw (silver plated, with a plunger) was removed from the old position. We first tried to recycle it to the other side, but it didn't go into the thread with fingers. After making ourselves convinced that the threaded hole was identical for both sides, we decided to put the new identical plunger set screw with an Allen-key was used to put it in and it went in!
- Now the ITMX SD OSEM was inserted from the east side. Once we saw some shadow on the OSEM signal, the SD damping was turned on with the previous setting. And this successfully damped the side motion. ⭕️
- A bit finer adjustment has been done. After a few trials, we reached the stable output of ~400. Considering the temporary leveling of the table, we decided this is enough for now ⭕️. The set screw was tightened.
- To make the further work safer w.r.t the ITMX magnets, Anchal fastened the EQ stops of the ITMX sus except for the bottom four.
- Photo: [Attachment 1]

=== LO1 OSEM installation ~ wiring ===
- Now LO1 was moved back to the planned position.
- For the wiring, we (temporarily) clamped the in-vac DSUB cables to the stack table with metal clamps.
- Started plugging the OSEMs into the DSUB cables.
- Looking at the LO1-1 cable from the mating side with the longer side top: The top-right pin of the female connector is Pin1 as usual. From right to left LL / UR / UL coils were inserted one by one while looking at the OSEM PD signals.
- LO1-2 cable has the LR / SD coils (from the right to the left) were connected.
- Photo: [Attachment 2]

- LO1 Open light levels (raw ADC counts) the 2nd number is the target half-light level

  • UL 27679 (-> 13840)
  • UR 29395 (-> 14697)
  • LR 30514 (-> 15257)
  • LL 27996 (-> 13998)
  • SD 26034 (-> 13017)

=== RTS Filter implementation ===

- Anchal copied the filter module settings from other suspensions.
- We also implemented the simple input and output matrices.

=== LO1 OSEM insertion ===

- We struggled to make the suspension freely swinging with the OSEMs inserted.

- It seemed that the magnets were sucked to the OSEMs due to magnetic components.
- It turned out that the OSEMs were not fastened well and not seated in the holder plates.
- Once this was fixeded, we found that the mirror height is too high for the given OSEM heights.
  The suspension height (or the OSEM height should be decided with the OSEMs not inserted but fully fastened to prevent misalignment of them.

- Decided to lift up the OSEM plates in situ.
- Soon we found that the OSEM holder plates are not fastened at all [Attachment 3 arrows]
- The plates were successfully lifted up and
the suspension became much more freely swinging even with the OSEMs inserted. ⭕️

=== LO1 damping and more precise OSEM insertion ===

- Once the OSEMs were inserted to the light level of 30~70%, we started to try to dampen the motion. The side damping was somewhat successful, but the face ones were not.
- We checked the filters and found the coil output filters didn't have the alternating signs.
- Once the coil signs were corrected, the damping became more straight forward.
- And the robust damping allowed us the fine-tuning of the OSEM insertion.

- In the end, what we had for the light levels were

  • UL 14379 (52%)
  • UR 14214 (48%)
  • LR 14212 (47%)
  • LL 12869 (46%)
  • SD 14358 (55%)

The damping is working well. [Attachment 4]


Post continues at 40m/16552.

Attachment 1: PXL_20220107_044739280.MP.jpg
PXL_20220107_044739280.MP.jpg
Attachment 2: PXL_20220107_044958224.jpg
PXL_20220107_044958224.jpg
Attachment 3: PXL_20220107_044805503.NIGHT.jpg
PXL_20220107_044805503.NIGHT.jpg
Attachment 4: Screen_Shot_2022-01-06_at_20.54.04.png
Screen_Shot_2022-01-06_at_20.54.04.png
  16571   Tue Jan 11 10:58:58 2022 TegaUpdateSUSTemporary watchdog

Started working on this. First created a git repo for tracking https://git.ligo.org/40m/susaux.git

I have looked through the folder to see what needs doing and I think I know what needs to be done for the final case by just following the same pattern for the other optics, which I am listing below

- Create database file for the BHD optics, say C1_SUS-AUX_LO1.db by copying another optic database file say C1_SUS-AUX_SRM. Then replace the optic name.

