40m QIL Cryo_Lab CTN SUS_Lab TCS_Lab OMC_Lab CRIME_Lab FEA ENG_Labs OptContFac Mariner WBEEShop
  40m Log, Page 316 of 344  Not logged in ELOG logo
ID Date Author Type Categorydown Subject
  16514   Thu Dec 16 15:32:59 2021 AnchalUpdateBHDFinished Coil driver (odd serial number) units tests

We have completed modifications and testing of the HAM Coil driver D1100687 units with serial numbers listed below. The DCC tree reflects these changes and tests (Run/Acq modes transfer functions).

SERIAL # TEST result
S2100609 PASS
S2100611 PASS
S2100613 PASS
S2100615 PASS
S2100617 PASS
S2100619 FAIL (CH2 phase)
S2100621 PASS
S2100623 PASS
S2100625 PASS
S2100627 PASS
S2100629 PASS
S2100631 PASS
S2100633 Waiting for more components
S2101649** PASS
S2101651** PASS
S2101653** PASS
S2101655** PASS

** A fix had to be done on the DC power supply for these. The units' regulated power boards were not connected to the raw DC power, so the cabling had to be modified accordingly.

Further, Paco fixed the two even serial number units (S2101648, S211650) that failed the test. The issues were minor soldering mistakes that were easily resolved.

  16516   Thu Dec 16 17:41:12 2021 KojiUpdateBHDCoil driver test failed for S2100619-v1

Good catch. It turned out that the both + and - side of the output stages for CH2 were oscillating at ~600kHz. If I use a capacitance sticks to touch arbitrarily around the components, it stops their oscillation and they stay calm.
It means that the phase margin becomes small while the circuit starts up.

I decided to increase the capacitances C6 and C20 (WIMA 150pF) to 330pF (WIMA FPK2 100V) and the oscillation was tamed. 220pF didn't stop them. After visually checked the signal behavior with an oscilloscope, the unit was passed to Anchal for the TF test.

The modification was also recorded in the DCC S2100619

  16517   Thu Dec 16 17:57:17 2021 AnchalUpdateBHDFinished Coil driver (odd serial number) units tests

S2100619 was fixed by Koji and it passed the test after that.

S2100619 FAIL (CH2 phase)


  16518   Thu Dec 16 18:16:36 2021 YehonathanUpdateBHDSOS assembly

Today I glued magnets onto the new 3/4" mirror adapters. I also took the opportunity to make some more side magnets assemblies.

Yesterday I mounted PR3/SR2 3/4" thick mirror onto one of the new adapter. There seem to be no issues for now.

I started the process of suspending AS1 (E2000226-A). The Lambda Optic mirror with the closest specs has Rc = 2 m. I attached side blocks with clamped wires onto adapter number 7 - side block with a magnet on the right.

I then took one of the Lambda Optic mirrors and tried mounting it in the adapter. It was quite difficult to get it right. Unfortunately, I chipped the edge of the substrate (attachment 1) 🤦🏻‍♂️. I put the mirror back in the box and decided to use the spare mirror. I successfully mounted it into the adapter but when I put the clamping screws one of them fell on the mirror 🤦🏻‍♂️🤦🏻‍♂️. There is no visible damage though. I took some pictures (attachment 2-4).

I and Anchal then started suspending the mirror but then we found that one of the wires is dented in the middle 🤦🏻‍♂️🤦🏻‍♂️🤦🏻‍♂️. I'm burned out for today.

Late update: one nice thing that I found yesterday is that the glue is viscous enough to hold the dumbells without a metal sheet from above holding the magnets. This greatly simplifies the gluing process.


  16520   Fri Dec 17 17:50:17 2021 YehonathanUpdateBHDSOS assembly

I threaded a new wire through a different side block with a magnet and clamped it under a microscope. It was hard, but eventually, I was able to do it by holding the wire on both sides of the side block with weights.

The dented wire was discarded and the side block that was mounted on the AS1 adapter was put aside. I mounted the side block with the new wire on the AS1 adapter.


Anchal and I hanged the AS1 adapter and clamped the wires on the winches of an SOS tower. I balanced the roll and adjusted the height of the magnet with respect to a side OSEM using a camera (attachments 1 & 2).

I shoot the Hene laser on the optic and look at the reflection. I align the laser beam to be as close as possible to the center of the mirror. The OpLev needs to be realigned.

To my surprise, the ghost beam shoots up above the reflected beam! See attachment 3. I check to see that the arrow which marks the thinnest side of the mirror is horizontal (attachment 4). WTF?!

Also, now I realize that the marking on the Lambda optics are pencil markings 😵😵😵.

  16521   Fri Dec 17 19:16:45 2021 KojiUpdateBHDSOS assembly

We @40m do the convention of the arrow at the thinnest side & pointing the HR side, but nobody says Lambda does the same.

We can just remount the mirror without breaking the wires and adjust the pitching if you do it carefully.

Does this mean that the LO1 also likely to have the wedge pointing up? Or did you rotate the mirror to have the wedge reflection to be as horizontal as possible?

