40m QIL Cryo_Lab CTN SUS_Lab TCS_Lab OMC_Lab CRIME_Lab FEA ENG_Labs OptContFac Mariner WBEEShop
  40m Log, Page 29 of 344  Not logged in ELOG logo
ID Date Author Type Categoryup Subject
  16619   Mon Jan 24 20:48:48 2022 AnchalUpdateBHDAS4 Input Matrix Diagonalization performed.

I agree. That's an interesting idea. But does that mean that there is an always working inverse matrix solution or that any solution will be vulnerable to the alignment biases.

I think we can also calculate the matrix rotation required as a function of dc biases and do that rotation in the simulimk model.

Quote:

I think our suspension input matrix diagonalization is not so robust usually because we only choose a inverting matrix which gives the best separation for a single suspension alignment.

i.e. we have seen in the past that adjusting the bias for the alignment makes the matrix inversion not work well. Sometime people turn OFF the alignment bias before making the ringdown and that makes the whole measurement invalid.

This is because the sensitivity of the OSEMs to longitudinal and/or transverse motion is significantly different for different alignment.

I wonder if there's a way we can choose a better matrix by putting in random gain errors on the shadow sensor signals and then finding the matrix which gives the best diag under an ensemble of gain errors.

 

  16620   Mon Jan 24 21:18:40 2022 PacoSummaryBHDPart IX of BHR upgrade - AS1 placed and OSEM tuned

[Paco]

AS1 was installed in the ITMY chamber today. For this I moved AS4 to its nominal final placement and clamped it down with a single dog clamp. Then, I placed AS1 near the center of the table, and quickly checked AS4 could still be damped. After this, I leveled the table using a heavier/lighter counterweight pair. 

Once things were leveled, I proceeded to install AS1 OSEMs. The LL, UL, UR OSEMs had a bright level of 27000 counts, while SD and LR were at 29500, and 29900 respectively. After a while, I managed to damp all degrees of freedom around the 50% thousand count levels, and decided to stop. 

UL 27000.  -> 16000
UR 27000. -> 13800
LL 27000 -> 14600
LR 29900 -> 14900
SD 29500 -> 12900


Free swinging test set to trigger

AS1 is set to go through a free swinging test at 3 am this evening. We have used this script (Git/40m/scripts/SUS/InMatCalc/freeSwing.py) reliably in the past so we expect no issues, it has a error catching block to restore all changes at the end of the test or if something goes wrong.

To access the test, on allegra, type:

tmux a -t AS1

Then you can kill the script if required by Ctrl-C, it will restore all changes while exiting.


SUSPENSION STATUS UPDATED HERE

  16621   Tue Jan 25 10:55:02 2022 AnchalSummaryBHDPart VIII of BHR upgrade - LO2 input matrix diagonalization performed.

The free swinging test was successful. I ran the input matrix diagonalization code (/opt/rtcds/caltech/c1/Git/40m/scripts/SUS/InMAtCalc/sus_diagonalization.py) on the LO2 free-swinging data collected last night. The logfile and results are stored in /opt/rtcds/caltech/c1/Git/40m/scripts/SUS/InMAtCalc/LO2 directory. Attachment 1 shows the power spectral density of the DOF basis data (POS, PIT, YAW, SIDE) before and after the diagonalization. Attachment 2 shows the fitted peaks.


Free Swinging Resonances Peak Fits
  Resonant Frequency [Hz] Q A
POS 0.981 297 3967
PIT 0.677 202 1465
YAW 0.775 2434 1057
SIDE 1.001 244 4304

LO2 New Input Matrix
  UL UR LR LL SIDE
POS
0.46
1.237
1.094
0.318
0.98
PIT
1.091
0.252
-1.512
-0.672
-0.088
YAW
0.722
-1.014
-0.217
1.519
0.314
SIDE
-0.747
1.523
1.737
-0.534
3.134

The new matrix was loaded on LO2 input matrix and this resulted in no control loop oscillations at least. I'll compare the performance of the loops in future soon.

  16622   Tue Jan 25 11:02:54 2022 AnchalSummaryBHDPart IX of BHR upgrade - AS1 free swing test failed

For some reasonf the free swing test showed only one resonance peak (see attachment 1). This probably happened because one of the earthquake stops is touching the optic. Maybe after the table balancing, the table moved a little over its long relazation time and by the time the free swing test was performed at 3 am, one of the earthquake stops was touching the optic. We need to check this when we open the chamber next.

  16623   Tue Jan 25 16:42:03 2022 AnchalSummaryBHDReduced filter gains in all damped new SOS

I noticed that our current suspension damping loops for the new SOS were railing the DAC outputs. The reason being that cts2um module has not been updated for most optics and thus teh OSEM signal (with the new Sat Amps) is about 30 times stronger. That means our usual intuition of damping gains is too high without applying correct conversion cts2um filter module. I reduced all these gains today and nothing is overflowing the c1su2 chassis now. I also added two options in the "!" (command running drop down menu) in the sus_single medm screens for opening ndscope for monitoring coil outputs or OSEM inputs of the optic whose sus screen is used.

 

  16624   Tue Jan 25 18:37:12 2022 TYehonathanUpdateBHDPR2 Suspension

PR2's side magnet height was adjusted and its roll was balanced (attachment 1,2). I verified that the OpLev beam is still aligned. The pitch was balanced: First, using an iris for rough adjustment. Then, with the QPD. I locked the counterweight setscrew.

I turned off the HEPAs, damped PR2, and measured the QPD spectra (attachment 3). Major peaks are at 690mHz, 953mHz, and 1.05Hz. I screwed back the lower OSEM plate. The wires were clamped to the suspension block and were cut. Winch adapter plate removed. I wanted to push OSEMs into the OSEM plates but the wiki is down so I can't tell what was the plan. This will have to wait for tomorrow. Also here like with AS1 we need to apply glue to the counterweights.

  16625   Thu Jan 27 08:27:34 2022 PacoSummaryBHDPart IX of BHR upgrade - AS1 inspection and correction

[Paco]

This morning, I went into ITMY chamber to inspect AS1 after the free swinging test failed. Indeed, as forecasted by Anchal, the top front EQ stop was slightly touching, which means AS1 was not properly installed before. I proceeded by removing it well behind any chance of touching the optic, and did the same for all the other stops, of which most were already recessed significantly. Finally, the OSEMs changed accordingly to produced a PITCHed optic (top front EQ was slightly biasing the pitch angle), so I did a reinstallation until the levels were around the 14000 count region. After damping AS1 relatively quickly, I closed the ITMY chamber.