- Insert a new line "C1:SUS-LO1_LATCH_OFF" in the file autoBurt_watchdogs.req

- Populate the file autoBurt.req with the appropriate channels for LO1

- Populate the file C1SUSaux_post.sh with the corresponding commands for LO1

- Add the line dbLoadDatabase("/cvs/cds/caltech/target/c1susaux/C1_SUS-AUX_LO1.db") to the file C1SUSaux.cmd

 

For the temporary watchdog, we comment everything I have just talked about, and do only what come next.

My question is the following:

I understand that we need to use the OUT16 slow channel as a temporary watchdog since we don't currently have access to the slow channels bcos the Acromag units have not been installed. My guess from Koji's instructions is that we need to update the channels in the last two fields "INPA" and "INPB" below

record(calc,"C1:SUS-LO1_UL_CALC")
{
        field(DESC,"ANDs Enable with Watchdog")
        field(SCAN,"1 second")
        field(PHAS,"1")
        field(PREC,"2")
        field(HOPR,"40")
        field(LOPR,"-40")
        field(CALC,"A&B")
        field(INPA,"C1:SUS-LO1_UL_COMM  PP  NMS")
        field(INPB,"C1:SUS-LO1_LATCH_OFF  PP  MS")
}

Suppose we replace the channel for INPA with C1:SUS-LO1_ULCOIL_OUT16, what about INPB. Is this even the right thing to do as I am just guessing here?

 

  16573   Tue Jan 11 13:43:14 2022 KojiUpdateSUSTemporary watchdog

I don't remember the syntax of the db file, but here this calc channel computes A&B. And A&B corresponds to INPA and INPB.

        field(CALC,"A&B")
        field(INPA,"C1:SUS-LO1_UL_COMM  PP  NMS")
        field(INPB,"C1:SUS-LO1_LATCH_OFF  PP  MS")

What is this LATCH doing?

 

  16600   Wed Jan 19 21:39:22 2022 TegaUpdateSUSTemporary watchdog

After some work on the reference database file, we now have a template for temporary watchdog implementation for LO1 located here "/cvs/cds/caltech/target/c1susaux/C1_SUS-AUX_LO1.db".

Basically, what I have done is swap the EPICS asyn analog input readout for the COIL and OSEM to accessible medm channels, then write out watchdog enable/disable to coil filter SW2 switch. Everything else in the file remains the same. I am worried about some of the conversions but the only way to know more is to see the output on the medm screen.

To test, I restarted c1su2 but this did not make the LO1 database available, so I am guessing that we also need to restart the c1sus, which can be done tomorrow.

  16601   Thu Jan 20 00:26:50 2022 KojiUpdateSUSTemporary watchdog

As the new db is made for c1susaux, 1) it needs to be configured to be read by c1susaux 2) it requires restarting c1susaux 3) it needs to be recorded by FB 4) and restartinbg FB.
(^-Maybe not super exact procedure but conceptually like this)

cf.
https://wiki-40m.ligo.caltech.edu/How_To/Add_or_rename_a_daq_channel

 

  16606   Thu Jan 20 17:21:21 2022 TegaUpdateSUSTemporary watchdog

Temp software watchdog now operational for LO1 and the remaining optics!

Koji helped me understand how to write to switches and we tried for a while to only turnoff the output switch of the filters instead of the writing a zero that resets everything in the filter.

Eventually, I was able to move this effort foward by realising that I can pass the control trigger along multiple records using the forwarding option 'FLNK'. When I added this field to the trigger block, record(dfanout,"C1:SUS-LO1_PUSH_ALL"), and subsequent calculation blocks, record(calcout,"C1:SUS-LO1_COILSWa") to record(calcout,"C1:SUS-LO1_COILSWd"), everything started working right.

Quote:

After some work on the reference database file, we now have a template for temporary watchdog implementation for LO1 located here "/cvs/cds/caltech/target/c1susaux/C1_SUS-AUX_LO1.db".