  16523   Fri Dec 17 22:16:07 2021 YehonathanUpdateBHDSOS assembly

I specifically checked the specification before mounting the mirror. It says clearly "Arrow at the thinnest location pointing towards Side 1". I guess they just ignored it.

As for LO1, I mounted it without noticing the location of the arrow. Later, I checked and the ghost beam was horizontal so I left it as it is. Yeah, I guess I will remount the mirror. Also, what do we do with the pencil markings? It's not vacuum-compatible.


We @40m do the convention of the arrow at the thinnest side & pointing the HR side, but nobody says Lambda does the same.

We can just remount the mirror without breaking the wires and adjust the pitching if you do it carefully.

Does this mean that the LO1 also likely to have the wedge pointing up? Or did you rotate the mirror to have the wedge reflection to be as horizontal as possible?


  16524   Sat Dec 18 00:56:14 2021 KojiUpdateBHDSOS assembly

Sad... We just need to check the wedge direction everytime, unfortunately.

Pencil: can you try to gently wipe it off with solvent & a swab? (IPA / Acetone)
If it does not come off in the end, it's all right to leave. Do we want to scribe the arrow mark? You need a diamond pen.

  16526   Mon Dec 20 13:52:01 2021 KojiUpdateBHDSOS assembly

LO1: No need to remove the pencil mark for the damping test. Until we see serious contamination on the LO1 optic, we don't need to take the optic off from the mount and clean it. If there is a chance of rehanging (because of a broken wire/etc), we do wipe the pencil mark.

Other optics: wipe the pencil mark as much as possible.

  16527   Mon Dec 20 14:10:56 2021 AnchalUpdateBHDAll coil drivers ready to be used, modified and tested

Koji found some 68nF caps from Downs and I finished modifying the last remaining coil driver box and tested it.

SERIAL # TEST result
S2100633 PASS

With this, all coil drivers have been modified and tested and are ready to be used. This DCC tree has links to all the coil driver pages which have documentation of modifications and test data.

  16528   Mon Dec 20 17:26:13 2021 YehonathanUpdateBHDSOS assembly

{Yehonathan, Anchal}

I released the AS1 wires from the winches, removed the adapter from the SOS tower, and removed the Lambda optic from the adapter. Attachment 1 shows the pencil markings on the optic before cleaning. I cleaned the pencil marking from the side of the optic with acetone using swabs until there were no pencil residues on the swab (attachment 2 shows the swab I used next to an unused swab). I was not able to remove the markings completely though (attachment 3).

I remounted the optic with the arrow rotated by 90 degrees counterclockwise.

We hang the adapter on the winches and adjust the height of the magnet and the adapter roll using the winches. We monitor the height of the adapter using a live stream from the Cannon camera. The camera's tilt was adjusted using straight features on the SOS tower. When we ran out of winch travel we adjust the height using the lower EQ stops and pull tight the wires. Attachment 4 shows the alignment of the side magnet with respect to the SOS tower and a side OSEM.

We checked the ghost beam trajectory and it looks much better (attachment 5)

We started realigning the OpLev. We realize that the height of the beam should be 5+14/32" = 5.437 by measuring the height of the screw holding the side OSEM from the table. The real height from the schematics is 5.425 We make the beam parallel with the table first using an iris and then the QPD.

Today, I balanced the counterweight. First using an iris, then by placing a QPD close to the SOS measuring the reflection from AS1. I locked the counterweight's set screw and the QPD Y readout looks good. Attachment 6 shows the QPD y readout near the beat node between pitch and pos. The node comes very close to zero which indicates that the pitch is balanced.

I measured the free-swinging motion using the QPD x and y axes. Attachment 7 shows the spectra of that motion. The major peaks are at 755mHz, 953mHz, and 1.05Hz.


  16531   Tue Dec 21 18:04:46 2021 YehonathanUpdateBHDSOS assembly

I locked the EQ stops while retaining the XY alignment on the QPD and installed 5 green OSEMs. AS1 is ready for transfer into the vacuum chamber.

  16539   Mon Jan 3 12:05:08 2022 PacoUpdateBHD1Y0 rack work for LO2 AS1 AS4

[Paco, Anchal]

Continue working on 1Y0. Added coil drivers for LO2, AS1, AS4. Anchal made additional labels for cables and boxes. We lined up all cables, connected the different units and powered them without major events.

  16540   Mon Jan 3 16:46:41 2022 PacoUpdateBHD1Y1 rack work for SR2, PR2, PR3

[Paco, Anchal]

Continued working on 1Y1 rack. Populated the 6 coil drivers, made all connections between sat amp, AA chassis, DAC, and ADC adapters for SR2, PR2, and PR3 suspensions. Powered all boxes and labeled them and cables where needed. Near the end, we had to increase the current limit on the positive rail sorensen (+18 V) from ~ 7 to > 8.0 Amps to feed all the instruments. We also increased the negative (-18 V) current limit proportionally.

We think we are ready for all the new SOS on this side electronics-wise.