Quote:

For some reasonf the free swing test showed only one resonance peak (see attachment 1). This probably happened because one of the earthquake stops is touching the optic. Maybe after the table balancing, the table moved a little over its long relazation time and by the time the free swing test was performed at 3 am, one of the earthquake stops was touching the optic. We need to check this when we open the chamber next.

 

  16627   Thu Jan 27 17:57:35 2022 AnchalSummaryBHDPart III of BHR upgrade - Replaced small suspended PR3 with new SOS PR3 and OSEM tuning

[Anchal, Paco]

We removed the old PR3 housed in a tip-tilt style suspension and put it on the North flow bench in the cleanroom. I put PR3 in an accessible position near the North West edge of the BS chamber and balanced the table again with many weights. The OSEM tuning was very uneventful and easy. Following are the full brightness ADC counts for the OSEMs:
UL 25693. -> 12846
UR 24905. -> 12452
LL 23298. -> 11649
LR 24991. -> 12495
SD 26357. -> 13178

I was able to damp the optic easily after the OSEM installation with no issues.


Photos: https://photos.app.goo.gl/jcAqwFJoboeUuR7F9

  16628   Thu Jan 27 18:03:36 2022 PacoSummaryBHDPart III of BHR upgrade - Install PR2, balance, and attempt OSEM tuning

[Paco, Anchal, Tega]

After installing the short OSEMs into PR2, we moved it into ITMX Chamber. While Tega loaded some of the damping filters and other settings, we took time to balance the heavily tilted ITMX chamber. After running out of counterweigths, Anchal had to go into the cleanroom and bring the SOS stands, two of which had to be stacked near the edge of the breadoard. Finally, we connected the OSEMs following the canonical order

LL -> UR-> UL

LR -> SD

But found that UR was reading -14000 counts. So, we did a quick swap of the UR and UL sensors and verified that the OSEM itself is working, just in a different channel... So it's time to debug the electronics (probably PR2 Sat Amp?)...


PR2 Sat Amp preliminary investigation:

  • The UR channel (CH1 or CH4, on PR2 Sat Amp)  gives negative value as soon as an OSEM is connected.
  • Without anything connected, the channel reports the usual 0V output.
  • With the PDA inputs of PR2 Sat Amp shorted, we again see 0V output.
  • So it seems like when non-zero photodiode current goes, the circuit sees a reversal of gain polarity and the gain is roughly half in magnitude as the correct one.
  16629   Thu Jan 27 20:46:38 2022 KojiSummaryBHDPart III of BHR upgrade - Install PR2, balance, and attempt OSEM tuning
  • Started debugging D1002818 / S2100737 (8:30PM)
  • Confirmed the issue of the negative output of the UR sensor with the dummy OSEM connected at the air side of the ITMY chamber. Both PD Out and PD Mon have negative outputs.
  • The same issue remains when the dummy OSEM box is connected to the chassis with a short DB25M/F cable at the rack.
  • Started debugging the setup at the workbench.
    • CH1 TIA Output=-3.0V / CH2 (in question) TIA Output =-2.7V => No Problem
    • CH1 Whitening Out=+3.0V / CH2 Whitening Out=-1.4V => Problem
    • Resolder the components around whitening CH2 => no change
    • Remove AD822 and replace with a new one => CH2 Whitening OUt = +2.7V ==> Problem solved
    • PD1~3 channels of the left and right PCBs tested with the OSEM box ==> nearly +3V/-3V differential output (All Clear)
    • Chassis closing
  • Chassis restored in Rack 1Y1 and the normal output with the dummy OSEM box confirmed
  • Mission Completed (9:30PM)
  • Elog finished (9:40PM)
  • Case closed
  16630   Fri Jan 28 10:37:59 2022 PacoSummaryBHDPart III of BHR upgrade - PR2 OSEM finalized, reinsall LO1 OSEMs

[Paco]

Thanks to Koji's hotfix on the PR2 SatAmp box last evening, this morning I was able to finish the OSEM installation for PR2. PR2 is now fully damped. Then, I realized that with the extreme rebalancing done in ITMX chamber, LO1 needed to be reinstalled, so I proceeded to do that. I verified all the degrees of freedom remained damped.

I think all SOS are nominally damped, so we are 90% done with suspension installation!


SUSPENSION STATUS UPDATED HERE

  16631   Fri Jan 28 11:30:52 2022 KojiSummaryBHDPart III of BHR upgrade - PR2 OSEM finalized, reinsall LO1 OSEMs

All green! Great work, Team!

  16632   Fri Jan 28 16:35:18 2022 AnchalSummaryBHDAS1, PR2 and PR3 set to trigger free swing test

AS1, PR2 and PR3 are set to o go through a free swinging test at 3 am. We have used this script (Git/40m/scripts/SUS/InMatCalc/freeSwing.py) reliably in the past so we expect no issues, it has a error catching block to restore all changes at the end of the test or if something goes wrong.

To access the test, on allegra, type:

tmux a -t AS1
tmux a -t PR2
tmux a -t PR3

Then you can kill the script if required by Ctrl-C, it will restore all changes while exiting.

 

  16635   Tue Feb 1 15:33:28 2022 KojiSummaryBHDOptomechanics configuration for the in-vacuum aux small optics

I've summarized the optomechanics configuration for the in-vacuum aux small optics

It's not obvious here but the post for POP_SM4 is the stack of BA2V, Newport 9953, PLS-T238, LMR1V. The mirror is a CM254-750-E03 curved mirror. This should go on the suspension base. I hope I did not make a mistake there...

  16636   Tue Feb 1 20:16:09 2022 TegaUpdateBHDPR2 candidate mirror analysis

git repo: git@git.ligo.org:tega-edo/charmirrormap.git

The analysis code takes in a set of raw images, 10 in our case,  for each mirror and calculates the zernike aberration coefficients for each image, then takes their average. This average value is used to reconstruct the mirror height map.  Finally, the residual error between the reconstructed image and the raw data is calculated.