Basically, what I have done is swap the EPICS asyn analog input readout for the COIL and OSEM to accessible medm channels, then write out watchdog enable/disable to coil filter SW2 switch. Everything else in the file remains the same. I am worried about some of the conversions but the only way to know more is to see the output on the medm screen.

To test, I restarted c1su2 but this did not make the LO1 database available, so I am guessing that we also need to restart the c1sus, which can be done tomorrow.

 

  16675   Tue Feb 22 18:47:51 2022 Ian MacMillanUpdateSUSETMY SUS Electronics Replacement

[Ian, Koji]

In preparation for the replacement of the suspension electronics that control the ETMY, I took measurments of the system excluding the CDS System. I took transfer functions from the input to the coil drivers to the output of the OSEMs for each sensor: UL, UR, LL, LR,  and SIDE. These graphs are shown below as well as all data in the compressed file.

We also had to replace the oplev laser power supply down the y-arm. The previous one was not turning on. the leading theory is that it's failure was caused by the power outage. We replaced it with one Koji brought from the fiber display setup.

I also am noting the values for the OSEM DC output

 OSEM  Value
 UL  557
 UR 568
 LR 780
 LL 385
 SIDE 328

In addition the oplev position was:

 OPLEV_POUT  4.871
 OPLEV_YOUT  -0.659
 OPLEV_PERROR  -16.055
 OPLEV_YERROR  -6.667

(KA ed) We only care about PERROR and YERROR (because P/YOUT are servo output)

Edit: corrected DC Output values

Attachment 1: ALL_TF_Graph.pdf
ALL_TF_Graph.pdf ALL_TF_Graph.pdf ALL_TF_Graph.pdf ALL_TF_Graph.pdf ALL_TF_Graph.pdf
Attachment 2: 20220222_SUSElectronicsReplacement.7z
  16680   Fri Feb 25 14:00:08 2022 Ian MacMillanUpdateSUSETMY SUS Electronics Replacement

[Koji, Ian]

We looked at a few power supplies and we found one that was marked "CHECK IF THIS WORKS" in yellow. We found that the power supply worked but the indicator light didn't work. I tried a two other lights from other power supplies that did not work but they did not work. Koji ordered a new one.

Attachment 1: IMG_0853.jpg
IMG_0853.jpg
Attachment 2: IMG_0852.jpg
IMG_0852.jpg
  16681   Fri Feb 25 14:48:53 2022 Ian MacMillanUpdateSUSETMY SUS Electronics Replacement

I moved the network-enabled power strip from above the power supplies on rack 1y4 to below. Nothing was powered through the strip when I unplugged everything and I connected everything to the same port after.

Attachment 1: Before.jpg
Before.jpg
Attachment 2: After.jpg
After.jpg
  16684   Sat Feb 26 23:48:14 2022 KojiUpdateSUSETMY SUS Electronics Replacement

[Ian, Koji] - Activity on 25th (Fri)

We continued working on the ETMY electronics replacement.

- The units were fixed on the rack along with the rack plan.

- Unnecessary Eurocard modules were removed from the crate.

- Unnecessary IDC cables and the sat amp were removed from the wiring chain. The side cross-connects became obsolete and they also were removed.

- A 18V DC power strip was attached to one of the side DIN rails.

Warning:

- Right now the ETMY suspension is free and not damped. We are relying on the EQ stops.

Next things to do:

- Layout the coil driving cables from the vacuum feedthru to the sat amp (2x D2100675-01 30ft ) [40m wiki]

- Layout DB cables between the units

- Layout the DC power cables from the power strip to the units

- Reassign ADC/DAC channels in the iscey model.

- Recover the optic damping

- Measure the change of the PD gains and the actuator gains.