Photos: https://photos.app.goo.gl/GviuqLQviSPo1M3G6

  16541   Tue Jan 4 18:26:59 2022 AnchalUpdateBHDTested 2" PR2 candidates transmission

I used the rejected light from the PBS after the motorized half-wave plate between PMC and IMC injection path (used for input power control to IMC) to measure the transmission of PR2 candidates. These candidates were picked from QIL (QIL/2696). Unfortunately, I don't think either of these mirrors can be used for PR2.

  Polarization Incident Power [mW] Transmitted Power [mW] Transmission [ppm]
V2-2239 & V2-2242 s-pol 940 0.015 16.0
V2-2239 & V2-2242 p-pol 935 0.015 16.0
V6-704 & V6-705 p-pol 925 21 22703

If I remember correctly, we are looking for a 2" flat mirror with a transmission of the order of 1000 ppm. The current PR2 is supposed to have less than 100 ppm transmission which would not leave enough light for LO path.

I've kept the transmission testing setup intact on the PSL table, I'll test existing PR2 and another optic (which is 0.5" thick unfortunately) tomorrow.

  16542   Tue Jan 4 18:27:23 2022 PacoUpdateBHDSOS assembly -- PR3

[yehonathan, paco, anchal]

We continue suspending PR3 today. Yehonathan and Paco suspended the thick optic in its adapter. After fixing some nominal height and undoing any residual roll angle (see Attachments 1,2 for pictures), we noticed a problem with the pitch angle, so we insert the counterweights all the way in. Nevertheless, we soon found out that we needed to shift one of the two counterweights to the back of the adapter side (so one on each side) in order to tare the pitch angle. This is a newly experienced maneuver that may apply for further thick optics.

After taring the pitch angle roughly, we noted another issue. The wedge (~ 1 deg) on the optic made it such that the protruding socket heads on the thick side bumped against the lower clamp (not the earthquake stop tip itself). Attachments #4,5 show the before/after situation which was solved provisionally by replacing the socket head screws with lower profile (flat) head screws in situ. Again, this operation was highly delicate and specific to wedged thick optics, so for future SOS we should keep it in mind.

Another issue that we had with the new thick optic adapters is that for some reason there is a recession in the upper backside of the adapter (attachment coming soon). This makes the upper back EQ stop too short to touch the adapter. We replaced it with a longer screw. When inserted it doesn't really hit the back of the adapter. Rather, it touches the corner of the recession, stoping the optic with friction.

While all this was happening, Anchal started mounting AS4 on its adapter. After one of the magnets broke off, he switched to another one and succeeded. This is the next target for suspension. We still need to check the orientation of the wedge. Furthermore, we started a gluing session in the afternoon to prepare as much as possible for further SOS during the week. 3 side magnets were glued to side blocks. 3 magnets were glued to 3 adapters that were missing 1 magnet each.

In the afternoon, Yehonathan and Paco set up the QPD and did all the usual balancing, and then Anchal took the data of which the result is shown in Attachment #3. The major peaks are located at 723mHz, 953mHz, and 1.05Hz. Very similar to the case of the thin optic adapters.

Anchal progressed with OSEM installation, and engraving and yehonathan glued the counterweight setscrew in place. After securing the EQ stops, and wrapping the wires in foil, we declare PR3 is ready to be installed.

  16543   Wed Jan 5 17:46:04 2022 AnchalUpdateBHDTested 2" PR2 candidates transmission

I tested 2 more optics today, the old PR2 that we took out and another optic I found in QIL. Both these optics are also not good for our purpose.


Polarization Incident Power [mW] Transmitted Power [mW] Transmission [ppm]
Existing PR2 p-pol 910 0.004 4.4
V2-1698 & V2-1700 p-pol 910 595 653846

I'll find thw Y1S optic and test that too. We should start looking for alternate solutions as well.


  16544   Wed Jan 5 19:18:06 2022 YehonathanUpdateBHDSOS assembly -- AS4

{Paco, Yehonathan, Anchal}

Today we suspended AS4 (E2000226-B). Anchal mounted Lambda Optic mirror with an RoC closest to AS4 in a thin optic mount. He noted that this optic as well as AS1 don't have a wedge angle. The specs claim that the wedge angle is 2 degrees what should have been clearly seen by inspecting the optic with a naked eye. All the ghost beam deflections probably come from the curvature of the mirror.

We did all the height and roll balancing using a camera (Attachment 1,2). We balanced that pitch of the adapter using a QPD not before we realigned the OpLev setup.

We measured the motion spectra (attachment 3). Major peaks are found at 755 mHz, 964 mHz, and 1.062Hz. I locked the counterweights setscrew and observed that the pitch balance doesn't change. I locked the EQ stops such that the alignment of the mirror remained the same by monitoring the QPD signals. I clamped the suspensions wires to the suspension block.

The only thing remaining is inserting the OSEMs.