We repeat the analysis for different field of views (FoV) namely 10mm, 20mm, 30mm, 40mm and 46.5mm and save the results in the output folder of the repo.

The analysis output for a 10mm FoV aperture at the mirror center is shown in the attachement. These three images show the input data, the reconstructed mirror surface map and the residual error.

  16637   Wed Feb 2 16:22:00 2022 AnchalSummaryBHDPart III of BHR upgrade - PR2 inpute matrix diagonalized

The free swinging test was successful. I ran the input matrix diagonalization code (/opt/rtcds/caltech/c1/Git/40m/scripts/SUS/InMAtCalc/sus_diagonalization.py) on the PR2 free-swinging data collected last night. The logfile and results are stored in /opt/rtcds/caltech/c1/Git/40m/scripts/SUS/InMAtCalc/PR2 directory. Attachment 1 shows the power spectral density of the DOF basis data (POS, PIT, YAW, SIDE) before and after the diagonalization. Attachment 2 shows the fitted peaks. I chose to not type out the matrix values now. One can find them in teh repo links above.

 

  16638   Wed Feb 2 16:27:57 2022 AnchalSummaryBHDPart III of BHR upgrade - PR3 inpute matrix diagonalized

The free swinging test was successful. I ran the input matrix diagonalization code (/opt/rtcds/caltech/c1/Git/40m/scripts/SUS/InMAtCalc/sus_diagonalization.py) on the PR3 free-swinging data collected last night. The logfile and results are stored in /opt/rtcds/caltech/c1/Git/40m/scripts/SUS/InMAtCalc/PR3 directory. Attachment 1 shows the power spectral density of the DOF basis data (POS, PIT, YAW, SIDE) before and after the diagonalization. Attachment 2 shows the fitted peaks. I chose to not type out the matrix values now. One can find them in teh repo links above.

 

  16639   Wed Feb 2 16:32:02 2022 AnchalSummaryBHDPart IX of BHR upgrade - AS1 free swing test still not good

We still did not get a good AS1 free swinging spectrum. It seems the Side OSEM is reporting coupling to too many DOFs and some extra resonances than we expect. So we did not upload the new input matrix calculated from this test. I'm attaching teh peak fitting (attachment 1) and the diagonalization attempt (attachment 2) to give some idea of what happened. Note how different this fre swinging spectrum looks from the other optics. Given that Yehonathan also felt that somthing might be off with this optic, we need to reevaluate if the suspension has wire not aligned in grove, or it is imbalanced or something else if touching it still.

 

  16640   Wed Feb 2 18:55:58 2022 KojiSummaryBHDOptomechanics configuration for the in-vacuum aux small optics

Here is more detail of the POP_SM4 mount assembly.

It's a combination of BA2V + PLS-T238 + BA1V + TR-1.5 + LMR1V + Mirror: CM254-750-E03
Between BA1V and PLS-T238, we have to do a washer action to fix the post (8-32) with a 1/4-20 slot. Maybe we can use a 1" post shim from thorlabs/newport.
Otherwise, we should be able to fasten the other joints with silver-plated screws we already have/ordered.

I think TR-1.5 (and a shim) has not been given to Jordan for C&B. I'll take a look at these.

  16641   Wed Feb 2 21:16:23 2022 KojiSummaryBHDOptomechanics configuration for the in-vacuum aux small optics

Asked Jordan to clean 2x 1.5" posts (0.5 dia) and a washer with 1" dia.

 

  16678   Thu Feb 24 18:05:58 2022 YehonathanUpdateBHDRe-susspension of AS1

{Yehonathan, Anchal, Paco}

Yesterday, Anchal and Paco removed AS1 from the vacuum chamber and moved it into the cleanroom. The suspension wires were cut and the AS1 optic was put on the table.

Two things were noticed:

1. One of the wires was not sitting inside the side block groove (attachment 1)

2. One of the face magnets was grossly tilted (attachment 2). Probably due to uneven polishing of the dumbbell.

We put new wires into the side blocks making sure they sit in their grooves and we removed the tilted magnet. A different, more straight magnet was picked from the remaining spare magnets. The dumbbell and adapter were cleaned from glue residues and a batch of glue was prepared.

In the process of gluing a different magnet was knocked off. We cleaned that magnet too. The 2 magnets were glued on the adapter.

Today I came and saw that the gluing failed completely. One of the magnets was completely away from its socket and the other one wasn't glued at all.

I prepared a new batch of glue and glued the two magnets.

  16694   Wed Mar 2 14:02:43 2022 YehonathanUpdateBHDRe-susspension of AS1

Yesterday, I rebuilt the OpLev setup in the cleanroom in order to suspend AS1. It took me a while to find all the necessary parts but I found them in the end.

The HeNe laser was placed on the optical table and turned on. The beam was aimed to bounce off a folding mirror to the SOS tower.

The beam's height was controlled by the HeNe laser stage and made to be 5+14/32". The beam from the folding mirror was made parallel to the table, first with an iris and then with the QPD connected to a scope.

Preparing the SOS tower for the suspension I noticed that the wire clamp is scratched on both sides from previous suspensions. I discarded that wire clamp but couldn't find the spares. Time ran out and I had to stop.

  16698   Thu Mar 3 17:09:46 2022 PacoUpdateBHDRe-susspension of AS1

[Anchal, Paco]

Wire clamp spare was installed, furthermore AS1 was reinstalled on adapter, attached wire clamps, and cleaned using ionized air gun. Finally, we suspended it on the SOS tower and left it resting on the bottom earthquake stops; ready for balancing.

Quote:

Yesterday, I rebuilt the OpLev setup in the cleanroom in order to suspend AS1. It took me a while to find all the necessary parts but I found them in the end.

The HeNe laser was placed on the optical table and turned on. The beam was aimed to bounce off a folding mirror to the SOS tower.

The beam's height was controlled by the HeNe laser stage and made to be 5+14/32". The beam from the folding mirror was made parallel to the table, first with an iris and then with the QPD connected to a scope.

Preparing the SOS tower for the suspension I noticed that the wire clamp is scratched on both sides from previous suspensions. I discarded that wire clamp but couldn't find the spares. Time ran out and I had to stop.