Attachment 1: PXL_20220226_023111179_2.jpg
PXL_20220226_023111179_2.jpg
  16687   Mon Feb 28 15:51:07 2022 Ian MacMillanUpdateSUSETMY 1Y4 Electronics Replacement

[Paco, Ian]

paco helped me wire the ETMY 1Y4 rack. We wired the following (copied from Koji's email):

  1. Use DB9-DB9 to complete the wiring between
    1. 16bit DAC AI Chassis - End DAC Adapter (4 cables)
    2. End DAC Adapter - HAM-A Coil Driver (2 cables)
    3. AA Chassis - End ADC Adapter (2 cables)
  2. Koji already brought two special DB9-DB15 cables (in plastic bags) to the end. They connect the HAM-A coil drivers to the satellite amp. At this time, we skip Low Noise HV Bias Driver.
  3. Bring two 30ft DB9 (called #1, aka D2100675-01) cables from the office area to the end. I collected one end and left them there.
  4. All the new units have +/-18V DC supply in the back. Find the orange cables behind the 40m vacuum duct around Y-end and connect the units and the DC power strip. Use short cables if possible to save the longer ones.

the cables we used:

Number Used Type of Cable Length
8 DB9 to DB9 2.5 ft
2 DB9 to DB9 5 ft
2 DB9-DB15  
2 DB9 (called #1, aka D2100675-01) 30ft
9 Orange Power Cables ~ 3 ft

I attached pictures below.

Attachment 1: IMG_0865.jpg
IMG_0865.jpg
Attachment 2: IMG_0867.jpg
IMG_0867.jpg
Attachment 3: IMG_0868.jpg
IMG_0868.jpg
Attachment 4: IMG_0866.jpg
IMG_0866.jpg
  16690   Tue Mar 1 19:26:24 2022 KojiUpdateSUSETMY SUS Electronics Replacement

The replacement key switches and Ne Indicators came in. They were replaced and work fine now.

The power supply units were tested with the X end HeNe display. It turned out that one unit has the supply module for 1350V 4.9mA while the other two do 1700V 4.9mA.
In any case, these two ignited the HeNe Laser (1103P spec 1700V 4.9mA).

The 1350V one is left at the HeNe display and the others were stored in the cabinet together with spare key SWs and Ne lamps.

Attachment 1: PXL_20220302_025723651.jpg
PXL_20220302_025723651.jpg
Attachment 2: PXL_20220302_030102033.MP.jpg
PXL_20220302_030102033.MP.jpg
  16695   Thu Mar 3 04:11:36 2022 KojiUpdateSUSETMY 1Y4 Electronics Replacement

For the Y-end electronics replacement, we want to remove unused power supplies. In fact, we already removed the +/-5V supplies from the stack. I was checking what supply voltages are used by the Eurocard modules. I found that D990399 QPD whitening board had the possible use of +/-5V.

The 40m Y-end version can be found here D1400415. The +/-5V supply voltages are used at the input stage AD620 and the QPD bias voltage of -5V.

AD620 can work with +/-15V. Also the bias voltage can easily be -15V. So I decided to cut the connector legs and connected +5V line to +15V, and -5V line to -15V.

With this modification, I can say that the eurocards only use the +/-15V voltages and nothing else.

The updated schematics can be found as D1400415-v6

Attachment 1: PXL_20220303_082726693.jpg
PXL_20220303_082726693.jpg
Attachment 2: PXL_20220303_082752494.jpg
PXL_20220303_082752494.jpg
Attachment 3: PXL_20220303_082744464.jpg
PXL_20220303_082744464.jpg
  16696   Thu Mar 3 04:24:23 2022 KojiUpdateSUSETMY 1Y4 Electronics Replacement

The DC power strip at Y-end was connected to the bottom two Sorensen power supplies. They are configured to provide +/-18V.

 

Attachment 1: PXL_20220303_094421604.jpg
PXL_20220303_094421604.jpg
Attachment 2: PXL_20220303_094435127.jpg
PXL_20220303_094435127.jpg
  16699   Thu Mar 3 17:21:11 2022 Ian MacMillanUpdateSUSETMY 1Y4 Electronics Replacement

[Koji, Ian]

1) We attached the 30 coil driving cables to the vacuum feed through to the sat amp  [40m wiki] they run along the cable tray then up and down into the rack.

2) we checked all DB and power cables. We found that the anti-imaging filter had a short and got very hot when plugged in. the back power indicator lights turned on fine but the front panel stayed off. We removed it and replaced it with the one that was on the test stand marked for the BHD. This means we need to fix the broken one and Koji mentioned getting another one.