  16545   Thu Jan 6 11:54:20 2022 AnchalSummaryBHDPart IX of BHR upgrade - Placed AS1 and AS4

[Paco (Vacuum Work), Anchal]

Today we opened the ITMY Chamber and installed suspended AS1 and AS4 in their planned positions. In doing so, we removed the razor or plate mounted on a pico motor at the south end of the table (see 40m/16450). We needed to make way for AS4 to be installed.

Photos: https://photos.app.goo.gl/YP2ZZhQ3jip3Uhp5A

We need more dog clamps for installing the suspensions, we have used temporary clamps for now. However, knows where new C&B clamps are, please let us know.

  16550   Thu Jan 6 17:00:20 2022 YehonathanUpdateBHDSOS assembly -- LO2

{Paco, Yehonathan}

Today we suspended LO2 (E1800089) which Anchal has loaded into the thick optic adapter. Attachments 1,2 show the height and roll balance adjustments.

I realigned the opLev setup and balanced the suspended mass. We figured that if we use 2 counterweights we will be 1 short. We decided to use 1 mass at the back of the adapter. This has the additional advantage that the Viton tip on lower back EQ stop can touch it and act normally. The optic was successfully balanced in this way. Attachment 3 shows the motion spectra on the QPD. There are major peaks at 712 mHz, 854 mHz, 876 mHz, and 996 mHz. As expected using only 1 counterweight raised the center of mass and lowered the pitch resonance frequency. The optic was locked keeping the alignment fixed on the center of the QPD, OSEMs were inserted and the SOS tower was engraved.

We should apply some glue to the counterweight to prevent it from spinning on the setscrew.

  16551   Thu Jan 6 17:16:51 2022 YehonathanUpdateBHDUsing Peek screws/nuts

There were several cases where the long EQ stops didn't perform as expected.

In one type of case, we used a counterweight at the front of the adapter but not in the back leaving a recess where the lower back EQ stop should touch.

In the other type, a recess in the thick optics adapter prevented the upper EQ stop from touching the adapter. In the first thick optic, the screw was screw barely scratched the recess' corner. In the second case, it didn't touch it at all.

In the last group meeting, we discussed using Peek screws (made out of plastic) to prevent metal on metal bumping when the EQ can touch the adapter and Peek nuts when it doesn't to increase its impact area.

Mcmaster has 1.5" long 1/4-20 screws (part number 98885A131) that will fit well in the OSEM plates. We can order 20 of those.

The biggest Peek nuts on Mcmaster however are not big enough (7/16" wide) to cover the entire bottom recess area which is 0.5" wide (they are good enough for the top recess area in the thick adapter optic design). Koji suggested that we can use a big Peek washer for that purpose that can be held between nuts. We should then order 10 Peek nuts (98886A813) and 1 package of 10 Peek washers (0.63" OD) (93785A600).

  16552   Thu Jan 6 21:04:41 2022 AnchalSummaryBHDPart VIII of BHR upgrade - LO1 OSEMs inserted

[Anchal, Koji] Part of elog: 40m/16549.

The magnets on the mirror face are arranged in a manner that the overall magnetic dipole moment is nullified faraway. Because of this, the coil output gains in all such optics need to have positive and negative signs in a butterfly mode pattern (eg. UL, LR: +ve and UR, LL: -ve).

In the particular case of LO1, we chose following coil output gains:

UL -1
UR 1
LR -1
LL 1
SD -1

This ensures that all damping gains have positive signs. Following damping gain values were chosen:

YAW 0.2

Having said that, this is a convention and we need to discuss more on what we want to set a convention (or follow a previous one if it exists). My discussion with Koji came up with the idea of fixing the motion response of an OSEM with respect to coil offset by balancing the coil gains across all optics and use same servo gains for all optics afterwards. But it is a complicated thought coming out of tired minds, needs more discussion.

Important notes for suspending the optics:

  • Do not insert the OSEMs fully. Leave all of the magnet out of the OSEMs before transportation.
  • Tighten the OSEMs completely while adjusting the height of the optic. Adjust height of OSEM holder plate if necessary.
  • Ensure the all cage screws are screwed tight completely.

Photos: https://photos.app.goo.gl/CJsS18vFwjo73Tzs5

  16554   Fri Jan 7 16:17:42 2022 AnchalSummaryBHDPart IX of BHR upgrade - Placed AS1 and AS4 filters


Added input filters, input matrix, damping filters, output matrix, coil filters, and copy the state over from LO1 into AS1 screen in anticipation for damping.

Added input filters, input matrix, damping filters, output matrix, coil filters, and copy the state over from LO1 into AS4 screen in anticipation for damping.

  16555   Fri Jan 7 17:54:13 2022 AnchalUpdateBHDPR2 Sat Amp has a bad channel

[Anchal, Paco]

Yesterday we noticed that one of the ADC channels was overflowing. I checked the signal chain and found that CH3 on PR2 Sat Amp was railing. After a lot of debugging, our conclusion is that possible the PD current input trace is shorted to the positive supply through a finite resistance on the PCB. This would mean this PCB has a manufacturing defect. The reason we come to this conclusion is that even after removing the opamp U3 (AD822ARZ), we still measure 12.5 V at the pins of R25 (100 Ohm input resistance)

Please see the schematic for reference. We also checked the resistance between input of R25 (marked PDA above) and positive voltage rail and it came out as 3 kOhms. While I all other channels, this value was 150 kOhms.