 

  16710   Mon Mar 7 16:56:08 2022 YehonathanUpdateBHDRe-susspension of AS1

{Paco, Yehonathan}

We tried to roughly balance the adapter with two counterweights at the front, like with the other thin optics using an iris. As before, we couldn't get the beam above the iris hole no matter how much we inserted the counterweights into the adapter. We noticed that one of the side blocks is actually the one where the clearance for the wire was made on the wrong side. So there was clearance on both the up and bottom sides of the side block (see attachment 1).

Could this be the cause of the balancing issue? Running out of ideas on how to fix it we gave it a try and replaced it with a spare side block. We also found that the wire on the other side block was kinked so we replaced the wire on this one as well.

After inserting new wires into the side blocks, we hung the adapter on the winches and the beam was above the iris aperture! How could this tiny amount of missing mass make this much difference?

We were able to roughly balance the adapter.

We then tried to balance the roll of the adapter but accidentally knocked off the side magnet 😫.

We usually glue several side magnets together and they all together support the metallic plate on which the magnets are magnetically attached to. This time we had only one side magnet to glue so instead of trying to glue the magnet vertically we are trying to glue it horizontally using a flat surface and a stage to clamp it (attachments 2,3).

BTW, the HeNe was not working when we came into the cleanroom. We realized it was the old HeNe that we already determined to be broken but there was no sign on it. I attached a "BAD" sign on it and replaced it with the new HeNe. The OpLeve beam was realigned. All of this happened before all the things described above

  16711   Mon Mar 7 18:53:16 2022 KojiUpdateBHDRe-susspension of AS1

Not sure if that small difference can cause the alignment inability. Particularly, the removed metal was just below the wire. This means that there is no misalignment effect at the first order.

Here is my idea:
You may be able to assist the alignment by adding washers on one side of the four holes to this "H" shaped parts. The holes are away from the center line, adding some weight definitely do some misalignment.

 

  16714   Tue Mar 8 12:24:13 2022 YehonathanUpdateBHDRe-susspension of AS1

The gluing seemed to be successful. I assembled the side block with the magnet on the adapter. Paco helped me hang the adapter on the SOS tower.

The height and roll of the adapters were balanced (attachment 1,2).

The QPD was placed at the beam reflection. The beam was centered horizontally on the QPD and then measured vertically. The pitch DOF was balanced using the counterweights. The counterweight was locked. Balance was retained.

I tried to assemble the upper mirror clamp on the tower but for some reason, one of its tap holes was not able to accept screws. I gave it to Jordan for retapping. I measured the motion spectrum using the QPD connected to a scope (attachment 3).

Major peaks are at 668mHz, 942mHz, and 1029mHz.

 

  16715   Tue Mar 8 19:29:36 2022 PacoUpdateBHDRe-balance of AS1

[Paco]

Installed AS1 in vacuum, near the center of the table, and installed the OSEMs. All OSEMS are "balanced" nominally, i.e. their shadow is at the halfway point optimum, but fine tuning is required, which I will attempt tomorrow after restoring the AS1 suspension screen settings. Today, I tried damping the SIDE DOF, but didn't succeed, although there was definitely some oscillating behaviour with high (> 5) gains on the damping, so I believe this is a matter of patience. For now, all OSEMs are looking ok, the SOS is in place, and hopefully it will soon be damped. 

  16716   Wed Mar 9 09:35:26 2022 PacoUpdateBHDRe-balance of AS1

[Paco]

AS1 is installed, OSEMs balanced, and the optic damped successfully. We should run the free swinging test overnight to validate this re-installation.

  16718   Wed Mar 9 11:52:18 2022 YehonathanUpdateBHDSimplified BHD readout sketch on ITMY table

I have made an editable draw.io diagram of the planned simplified BHD setup on the ITMY table (see attached).  10 pts = 1 inch.

This is very sketchy but easily adjustable since we are removing everything but the ITMY Oplev from that table.

  16719   Wed Mar 9 12:57:52 2022 KojiUpdateBHDSimplified BHD readout sketch on ITMY table

- BHD beams were already mixed in the chamber. So we don't need a BS on the table. (Probably there is no BS already)

- We don't need to split each BHD beam. One PD per BHD beam is OK for now.

- Check if the BHD paths have reasonable angles from the windows so that the beams do not hit the chamber wall.

- We need the POY path. POY indeed goes to the BS table

  16729   Tue Mar 15 18:42:37 2022 AnchalSummaryBHDPart IX of BHR upgrade - AS1 resuspended and OSEMs tuned

http://nodus.ligo.caltech.edu:8080/40m/16722

http://nodus.ligo.caltech.edu:8080/40m/16716

  16730   Tue Mar 15 18:45:12 2022 AnchalSummaryBHDPart X of BHR upgrade - BHDBS Path setup

[Paco, Anchal]

BS Chamber work

  • ASL was positioned in nominal place.
  • PR3 was moved to its nominal place from temprorary position.
  • BS Table was rebalanced
  • Earthquake stops were removed from all SOS from BS table (LO2, SR2, BS, PR3)

ITMY Chamber work

  • AS2, AS3, LO3, LO4, and BHDBS were positioned in the nominal place.
  • AS1 was moved to its nominal place from temporary position.
  • ITMY tbale was rebalanced
  • Earthquake stops were removed from all SOS from ITMY table (AS1, AS4, ITMY)
  16732   Thu Mar 17 16:50:53 2022 PacoUpdateBHDXARM AUX alignment

[Ian, Paco]

We opened the ITMX chamber and

  • Inspected PR2 and LO1 and didn't see anything suspicious.
  • Took the EQ stops off ITMX in preparation for alignment

Alignment:

  • Ian started at the ETMX station, slightly tweaking the M1 M2 XAUX mirrors by hand and Paco on the ITMX chamber looking at the beam. The beam was visibly making it to the ITMX optic and reflecting back though at a negative pitch angle. No small motion on the M1-M2 knobs caused visible correction on this.
  • We decided to try adding an alignment offset to ITMX, and quickly saturated to 25000 (on the SUS screen) but fell short of fully correcting this PIT offset.
  • We scanned further the M1 M2 input alignment, and briefly lost the first reflection.
    • We recovered the first reflection, but the beam spot is now incident near the LL OSEM position.
  • We kept scanning M1 - M2 with Ian on the ITMX chamber this time, providing feedback through facetime.
  • Leaning on the ITMX chamber table, we noticed the magnitude of PIT correction left to be done and verified that M1-M2 two axis alignment + ITMX offsets should be enough for it.