3) we reassigned the ADC and DAC channels in the iscey model and the asy model. we committed a version before we made any changes.

4) Finally we tested the setup to make sure the ETM was being damped.

Next step:

1) Measure the change of the PD gains and the actuator gains. See pervious elog

  16703   Sat Mar 5 02:03:46 2022 KojiUpdateSUSETMY 1Y4 Electronics Replacement

Oplev saga

Summary

- The new coil driver had not enough alignment range to bring the oplev beam back to the QPD center
- The coil driver output R was reduced from 1.2k to 1.2k//100 = 92.3 +/- 0.4 Ohm
- Now the oplev spot could be moved to the center of the QPD

- The damping gains (POS/PIT/YAW) and the oplev gains were reduced by a factor of 1/10.
- The damping and the oplev servos work now. Fine gain tuning is necessary.

To Do:
- DC value / TF measurements
- Adjust damping gains
- RFM issue
- Connection check
- Cable labeling


== Alignment Range ==

- Since c1auxey was removed, we no longer have C1:SUS-ETMY_PIT_COMM and C1:SUS-ETMY_YAW_COMM. At this moment, all the alignment is taken with the offset input from the fast real-time system via C1:SUS-ETMY_PIT_OFFSET and C1:SUS-ETMY_YAW_OFFSET.

- The oplev spot could not be moved on the center of the QPD without exceeding the DAC output range (~+ or -32000) for the coils. (Attachment 1)

- This is because the old system had a slow but large current range (Rout = 100) and a small current range for the fast control. Until we commission the new HV BIAS Driver, we have to deal with the large DC current with the HAM-A coil driver.

== Modification to the output resistances ==

The following units and the channels were modified. Each channel had a differential current driver and two output resistances of 1.2K. 100Ohm (OHMITE 43F100, 3W) wire wound resistors were added to them in parallel, making the resulting output R of ~92Ohm.

- ETMY HAM A Coil Driver 1: S2100622 (Attachments 2/3) CH1/2/3
- ETMY HAM A Coil Driver 2: S2100621 (Attachments 4/5) CH3

- This modification allowed me to align the oplev spot to the center of the QPD. C1:SUS-ETMY_PIT_OFFSET and C1:SUS-ETMY_YAW_OFFSE are +2725 (8%FS) and -2341 (7%FS), respectively.
- The previous alignment slider values were -0.9392 and 0.7615 (out of 10). These are the reasonable numbers, considering the change of the Rout from 100 to 92Ohm, and the sign flip.
(By the way, autoBurt files for c1auxex and c1auxey were not properly configured and the history of C1:SUS-ETM*_*_COMM was not recorded.)

== Damping Servos ==

- Now, the POS/PIT/YAW servos experience ~x10 gains. So temporarily these gains were reduced (POS 20->2, PIT 6->0.6, YAW 4->0.4) and the loops are stable when engaged.
- Also the gains of the OPLEV servos were reduced from -4.5 to -0.45. The loops are stable when engaged.

== Snapshot of the working condition ==

Attachent 6 shows the screenshot for the snapshot of the working condition.


To Do

- The damping servos were tested without proper PD whitening compensation.
  -> It turned out this is not necessary as our modified PD whitening has the pole and zero at the same freqs as before.

- Compare the DC values of the OSEM outputs and compensate for the gain increase by the "cts2um" filter.

- The end RTS suffers from the RFM issue. There is no data transmitted from the vertex to the end. I suspect we need to restart the c1rfm process. But this will likely suspend all the vertex real-time machines. Careful execution is necessary.

- c1iscey has all the necessary analog connections. But they are not tested. When we lock the green/IR cavity, we'll need them.

- The cable labeling is only half done.