I would like it if someone else also takes a look at this. We probably would need to change the PCB in this chassis or use a spare chassis.

  16556   Fri Jan 7 17:59:45 2022 YehonathanUpdateBHDSOS assembly -- SR2

{Yehonathan, Paco}

{Paco, Yehonathan}

Today we suspended SR2 (E1800089) which Anchal has loaded into the thick optic adapter. Attachments 1,2 show the height and roll balance adjustments.

I realigned the opLev setup and balanced the suspended mass. Attachment 3 shows the motion spectra on the QPD. There are major peaks at 723 mHz, 832 mHz, and 996 mHz. I inserted OSEMs and tightened them in place. I adjusted the OSEM plates to make sure the magnets are at the center of the OSEMs, then I tightened the OSEM plates to the SOS tower.

The optic was locked keeping the alignment fixed on the center of the QPD.

Again, we should apply some glue to the counterweight to prevent it from spinning on the setscrew. Is there a glue other than EP30 that we can use?

Related: Peek nuts, screws and washers were ordered from Mcmaster.

  16557   Fri Jan 7 18:24:25 2022 KojiUpdateBHDSOS assembly -- SR2

Vacseal in the freezer. It could have been expired sooooo many years ago, We need some cure testing.

Can you release the part numbers of the ordered components (and how/where to use them), so that we can incorporate them into the CAD model?


Again, we should apply some glue to the counterweight to prevent it from spinning on the setscrew. Is there a glue other than EP30 that we can use?

Related: Peek nuts, screws and washers were ordered from Mcmaster.

  16558   Fri Jan 7 18:28:13 2022 KojiUpdateBHDPR2 Sat Amp has a bad channel

Leave the unit to me. I can look it at on Mon. For a while, you can take a replacement unit from the electronics stack.

Also: Was this unit tested before? If so, what was the testing result at the time?

  16559   Sat Jan 8 16:01:42 2022 PacoSummaryBHDPart IX of BHR upgrade - Placed LO2 filters

Added input filters, input matrix, damping filters, output matrix, coil filters, and copy the state over from ITMX into LO2 screen in anticipation for damping.

  16560   Mon Jan 10 13:35:52 2022 AnchalUpdateBHDPR2 Sat Amp has a bad channel

The unit was tested before by Tege. The test included testing the testpoint voltages only. He summarized his work in this doc. The board number is S2100737. Here are the two comments about it:
"This unit presented with an issue on the PD1 circuit of channel 1-4 PCB where the voltage reading on TP6, TP7 and TP8 are -15.1V,  -14.2V, and +14.7V respectively, instead of ~0V.  The unit also has an issue on the PD2 circuit of channel 1-4 PCB because the voltage reading on TP7 and TP8 are  -14.2V, and +14.25V respectively, instead of ~0V."

"Debugging showed that the opamp, AD822ARZ, for PD2 circuit was not working as expected so we replaced with a spare and this fixed the problem. Somehow, the PD1 circuit no longer presents any issues, so everything is now fine with the unit."

Note:  No issues were reported on PD3 circuit is is malfunctioning now.


Also: Was this unit tested before? If so, what was the testing result at the time?


  16561   Mon Jan 10 14:00:44 2022 not KojiUpdateBHDSOS assembly -- SR2


For the thin optics adapter design, we want Peek 1/4-20 screw (part # 98885A131) to replace the lower back long EQ stop. On it, we will have a Peek washer (part # 93785A600) fastened between two Peek nuts (part #98886A813).

For the thick optics adapter design, we want Peek 1/4-20 screw (part # 98885A131) to replace both the upper and lower back EQ stop. On the upper stop, we need a single Peek nut (part #98886A813).

I will cure-test the Vacseal.


Vacseal in the freezer. It could have been expired sooooo many years ago, We need some cure testing.

Can you release the part numbers of the ordered components (and how/where to use them), so that we can incorporate them into the CAD model?


Again, we should apply some glue to the counterweight to prevent it from spinning on the setscrew. Is there a glue other than EP30 that we can use?

Related: Peek nuts, screws and washers were ordered from Mcmaster.


  16562   Mon Jan 10 14:52:51 2022 AnchalSummaryBHDLO1 OSEMs roughly calibrated and noise measured

I used the open light level output of 908 for ITMX side OSEM from 40m/16549 to roughly calibrate cts2um filter module in LO1 OSEM input filters. All values were close to 0.033. As the calibration reduces the signal value by about 30 times, I increased all damping gains by a factor of 30. None of loops went into any unstable oscillations and I witnessed damping of kicks to the optic.

In-loop power spectrum

I also compared in-loop power spectrum of ETMX and LO1 while damping. ETMX was chosen because it is one of the unaffected optics by the upgrade work. ITMX is held by earthquake stops to avoid unnecessary hits to it while doing chamber work.