We stopped our effort here, the XAUX beam spot is near the lower half of the ITMX face. Tomorrow, we will resume, but we will use airpods and a clean go-pro for real-time audiovisual feedback. Furthermore, ITMX OSEMs should be rebalanced as they haven't been touched after the table was balanced for PR2 and LO1.

  16733   Thu Mar 17 17:23:22 2022 AnchalSummaryBHDPart IIa of BHR upgrade - Green laser alignment

[Anchal, Yehonathan] (on Y Arm)

We first checked if the PZT mirrors M1 and M2 can be controlled. They indeed show no motion even after being connected with a power supply. So green injection path can not be aligned using cds controls right now.

We also noticed that all ETMY slow controls and monitors are offline. That's because the electronics upgrade did not include acromag chassis. This means that the DC bias adjustment is not accessible for ETMY.

Alignment work:

  • We first aligned the green injection beam to cross two irises in the injection path to ETMY chamber.
  • Then I (Anchal) went inside the ITMY chamber to find the green light. Yehonathan controlled the injection path while I gave feedback from ITMY side. We aligned injection path to get the beam near center of ITMY.
  • Then I aligned ITMY through sitemap>IFO>Align to get counter propagating reflection near the ITMY side.
  • We were able to see reflection from ETMY hitting the beam tube.
  • Since DC alignment controls of ETMY are not accessible, we used the Alignment offset in rtcds model which puts dc offset in the coil driver to get the reflected beam from ETMY to come to ITMY table, about 1 inch above the table and about 3 inch south of ITMY SOS.
  • But we got limitted by the DAC overflow on ETMY at this point. Several back and forth attempts to relief ETMY were unsuccesful.

Possible issues:

  • We think having the HV coil driver set up for ETMY is important for this alignment work if not essential. The coil drivers of ETMY are near saturation.
  • We also think that addition of two new suspensions in ITMY table and then counter weights to balance the table, has depressed table height slightly. We need to work out how to change injection path height and angle accordingly.

[Paco, Ian] (on X Arm)

http://nodus.ligo.caltech.edu:8080/40m/16732

  16735   Fri Mar 18 17:15:19 2022 PacoUpdateBHDXARM AUX alignment cont.

[Paco, Ian]

First, we re-balanced the ITMX OSEMs so that they would damp at around half-a-shadow.


Then, we set up a clean camera inside ITMX chamber looking at the ITMX optic. Then, using the live feed we aligned the AUX beam from the ETMX station using M1 and M2. The camera was great to help us align the beam properly close to the ITMX center. It wasn't very long until we could see a green beam on the IR card, but we didn't really see any flashing, so this may just be the bare transmission away from XARM resonance (Attachment #1).

Ian checked the reflection from ITMX using the IR card with holes, and he pretty much only saw one beam spot, so we turned to look for a beam scattering on the vacuum tube but didn't really see anything. This could mean that we were hitting the ETMX again, or missing slightly, or missing completely. We tried scanning the ITMX pitch and yaw using the bias (alignment) sliders, and with the illuminators off, try seeing some scattered green beam on the ETMX. We can't really see anything yet, but we will keep trying. If there are any tips on our method, it would be great to know them.

  16739   Mon Mar 21 18:00:05 2022 Ian MacMillanUpdateBHDXARM AUX alignment cont.

[Ian, Paco]

Continuing with the previous alignment that we stoped on friday, we re set up my heavily cleaned iPhone on FaceTime. The Phone alowed us to see the laser on the ITMX and center it on that optic.

  • We increased the trigger level for the watchdog on the optics.
  • Green beam was centered on th ITMX.
  • aligned the green laser: prompt reflection off of the ETMX to maximize the signal on the reflection PD
  • Went back to ITMX chamber, looked for the beam in the tube to see if the laser was hitting the beam tube off of the ITMX. From there we comunicated how to adjust the beam to move the beam towards the ETMX.
  • On the ETMX the reflection PD signal was measured and the ITMX was adjusted using CDS until ripples/"flashes" were seen in the reflection PD channel (C1:ALS-X_REFL_DC_OUT_DQ).
  • Once we saw flashing we tried to minimize the reflection pd signal using only ITMX alignment slider so that all the light was being held in the cavity.
  • Once we had this going the PDH lock engaged the higher order mode that we were seeing.
  • We removed the phone setup and closed up the ITMX chamber.
  • From here we moved to the control room and continude to adjust the ITMX and ETMX to see if we could lock to a lower order mode.
    • This proved unsuccessful so we will resume by trying to replicate the ASS action manually (with M1 - M2 PZT sliders and the REFL PD)
  16740   Mon Mar 21 18:24:07 2022 AnchalSummaryBHDPart IIa of BHR upgrade - Green laser alignment on Yarm

[Anchal, Tega]

We did the following alignment steps on Yarm today:

  • We aligned the green beam going into the ETMY chamber to the three irises on the path.
  • We aligned ETMY to get counter-propagating prompt reflection from ETMY.
  • We were able to see light in the reflection photodiode for the green PDH loop.
  • Then we went to ITMY chamber and checked where the beam is coming to. It was coming very low in height.
  • We walked the beam on the end to get it near the center of ITMY.
  • Then we changed the ETMY alignment again to get back the reflection beam on the reflection photodiode.
  • Then we went again to ITMY chamber and changed the ITMY alignment to get counter-propagating reflection from ITMY.

After this, we came back to the control room. One peculiar thing to note is that the C1:LS-Y_REFL_DC_OUT channel is inverted i.e. it is showing negative values for the reflection DC voltage. On this signal, we see a little bit higher-order mode flashing but it is not bright enough to be seen on the face camera of the suspension. We'll continue aligning the cavity using CDS now to get TEM00 mode.


After trying for a bit, we were able to get flash of about 2000 counts which is about 16% of the max value of 12200 counts. We adjusted the ITMY angular position using the IFO_ALIGN screen but used the OPTICAL_ALIGN offset screen to adjust the angular position of ETMY. The pitch and yaw values for ITMY are 1.0360 and -0.260 respectively whereas the pitch and yaw values for ETMY are 5664.0 and -4937.0 respectively. 