Attachment 1: oplev_spot.jpg
oplev_spot.jpg
Attachment 2: PXL_20220305_090003837.jpg
PXL_20220305_090003837.jpg
Attachment 3: PXL_20220305_090023436.jpg
PXL_20220305_090023436.jpg
Attachment 4: PXL_20220305_091232290.jpg
PXL_20220305_091232290.jpg
Attachment 5: PXL_20220305_091306604.MP.jpg
PXL_20220305_091306604.MP.jpg
Attachment 6: Screenshot_2022-03-05_01-37-26.png
Screenshot_2022-03-05_01-37-26.png
  16709   Mon Mar 7 16:44:15 2022 Ian MacMillanUpdateSUSETMY SUS Electronics Replacement

Now that the ETMSUS is back up and running I reran my measurements from the beginning of the process. The results below show a change in gain between the before and after measurements. I have given values of the low-frequency section below.

Average Gain difference from the TFs: 18.867  (excluding thee side change)

  Before After Gain difference
UL -31 dB -5 dB 19.952
UR -36 dB -10 dB 19.952
LR -27 dB -2 dB 17.782
LL -37 dB -12 dB 17.782
SIDE -48 dB -45 dB 1.412

I also am noting the new values for the OSEM DC output: average gain increase: 9.004

OSEM DC OFFSET Before DC OFFSET After Gain increase
UL 557 5120 9.19
UR 568 5111 8.99
LR 780 7041 9.02
LL 385 3430 8.91
SD 328 2922 8.91

In addition, the oplev position was:

  Before After
 OPLEV_PERROR -16.055 -16.715
 OPLEV_YERROR -6.667 -16.597

All data and settings have been included in the zip file

From the average gain increase of the TFs which indicates the increase of the whole system and the increase in gain from the OSEM we can calculate the gain from the actuators.

18.867/9.004 = 2.09

thus the increase in gain on the actuator is about 2.09

EDIT: I updated the side TF with one with better SNR. I increased the excitation amplitude.

Attachment 1: UR_TF_Graph.pdf
UR_TF_Graph.pdf
Attachment 2: UL_TF_Graph.pdf
UL_TF_Graph.pdf
Attachment 3: LR_TF_Graph.pdf
LR_TF_Graph.pdf
Attachment 4: LL_TF_Graph.pdf
LL_TF_Graph.pdf
Attachment 5: SD_TF_Graph.pdf
SD_TF_Graph.pdf
Attachment 6: 20220307_SUSElectronicsAfterTests.zip
  16722   Thu Mar 10 10:05:49 2022 PacoUpdateSUSAS1 free swing test

[Paco, Ian]

  • Begin free swinging test for AS1 at 10:05 AM, set for ~ 2.04 hours.
    • Test failed because damping failed to disable.
  • Restart free swinging test for AS1 at 15:06, set for 2.04 hours.
    • Success (Attachment #1 shows the DOF input matrix diagonalization effect)

Of slight concern is the side to other degrees of freedom coupling, but this is definitely an improvement from last time.

Attachment 1: SUS_Input_Matrix_Diagonalization.pdf
SUS_Input_Matrix_Diagonalization.pdf
  16723   Fri Mar 11 16:43:03 2022 Ian MacMillanUpdateSUSETMY SUS Electronics Replacement

I updated the gain of the ct2um filter on the OSEMS for ETMY and decreased their gain by a factor of 9 from 0.36 to 0.04.

I added a filter called "gain_offset" to all the coils except for side and added a gain of 0.48.

together these should negate the added gain from the electronics replacement of the ETMY

  16731   Thu Mar 17 11:40:41 2022 PacoUpdateSUSETMY green PZT HV supply

[Anchal, Paco]

We installed a HV kepco power supply for the green PZT steering the YAUX beam. We did this in anticipation of the YARM alignment to take place this afternoon. We borrowed an unused DC power supply labeled "OMC Power spply" and made an appropriate SMA connection (Attachment #1), Then we set the Vset to 100.0 Volts and the current limit to 10 mA. Once we enabled the output we saw the 5.6 mA of current drawn by the eurocard in accordance with the wiki log (Attachment #2). 

It may not be possible to use the PZT as per this so this work may not have a direct impact on our upcoming alignment task.