Attachment 1 and 2 show the power spectrum of in-loop OSEM values (calibrated in um). At high frequencies, we see about 6 times less noise in LO1 OSEM channel noise floor in comparison to ETMX. Some peaks at 660 Hz and 880 Hz are also missing. At low frequencies, the performance of LO1 is mostly similar to EMTX except for a peak (might be loop instability oscillation) at 1.9 Hz and another one at 5.6 Hz. I'll not get into noise hunting or loop optimization at this stage for the suspension. For now, I believe the new electronics are damping the suspensions as good as the old electronics.

  16564   Mon Jan 10 15:59:46 2022 KojiUpdateBHDPR2 Sat Amp has a bad channel

The issue was present in the cable between the small adapter board and the rear panel. The cable and the Dsub 25 connectors were replaced. The removed parts were resoldered. Did the basic test of the channel.

Attachment 1: I cleaned up the area of the PD3 circuit of S2100556 and checked the voltage when the circuit was energized. The PD photocurrent line from the rear panel had S2100556 even with R25 removed. So the problem was between the rear panel to the outer side of R25. I've started to remove the cables to localize the issue and found that the issue disappeared when the ribbon cable was removed.

Attachment 2: I didn't investigate how the ribbon cable was bad. It was just trashed. The cable and the 25pin Dsub connectors were replaced and the line in question looked normal.

Attachment 3: All the components removed were stuffed again. The I/V-output of the circuit showed a 0.7mV offset but it seemed within the normal range. By touching R25 with a finger made it up to ~10mV as the other channels do. BTW: For 1000pF cap (C10) I used a stock 1000pF cap (KEMET, C330C102JDG5TA, 5%, 1kV, C0G) instead of nominal one (KEMET, C317C102G1G5TA,  2%, 100V, C0G).

Attachment 4: Noticed that the jumpers for shield grounding were missing. So they were installed (Attachment 5). This jumper is connected to Pin13. This line becomes Pin1 of the Dsub25 sat-amp cable because of the adapter board D2100148. The sat amp cable is D2100675. Hmm. In fact, this line does not touch the shield anywhere (unlike the aLIGO case). So only the chassis provides the cable shielding, no matter how the jumpers are connected or not connected.

Attachment 6: Final state of the circuit

  16565   Mon Jan 10 17:04:47 2022 AnchalUpdateBHDAS1 Sat Amp CH2 had offset

We found that there was a small offset (~300 mV) at TP6 and TP8, in PD2 circuit (CH2 of the board). I replaced U3 AD822ARZ but did not see any affect. I disconnected the adaptor board in the back and saw that the offset went away. This might mean that the cable had some flaky short to a power supply pin. However, when I just reinserted the adaptor board back again, there was no offset. We could not find any issue with the board after that to fix, so we left it as it is. If this board gives offset issues in the future, most probably the ribbon cable would be the suspect.

Now all ADC channels are showing no offset or overflows in C1SU2 chassis.

  16566   Mon Jan 10 18:20:45 2022 AnchalUpdateBHDTested 2" PR2 candidates transmission

I tested 2 more optics found by Paco and Yehonathan in QIL.

  Polarization Incident Power [mW] Transmitted Power [mW] Transmission [ppm]
V6-704 V6-706 p-pol 850 17.1 20118
Yellow cylindrical box p-pol 850 <1 ( could not even see it to measure it with a more sensitive power meter) <1000

I would like someone to redo the second test. I'm not sure what was happening but I could not find the transmitted beam at all on my card even with all lights out. This is either too good a coating and not useful for us or I did something wrong while measuring it.

V6-704, V6-706 mirror seemed like a good candidate as the paper with it said it would be a 200 ppm mirror. But I measured a lot more transmission than that. Now that I see that paper more carefully, it is a 45 degree s-pol mirror, probably that's why it had so much transmission for p-pol at near-normal incidence.


  16567   Mon Jan 10 18:36:41 2022 AnchalSummaryBHDLO1 free swinging test set to trigger

LO1 is set to go through a free swinging test at 1 am tonight. We have used this script (scripts/SUS/InMatCalc/freeSwing.py) reliably in the past so we expect no issues, it has a error catching block to restore all changes at the end of the test or if something goes wrong.

To access the test, on rossa, type:

tmux a -t freeSwingLO1

Then you can kill the script if required by Ctrl-C, it will restore all changes while exiting.

  16568   Tue Jan 11 09:53:14 2022 not KojiUpdateBHDSOS assembly -- Peek screws and nuts

I handed the Peek parts we got from McMaster to Jordan for C&B.

  16572   Tue Jan 11 12:19:12 2022 AnchalSummaryBHDLO1 Input Matrix Diagonalization performed.

The frree swinging test was successful. I ran the input matrix diagonalization code (scripts/SUS/InMAtCalc/sus_diagonalization.py) on the LO1 free swinging data collected last night. The logfile and results are stroed in scripts/SUS/InMatCalc/LO1 directory. Attachment 1 shows the power spectral density of the DOF bassis data (POS, PIT, YAW, SIDE) before and after the diagonalization. Attachment 2 shows the fitted peaks.