  16742   Thu Mar 24 19:20:28 2022 AnchalSummaryBHDPart IIa of BHR upgrade - Green laser alignment on Yarm

[Anchal, Paco]


Uneloged: yesterday, Paco and Ian tried locking the green laser on Yend to the Y-arm. Nothing noteworthy happened, no luck.


  • Started with aligning the green injection to the Iris on table (it was misaligned) and getting it on the ITMY center.
  • Then we realized that the beam is going through the focusing leans very offceter. This makes the beam warped and deflected inside that needs to be corrected by mirrors.
  • So we decided to adjust the lens position first.
  • We realized that lens position is hard to adjust along with keeping the beam hiting ITMY.
  • So, we decided to remove the lens first and just align the green beam directly with the Iris on the table and the ITMY center. The beam became as big as ITMY when it reached there without the lens in path. We aligned it to fall on the mirror.
  • Then we placed the lens back so that the beam goes through the center of the lens.
  • Then we aligned ETMY to get the reflection back to the reflection PD.
  • But then when we checked the beam at ITMY again, it was severely missing ITMY. The possible reason is that ETMY is a diverging lens for the beam as well and changing its position changed the beam direction in the beam tube.
  • We decided to do another iteration of lens positioning with the new ETMY position. So same steps, removed lens, aligned beam with iris and ITMY, placed back the lens, aligned ETMY again to get reflection back on the PD.
  • This time the beam was still reaching ITMY. So we were glad that our iterations converged in 2 repititions.
  • Then we aligned ITMY to get counter propagating beam.
  • At the end of this alignment:
    • We see dips in relfection photodiode counts from 12200 to 9500.
    • The ETMY oplev is partially out of range (only 1 of the quadrant seeing light) but that could be because we changed the lens position. So Oplev servo is off.
  • We confirmed that the PDH servo is properly connected and loop is on. But we see no HOM catching lock for YARM even after us doing about 10 min search with ITMY-ETMY alignments.
  • We are leaving things as it is. We'll continue trying to align the cavity tomorrow. Everyone is welcome to try as long as they restore the positions of the optics to a good state at the end.

 

 

  16744   Fri Mar 25 18:20:28 2022 AnchalSummaryBHDPart IIa of BHR upgrade - Green laser alignment on Yarm

[Anchal, Paco, Shruti]

  • Today we found out that the laser controller at the Yend had it's inputs disconnected for the FAST PZT input and the Slow temperature control input. The cables were also not labeled that were lying nearby.
  • I tracked the cables and connected the Fast input adn the slow input.
  • We then adjusted the temperature slider to go to previously marked laser crystal temperature of 40.1 degrees celsius. But we could not find the the beatnote of Y end IR with teh Main laser IR.
  • We scanned the laser crystal temeprature until we could see a beatntoe with the main IR laser and stopped in that region.
  • Then we continued looking for flashing and HOM, but no luck.
  • It was interesting that when the PDH loop was closed, we saw fluctuations in relfection photodiode DC value, but not so much when the loop was not closed.
  • We tried flipping the sign of the loop with no luck and we tried changing the gain of the loop as well, but no luck.
  • The behavior of this Yend laser and its controller is still suspicious to us. When the loop is closed, the PZT feedback signal should not cause a change in amplitude of the light so much as we see it.
  • Also the fact that when loop is clsoed we do not see signs of flashing in the reflection photodiode is interesting. If anyone has any ideas, that would be good.
  16745   Sat Mar 26 13:04:38 2022 PacoSummaryBHDPart IIa of BHR upgrade - Green laser alignment on Yarm

I came for a bit to check on the "1Y0 burning smell" reported by Koji last evening. I agree that there's a toasty smell around the 1Y0 rack, but it is hard to tell where it comes from exactly. I think we can use the FLIR heat camera, but this will have to wait for Monday when someone with an iphone is around.

I also played a bit with the YAUX alignment (which is still poor) but I didn't try anything different nor did I seem to have more success. This is also an outstanding item for Monday, where maybe the next step is to install the GTRY path for a CCD.

  16749   Thu Mar 31 18:58:16 2022 Ian MacMillanSummaryBHDPart IIa of BHR upgrade - IR laser alignment on Xarm

[Ian, Paco]

We continued to try and lock the IR laser to the x-arm. Last time we adjusted TT2 PR2 and PR3 to adjust the beam to hit the center of the ITMX. Today we continued to adjust the same optics to make the beam hit the center of the beam splitter and make sure the beam is going in the direction of the ITMY. Then removed a mirror that wasn't even bolted down. I put it on the front right corner of the hood with all the other optics (right in front of a suspended mirror). With this unknown mirror removed the path was clear and hit the center of ITMX. From there we went and opened the ETMX chamber and using the IR scope we adjusted ITMX to put the beam on the center of the ETMX. We continued adjusting ETMX and ITMX until we had three reflections. We stopped here because we realized we should set up POX. We think this because any adjustment to set up the POX would mess up the work we had done on the x arm alignment.

  16757   Tue Apr 5 18:15:06 2022 AnchalSummaryBHDPart IIa of BHR upgrade - IR laser alignment on Xarm

[Paco, Anchal, Ian, JC]

We attempted the alignment of IR beam into the arm cavities. We used PR2 and PR3 (moved manually as well as using cdsutils) and got the YAW aligned pretty good on both X and Y directions. PIT alignment however turned out to be much harder to align. PR2 PR3 didn't have much range, so we zeroed there offset and tried to use TT1, TT2, MMT1, and MMT2 to align the PIT but it would get clipped before reaching BS table if we were to correct for PIT misalignment happening downstream. We concluded that the issue is that one of the PR2, PR3 mirrors have too much PIT offset in equilibrium position. We have requested Koji to change the output resistors in the coil drivers of PR2 and PR3 so that we can correct for the PIT offset in them directly using the coils and reduce load on upstream optics. We have tweaked TT1, TT2, MMT1, and MMT2 positions today, so we do not have the previous reference anymore.