We probably bumped the ethernet cable (martian network) on c1iscey, so the FE models stopped showing up on the medm screens. When we connected it back, it seemed like the FE kept running the model and only IPC showed error. We restarted the rtcds models on c1iscey and burtrestored to today morning 5:19 am.

burtwb -f /cvs/cds/rtcds/caltech/c1/burt/autoburt/today/05:19/c1scyepics.snap -l /tmp/controls_1220317_115006_0.write.log -o /tmp/controls_1220317_115006_0.nowrite.snap -v

ETMY is properly damping now and the oplev is roughly centered as well but the OPLEV Servos are off. We did not turn them on.
We should be able to carry out our cavity arm alignment today afternoon on both arms now.

  16738   Mon Mar 21 14:22:52 2022 AnchalUpdateSUSETMY Alignmnet offsets needed to be changed

I'm not sure why but the PIT and YAW offset values of +2725 and -2341 were not sufficient for the reflected OPLEV beam to reach the OPLEV QPD. I had to change the C1:SUS-ETMY_PIT_OFFSET to 5641 and C1:SUS-ETMY_YAW_OFFSET to -4820 to come back to center of the OPLEV QPD. We aligned the Oplevs to center before venting, so hopefully this is our desired ETMY position.

On another note, the issue of ETMY unable to damp was simple. The alignment offsets were on to begin with with values above 1000. This meant that whenever we enabled coil output, ETMY would necessarily get a kick. All I had to do was keep alignment offsets off before starting the damping and slowly increase the alignment offsets to desired position.

Quote:
 

- This modification allowed me to align the oplev spot to the center of the QPD. C1:SUS-ETMY_PIT_OFFSET and C1:SUS-ETMY_YAW_OFFSE are +2725 (8%FS) and -2341 (7%FS), respectively.

  16743   Fri Mar 25 11:39:14 2022 AnchalUpdateSUSETMY SUS Electronics Replacement - Questions

After Ian updated the cts2um filters for OSEM, shouldn't the damping gains be increased back by factor of 10 to previos values? Was the damping gain for SIDE ever changed? we found it at 250.

Can you explain why gain_offset filter was required and why this wasn't done for the side coil?

Quote:

I updated the gain of the ct2um filter on the OSEMS for ETMY and decreased their gain by a factor of 9 from 0.36 to 0.04.

I added a filter called "gain_offset" to all the coils except for side and added a gain of 0.48.

together these should negate the added gain from the electronics replacement of the ETMY

 

  16746   Mon Mar 28 16:25:34 2022 Ian MacMillanUpdateSUSETMY SUS Electronics Replacement - Questions

The point of changing the gains was to return the system to its origional state. ie I wanted the over all gain of the physical components to be the same as when we started. From the CDS side of things nothing else should be changed. The damping filters should remain at their origional values. The cts2um filter was changed to counteract a change in the electronics (replacing them). These changes should cancel eachother out. As for the side control, on 3/4/22 koji reduced the output resistors for the 4 face OSEMs but did not change the the SD one. there fore the SD did not need the same adjustment as the others.

Quote:

After Ian updated the cts2um filters for OSEM, shouldn't the damping gains be increased back by factor of 10 to previos values? Was the damping gain for SIDE ever changed? we found it at 250.

Can you explain why gain_offset filter was required and why this wasn't done for the side coil?

Quote:

I updated the gain of the ct2um filter on the OSEMS for ETMY and decreased their gain by a factor of 9 from 0.36 to 0.04.

I added a filter called "gain_offset" to all the coils except for side and added a gain of 0.48.

together these should negate the added gain from the electronics replacement of the ETMY

 

 

  16748   Tue Mar 29 17:35:54 2022 PacoUpdateSUSDamping fix on BS, AS4, PR2, and PR3

[Ian, Paco]

  • We removed the "cheby" filters from AS4, PR2 and PR3 which had been misplaced after copying from the old SUS models. After removing them, the new SOS damped fine. Note that because of the Input matrices, the filters have to be enabled all at once for the MIMO loop to make sense.
  • We also disabled the "Cheby" filter on BS and saw it damp better. We don't understand this yet, but perhaps it's just a consequence of the many changes in the BSC that have rendered this filter obsolete.
  • we also reduced the damping gains on PR2, PR3 and AS4 to prevent overflow values. After the adjustments the optics were damping fine.
ELOG V3.1.3-