Free Swinging Resonances Peak Fits
  Resonant Frequency [Hz] Q A
POS 0.941 506 84
PIT 1.015 304 778
YAW 0.694 300 626
SIDE 0.999 371 49

LO1 New Input Matrix

The new matrix was loaded on LO1 input matrix and this resulted in no control loop oscillations at least. I'll compare the performance of the loops in future soon.

  16575   Tue Jan 11 15:21:16 2022 AnchalUpdateBHDPR2 transmission calculation

I did this simple calculation where I assumed 1W power from laser and 10% transmission past IMC. We would go ahead with V6-704/V6-705 ATFilms 3/8" optic. It would bring down the PRC gain to ~30 but will provide plenty of light for LO beam and alignment.

  16577   Tue Jan 11 18:18:29 2022 AnchalSummaryBHDAttempted OSEM installation on AS1

[Anchal, Paco, Yehonathan]

Connected in-cir cable to new flange on ITMY Chamber

Connected OSEM one-by-one. Starting from top right  to left (PIn1)

1st connector: LL -> UR -> UL

2nd connector: LR -> SD

Loosening all OSEMs and taking them out and noting full bright readings:

  • SD: 29564 -> 14787
  • LR: 30902 -> 15451
  • UR: 29280 -> 14640
  • LL: 27690 -> 13845
  • UL: 27668 -> 13834

:( We had to stop here as we were unable to actuate on the side coils. We checked the signal chain and found that the monitor output of AS1 LL/SD coil driver is responding to offset changes in the coil output filter module of AS1 side. However, when we connected the output of the coil driver through a breakout board to the AS1 Sat Amp, we saw no signal. We tried switching the coil driver bo with another one one the rack but we found the exact same issue. This led us to believe that something must be wrong with the AS1 Sat Amp. We checked the output of the AS1 LL/SD coil driver without connecting it to the sat amp and found that the output was responding to our CDS changes. Then we checked the second "Coil Input" port of the AS1 Sat Amp, and found that pins 2-7 and pins 3-8 are shorted. This means channel 5 and 8 on this box would be shorted. This is the reason why we were unable to actuate on the coils. I'll work on debugging this box, my first guess is that the ribbon cable is bad.

  16578   Tue Jan 11 18:40:25 2022 AnchalSummaryBHDAS1 Sat Amp has a PCB issue

AS1 Sat Amp (S2100741) has a critical PCB issue on it's Ch5-8 board S2100548. This board is supposed to just feed through the coil driver signal from the front DB9 connector to the back DB25 connector but it has a short between pins 2 and 7 at the "Coil Input" end (connector J1). The short persists even after I disconnect the sat amp to the flange connector on the back of this board, which definitely means the short is present in the passive channeling through the PCB or at the soldering points of the two DB connectors. I just flipped the board and found that the soldering connections are clean and separate. I think we'll have to use one of the spare sat amp boxes for AS1 for now, while we either declare this one manufacture defected or fix the issue.

I actually found the short on the PCB trace by just looking carefully at it. Attachment 1 shows the photo of it. Maybe we can fix this by simply cutting the tumor between the two traces (why are these traces so close together in such a large board anyways!!!), but I'm not sure if that is a reliable way of fixing this issue. I'll wait for Koji's comments on what to do with this. We'll recommence OSEM tuning for AS1 tomorrow with fixed electronics.

  16579   Thu Jan 13 09:48:41 2022 AnchalSummaryBHDAS1 Sat Amp fixed

I fixed the issue in AS1 Sat Amp (S2100741) by using a razor blade. I cut the short between the two places, cleaned up the area and covered it with electrical tape. However, later feedback from Rana was to not use electrical tape as it dries up and becomes brittle and lfaky in long run. So after the AS1 OSEM tuning is over, I'll open this box again and use something else to insulate the exposed area. See attached pictures for current status.


  16580   Thu Jan 13 12:24:08 2022 AnchalSummaryBHDAS1 SD and LR magnets broke

[Anchal (vacuum work), Paco (outside)]

After the AS1 Sat Amp fix (40m/16579), we today were able to tune all OSEMs to the mid-bright level. But when we were about to call it, we were told that the new PEEK earthquake stop screw and bolts need to go on the thin suspended optics. Against better judgment, we decided to install the new back earthquake stop in-situ since we had tuned all OSEMs already. I installed the new stop but after that found that in the process I have broken off the side magnet and LR magnet from the optic adaptor and they are inside the OSEM coils now. This means we'll have to redo the AS1 suspension almost from scratch again sad. We have transported AS1 to the cleanroom where the work on re-suspension has begun.