  16758   Wed Apr 6 01:20:48 2022 KojiSummaryBHDPart IIa of BHR upgrade - IR laser alignment on Xarm

PR2/PR3 Output R for fame OSEMS reduced from 1.2K to 1.2K//100Ohm

I put the R=100Ohm for PR3 with the functions of the units mistakenly swapped. This affects imbalanced actuation of PR3 right now as well as too strong SD

PR2 Coil Driver 1 (UL/LL/UR) / S2100616 / PCB S2100520 / R_OUT = (1.2K // 100) for CH1/2/3

PR2 Coil Driver 2 (LR/SD) / S2100617 / PCB S2100519 / R_OUT = (1.2K // 100) for CH3

PR3 Coil Driver 1 (UL/LL/UR) / S2100619 / PCB S2100516 / R_OUT = (1.2K // 100) for CH3 only

PR3 Coil Driver 2 (LR/SD) / S2100618 / PCB S2100518 / R_OUT = (1.2K // 100) for CH1/2/3

----

The output R was reduced from 1.2k to 1.2k//100 = 92 Ohm.

This means that the face coil gains were increased by a factor of 13.

The original gains for PR2 Pos/Pit/Yaw were {0.7, 0.3, 0.2}. To keep the same loop gain, the new gains were supposed to be {0.054, 0.023, 0.015}.
With the new gain, the oscillations were very slowly reduced. Therefore, I increased the gains to have the gain margin of 2. (i.e. increased the gains until I have the oscillation, and then made it half.)
The new values were {0.2, 0.1, 0.05}. The side gain was 20 and unchanged

For PR3 the same operation has been done.

The original gains for PR3 Pos/Pit/Yaw were {1, 0.52, 0.2}. They were supposed to be reduced to  {0.077, 0.04, 0.015}.
The gains were increased to {0.5, 0.1, 0.1}. The side gain was also increased from 1 to 5.

  16759   Wed Apr 6 12:03:51 2022 AnchalSummaryBHDPart IIa of BHR upgrade - IR laser alignment on Yarm

[Anchal, Paco]

After Koji reduced the output resistors on PR2/PR3 coil drivers, we got much better actuation range. We aligned TT1 TT2 again to get beam centered on PR2 and PR3. Then we used only PR2 and PR3 to do the input beam alignment to Y arm cavity. Using access in ETMY chamber, we aligned the input beam parallel to cavity axis. Slight changes were required in ETMY alignment offsets to get first roundtrip in same spot on ITMY. remaining alignment is finer and needs to be done with a help of a reflection photodiode and cameras in the control room. Immediate next step is to setup POY path for locking the Yarm with IR.

Side note: Because of the large PIT correction required in PR3, we found that our upper OSEMs were hitting totally bright limit and lower OSEMs were hitting totally dark limit on PR3. This also destablized our damping loops. We pushed the upper OSEMs slighlty and pulled back the lower OSEMs slightly to get the PD signal in half shadow region again. This worked and our damping loops are stable again. However, we think we should repeat free swing test in future to diagonalize the input matrix for new OSEM positions.

  16760   Wed Apr 6 22:51:47 2022 KojiSummaryBHDPart IIa of BHR upgrade - IR laser alignment on Xarm

[Yuta Koji]

We took out the two coil driver units for PR3 and the incorrect arrangement of the output Rs were corrected. The boxes were returned to the rack.

In order to recover the alignment of the PR3 mirror, C1:SUS_PR3_SUSPOS_INMON / C1:SUS_PR3_SUSPIT_INMON / C1:SUS_PR3_SUSYAW_INMON were monitored. The previous values for them were {31150 / -31000 / -12800}. By moving the alignment sliders, the PIT and YAW values were adjusted to be {-31100 / -12700}. while this change made the POS value to be 52340.

The original gains for PR3 Pos/Pit/Yaw were {1, 0.52, 0.2}. They were supposed to be reduced to  {0.077, 0.04, 0.015}.
I ended up having the gains to be {0.15, 0.1, 0.05}. The side gain was also increased to 50.

----

Overall, the output R configuration for PR2/PR3 are summarized as follows. I'll update the DCC.

PR2 Coil Driver 1 (UL/LL/UR) / S2100616 / PCB S2100520 / R_OUT = (1.2K // 100) for CH1/2/3

PR2 Coil Driver 2 (LR/SD) / S2100617 / PCB S2100519 / R_OUT = (1.2K // 100) for CH3

PR3 Coil Driver 1 (UL/LL/UR) / S2100619 / PCB S2100516 / R_OUT = (1.2K // 100) for CH1/2/3

PR3 Coil Driver 2 (LR/SD) / S2100618 / PCB S2100518 / R_OUT = (1.2K // 100) for CH3

  16761   Thu Apr 7 11:47:22 2022 YehonathanUpdateBHDInitial BHD modeling: AS - LO mode matching

I begin modeling the initial BHD setup using Finesse. I started with copying C1_w_BHD.kat from the 40m/bhd repo and making changes to reflect the current BHD setup:

1. OMCs were removed.

2. Only 1 PD per BHD port was left.

3. Transmission of PR2 was changed to 2.2%. The PRG was calculated to be ~15.5.

4. Actual RoCs of new optics were dialed in (Yesterday me and Paco went into the cleanroom to measure the RoCs and they seem to match the datasheets).

Here's a table comparing the old (design?) RoCs with the new RoCs:

  New RoC Old RoC
LO1 5m 6m
LO2 inf inf
LO3 500mm 750mm
LO4 150mm -450mm
AS1 2m 2.8m
AS2 inf inf
AS3 200mm -2m
AS4 750mm 600mm
PR2 2000m -700m
PR3 1000m 1000m
SR3 1000m -700m

 

The changes looked quite alarming, especially for LO4 and AS3, so I wrote a script to calculate the mode matching between the LO and AS beams called AS_LO_ModeMatching.ipynb and pushed it into the repo. In the notebook a bright AS beam is created by creating a small asymmetry between the arms of ~ 0.003 degrees (~10pm). Amplitude detectors were put at the input ports of the BHD BS to calculate the fields in the AS and LO beams. In particular TEM00, TEM02 and TEM20 were measured for each beam.

The calculation shows that with the old RoCs the mode matching between the LO and AS beams is 99% while for the new RoCs it is ~ 50%.

  16762   Thu Apr 7 17:59:51 2022 AnchalSummaryBHDPart IIa of BHR upgrade - IR laser alignment on Yarm

[Anchal, Paco, JC, Tega]

Today we have aligned the Yarm cavity for IR, with verified 1.5 roundtrips. We also placed following optics in the BS table.

  • POXM1 (installed earlier, not eloged)
  • SRMOL2
  • POYM1
  • SRMOL1
  • POYM2

We also cleared the in-air BS table of all previous optics. JC and Tega setup HeNe laser for Oplevs roughly for now. Tega also transported the POY RFPD from ITMY in-air table to the BS in-air table. We aligned the POY path to the table, but we had to move ITMY after that to get 2nd roundtrip in the arm cavity, which misaligned our POY path again. POY path would need to be modified tomorrow.

 

  16766   Thu Apr 7 21:15:04 2022 YehonathanUpdateBHDInitial BHD modeling: AS - LO mode matching

Ok, it turns out these optics were purchased on purpose, as this elog shows. Jon considered building a mode-matching telescope with stock optics as an initial step before purchasing the custom optics (referred to as "design" optics in my elog).

I dialed in the new distances between the optics into the .kat file as described in this elog and pushed the changes to the repo. With the new distances, I got mode-matching of 87% for the full IFO and 89% for FPMI so there's probably no need to worry as the mode-matching with these optics was already designed.

Quote:

I begin modeling the initial BHD setup using Finesse. I started with copying C1_w_BHD.kat from the 40m/bhd repo and making changes to reflect the current BHD setup:

1. OMCs were removed.

2. Only 1 PD per BHD port was left.

3. Transmission of PR2 was changed to 2.2%. The PRG was calculated to be ~15.5.

4. Actual RoCs of new optics were dialed in (Yesterday me and Paco went into the cleanroom to measure the RoCs and they seem to match the datasheets).

Here's a table comparing the old (design?) RoCs with the new RoCs:

  New RoC Old RoC
LO1 5m 6m
LO2 inf inf
LO3 500mm 750mm
LO4 150mm -450mm
AS1 2m 2.8m
AS2 inf inf
AS3 200mm -2m
AS4 750mm 600mm
PR2 2000m -700m
PR3 1000m 1000m
SR3 1000m -700m

 

The changes looked quite alarming, especially for LO4 and AS3, so I wrote a script to calculate the mode matching between the LO and AS beams called AS_LO_ModeMatching.ipynb and pushed it into the repo. In the notebook a bright AS beam is created by creating a small asymmetry between the arms of ~ 0.003 degrees (~10pm). Amplitude detectors were put at the input ports of the BHD BS to calculate the fields in the AS and LO beams. In particular TEM00, TEM02 and TEM20 were measured for each beam.

The calculation shows that with the old RoCs the mode matching between the LO and AS beams is 99% while for the new RoCs it is ~ 50%.

 

  16768   Fri Apr 8 17:21:31 2022 Ian MacMillanSummaryBHDPart IIa of BHR upgrade - IR laser alignment on Yarm

[Ian, Paco, Tega]

Paco and I opened the ETMY and ITMY chamber to work on yesterdays efforts to lock the y arm. We temporarily in stalled a camera behind the ETMY to look at the transmission as we adjusted the ETMY and ITMY. We then moved on to setting up the POY. the beam was too large for the apature of the PD so we installed a lens in the beam path to decrease it.

Once that was installed we saw some flashing on the C1:LSC-POYCD_OUT channel. We also could see the flashing on the monitors in the control room. The flashing beam seemed to be in the middle of ITMY but was slightly to the right on the ETMY. From here we tried to walk the beam using PR3 and ETMY to move the beam to the center of the ETMY.

  16770   Mon Apr 11 21:13:21 2022 PacoSummaryBHDPart IIa of BHR upgrade - POY11 debugging

[Paco, Koji]

I asked Koji for some advice regarding closing the loop on YARM using POY11. A few things seemed off including

  • The YARM transmission; which was peaking at ~ 20 (typically, TRY is normalized so that under nominal input power conditions we see TRY in the range [0, 1])
  • The POY11 DCPD level was quite low; we expect a few tens of uW in this low power configuration where no more than 100 mW are going through IMC.

We looked at the POY11 RFPD first. We tried flashing an incandescent lamp in-situ and saw some weak response using an oscilloscope and the DC Out readout. We then used the OPHIR power meter and recorded ~ 1.2 uW of light incident on the POY11 RFPD... Initially, we suspected our beam was not filling the PD sensitive area (~ 2 mm diameter), but a quick estimate using the 200 mm focusing lens currently installed in the ITMY table gave us quite a generous margin of error... so we questioned the OPHIR measurement. We swapped the power meter and this time got ~ 18.4 uW, which is more in line with what we expected (phew).

Moving on, from the POY11 RFPD responsivity, and our ~ 20 uW of incident power, we expected on the order of a 20 mV of DC Output, but weren't really seeing this on the scope, so we decided to test the pins on the power of the RFPD. The DB15 cable not only supplies bipolar 15 VDC but also monitors several other test points such as Tsens, or DCout in the RFPD. We quickly noticed a weird signal on the ENAB testpoint, so we removed POY11 RFPD from the ITMY table and took it to the PD testbench. After redoing the soldering on the breakout board and RF amplifier (ZXX-500LN+), which we tested separately, we saw the expected behavior using a +- 15 VDC power supply... thus verifying that the RFPD and breakout board seemed to work ok. We turned our attention to the upstream DB15 connection, and after quickly checking the newly run cables, we ended up debugging the eurocrate PD interface. After attempting a simple power cycle and failing, we removed this card and looked at the schematic. It would seem that the logic enabling ICs (one or both) failed, thus preventing the card from enabling its outputs correctly.... We bypassed the logic by soldering pins 4,8,14 on U1, U20 and then checked the circuit in-situ, and we saw it worked fine again.

Now none of the status LEDs (which are driven by the logic IC portion) work on this card, but the card itself works fine at least for POY11.

We moved on, and installed the DB15 cables, checking the functionality at every step... Then we looked at the POY11_I_ERR signal and were happy to see nice pdh wavelets. We pushed forward a little bit more to try and lock YARM. First, we went to the Y end and centered the ETMY Oplev so as to register the position where the YARM is flashing... The ITMY Oplev is still not online. Then, we optimized the ETMY damping gains somewhat to try and make it less noisy, and finally, played with the LSC YARM loop gain to attempt locking. This last push was not as successful, but we have an idea of what next steps are needed to reduce the SUS noise, including

  • Install ITMY Oplevs, and close loop
  • Optimize ITMY damping gains

To be continued....

ELOG V3.1.3-