  16581   Thu Jan 13 12:29:27 2022 AnchalSummaryBHDAS4 LR magnet broke

After the debacle with AS1 (40m/16580), we decided the put the PEEK earthquake stop by first removing the lower OSEM plate and then doing it. So I unfastened AS4 from its position with the earthquake stops in place and moved the suspension to the center of the table. Then I carefully removed the bottom OSEM plate. But I found out that the LR magnet is broken and lying on the floor of the suspension sad. Given my past on the same day, it could be me breaking it again during the moving of the suspension of taking off the OSEM plate or there is a small chance that this break happened before. Regardless of fault, this meant we have to resuspend AS4 again as well. So we transported AS4 back to the clean room and the work on it's re-suspension has begun.

  16582   Thu Jan 13 16:08:00 2022 YehonathanUpdateBHDgluing magnets after AS1/4 misfortune

{Yehonathan, Anchal, Paco}

In the cleanroom, we removed AS1 and AS4 from their SOS towers. We removed the mirrors from the adapters and put them in their boxes. The broken magnets were collected from the towers and their surfaces were cleaned as well as the magnet sockets on the two adapters and on the side block from where the magnets were knocked off.

We prepared our last batch of glue (more glue was ordered three days ago) and glue 2 side magnets and 2 face magnets. We also took the chance and apply glue on the counterweights on the thick optic adapters so there is no need to look for alternatives for now.

The peek screws and nuts were assembled on the thick optics SOS towers instead of the metal screws and nuts that were used as upper back EQ stops.

  16583   Thu Jan 13 17:10:55 2022 AnchalUpdateBHDPR2 transmission calculation

I corrected the calculation by adding losses by the arm cavity ends times the arm cavity finesse and also taking into account the folding of the cavity mirror. I used exact formula for finesse calculation and divided it by pi to get the PRC gain from there. Attachment 3 is the notebook for referring to the calculations I made.

Note that using V6-704 would provide 35 mW of LO power when PRFPMI is locked and 113 uW for alignment, but will bring down the PRC Gain to 17.5.

pre-2010 ITM (if it is still an option) would provide 12 mW of LO power when PRFPMI is locked and 28 uW for alignment, but will keep the PRC Gain to 24.6.

I still have to do a curvature check on the V6-704 optic.

  16584   Fri Jan 14 03:07:04 2022 KojiUpdateBHDPR2 transmission calculation

I opened the notebook but I was not sure where you have the loss per bounce for the arm cavity.

    PRC_RT_Loss = 2 * PR3_T + 2 * PR2_T + 2 * Arm_Cavity_Finesse * ETM_T + PRM_T

Do you count the arm reflection loss to be only 2 * 13ppm * 450 = 1.17%?

  16585   Fri Jan 14 11:00:29 2022 AnchalUpdateBHDPR2 transmission calculation

Yeah, I counted the loss from arm cavities as the transmission from ETMs on each bounce. I assumed Michelson to be perfectly aligned to get no light at the dark port.  Should I use some other number for the round-trip loss in the arm cavity?

  16587   Fri Jan 14 13:46:25 2022 AnchalUpdateBHDPR2 transmission calculation updated

I updated the arm cavity roundtrip losses due to scattering. Yehonathan told me that arm cavity looses 50ppm every roundtrip other than the transmission losses. With the updated arm cavity loss:

  PRFPMI LO Power (mW) Unlocked PRC LO Power (uW) PRC Gain
pre-2010 ITM 8 28 15.2
V6:704 24 113 12


  16589   Fri Jan 14 17:33:10 2022 YehonathanUpdateBHDAS4 resurrection

{Yehonathan, Anchal}

Came this morning, the gluing of the magnets was 100% successful. Side blocks, counterweights were assembled. We suspend AS4 and adjust the roll balance and the magnet height (attachments 1,2). OpLev was slightly realigned.

The pitch was balanced. We had to compensate for the pitch shift due to the locking of the counterweights. Once we got good pitch balance, the motion spectrum was taken (attachment 3). Major peaks are at 755mHz, 953mHz, 1040mHz.

Previous peaks were 755mHz, 964mHz, and 1.062Hz so not much has changed. We pushed back the OSEMs, adjusted OSEM plate and locked it tightly. We lock the EQ stops and transfer AS4 to the vacuum chamber in foil. We open the foil inside the chamber. No magnets were broken. Everything seems to be intact. We connect the OSEMs to CDS.

  16590   Fri Jan 14 18:12:47 2022 AnchalSummaryBHDAS4 placed in ITMY Chamber, OSEMs connected

AS4 was succesfully suspended and trasported to ITMY chamber (40m/16589). We placed it near the door to make it easy to tune the OSEMs. We connected the OSEMs and found that the LL OSEM is not responding. Even though the the OSEMs are completely out right now, there was no signal on this OSEM. This could be an issue in either at the LED driver circuit or the PD circuit in AS4 Sat Amp box, or it could be the OSEM that is bad. We'll investigate further next day. For now, we recorded the full brightness reading for the OSEMs:

  • UL: 32767  -> 16383
  • UR: 29420 -> 14710
  • LR: 30100 -> 15050
  • SD: 29222 -> 14611

Another thing to note is that UL value above is not changing at all. I checked the CDS screen and the the ADC input is overflowing in complete bright position of the OSEM.

ELOG V3.1.3-