40m QIL Cryo_Lab CTN SUS_Lab TCS_Lab OMC_Lab CRIME_Lab FEA ENG_Labs OptContFac Mariner WBEEShop
  40m Log, Page 232 of 344  Not logged in ELOG logo
ID Date Author Type Category Subjectup
  14602   Fri May 10 15:18:04 2019 gautamUpdatePSLSome work on/around PSL table
  1. In anticipation of installing the new fan on the PSL, I disconencted the old fan and finally removed the bench power supply from the top shelf.
  2. Moved said bench supply to under the south-west corner of the PSL table.
  3. Installed temporary Acromag crate, now with two ADC cards, under the PSL table and hooked it up to the bench suppy (+15 VDC). Also ran an ethernet cable from 1X3 to the box on over head cable tray and connected it.
  4. Brought other end of 25-pin D-sub cable used to monitor the NPRO diagnostics channels from 1X4/1X5 to the PSL table. Rolled the excess length up and cable tied it, the excess is sitting on top of the PSL enclosure. Key parts of the setup are shown in Attachments #1-3. This is not an ideal setup and is only meant to get us through to the install of the new c1psl/c1ioo Acromag crate.
  5. Edited the modbus config file at /cvs/cds/caltech/target/c1psl2/npro_config.cmd to add Jon's new ADC card to the list.
  6. Edited EPICS database file at /cvs/cds/caltech/target/c1psl2/psl.db to add entries for the C1:PSL-FSS_RMTEMP and C1:PSL-PMC_PMCTRANSPD channels.
  7. Hooked up said channels to the physical ADC inputs via a DB15 cable and breakout board on the PSL table.
    CH0 --- FSS_RMTEMP (Pins 5/18 of the DB25 connector on the interface box to pins 1/9 of the Acromag DB15 connector)
    CH1 --- PMC TRANS (BNC cable from PD to pomona minigrabber to pins 2/10 of the Acromag DB15 connector)
    CH2-6 are unsued currently and are available via the DB15 breakout board shown in Attachment #3. CH7 is not connected at the time of writing
    The pin-out for the temperature sensor interface box may be found here. Restarted the modbus process. The channels are now being recorded, see Attachment #4, although checking the status of the modbus process, I get some error message, not sure what that's about.

So now we can monitor both the temperature of the enclosure (as reported by the sensor on the PSL table) and the NPRO diagnostics channels. The new fan for the controller has not been installed yet, due to us not having a good mounting solution for the new fans, all of which have a bigger footprint than the installed fan. But since the laser isn't running right now, this is probably okay.

modbusPSL.service - ModbusIOC Service via procServ
   Loaded: loaded (/etc/systemd/system/modbusPSL.service; disabled)
active (running) since Fri 2019-05-10 13:17:54 PDT; 2h 13min ago
  Process: 8824 ExecStop=/bin/kill -9 ` cat /run/modbusPSL.pid`
(code=exited, status=1/FAILURE)
 Main PID: 8841 (procServ)
   CGroup: /system.slice/modbusPSL.service
           ├─8841 /usr/bin/procServ -f -L /home/controls/modbusPSL.log -p /run/modbusPSL.pid 8009 /cvs/cds/rtapps/epics-
           ├─8842 /cvs/cds/rtapps/epics- /cvs/cds/caltech/target/c1psl2/npro_config.c...
           └─8870 caRepeater

May 10 13:17:54 c1auxex systemd[1]: Started ModbusIOC Service via procServ.

Attachment 1: IMG_7427.JPG
Attachment 2: IMG_7428.JPG
Attachment 3: IMG_7429.JPG
Attachment 4: newPSLAcro.png
  14604   Sat May 11 11:48:54 2019 JonUpdatePSLSome work on/around PSL table

I took a look at the error being encountered by the modbusPSL service. The problem is that the /run/modbusPSL.pid file is not being generated by procServ, even though the -p flag controlling this is correctly set. I don't know the reason for this, but it was also a problem on c1vac and c1susaux. The solution is to remove the custom kill command (ExecStop=...) and just allow systemd to stop it via its default internal kill method.

modbusPSL.service - ModbusIOC Service via procServ
   Loaded: loaded (/etc/systemd/system/modbusPSL.service; disabled)
active (running) since Fri 2019-05-10 13:17:54 PDT; 2h 13min ago
  Process: 8824 ExecStop=/bin/kill -9 ` cat /run/modbusPSL.pid`
(code=exited, status=1/FAILURE)
 Main PID: 8841 (procServ)
   CGroup: /system.slice/modbusPSL.service
           ├─8841 /usr/bin/procServ -f -L /home/controls/modbusPSL.log -p /run/modbusPSL.pid 8009 /cvs/cds/rtapps/epics-
           ├─8842 /cvs/cds/rtapps/epics- /cvs/cds/caltech/target/c1psl2/npro_config.c...
           └─8870 caRepeater

May 10 13:17:54 c1auxex systemd[1]: Started ModbusIOC Service via procServ.

  666   Mon Jul 14 10:57:00 2008 KojiFrogsEnvironmentSomeone at 40M sent LHO water of life
Someone at the 40m sent Mike@LHO a pound of peets coffee with the name of Koji Arai.
It was a good surprise! Thanks, we will enjoy it!
I will return to Pasadena next week. See you then.
  11990   Mon Feb 15 12:28:03 2016 gautamUpdateGeneralSomething has gone wrong - was there a power outage?

I came into the 40m a few minutes ago, and noticed the following (approximately in this order):

  • The striptool plots projected onto the wall were gone, even though the projector seemed to be working fine
  • There was no light at all in the IFO 
  • There was an incessnt beeping noise coming from inside the lab.

To investigate further, I checked today's summary pages, and whatever caused this, happened around 730am today morning (approx 5 hours ago). I also saw that all the watchdogs were tripped, except MC3, BS and SRM. 

I then tracked down the beeping - I believe that it is coming from Megatron.(in fact, it is coming from the Jetstor..) 

I also found that the PSL is OFF, and the Marconi, though ON, has the display parameters set to values that I normally see when it is first turned ON (i.e. the carrier frequency is 1200MHz, the output is -140dBm etc - this is what led me to suspect that somehow the power connection was interrupted? As far as the workstation computers are concerned, I don't think ROSSA was affected, but pianosa is frozen and donatella is at the login screen. The CDS overview MEDM screen refuses to load correctly (though some of the other MEDM screens are working fine). I'm not entirely sure how to go about fixing all of this, so for now, I'm leaving the PSL off and I've shutdown the remaining watchdogs.

It just occurred to me to check the status of the vacuum - the MEDM screen seems to suggest everything is fine (see Attachment #1). I went down to the X end to do a quick check on the status of the turbo pumps and everything looks normal there...

Attachment 1: Vac_15Feb2016.png
  11991   Mon Feb 15 13:09:33 2016 KojiUpdateGeneralSomething has gone wrong - was there a power outage?

Looks like that's the case. LIGO GC also sent an e-mail that there was a popwer glitch.

  224   Thu Jan 3 12:38:49 2008 robBureaucracyTMISore throat


I did not feel anything wrong yesterday, but unfortunately I have a very much sore throat today. I need to drink warm milk with honey and rinse my throat often today. So far I do not have other illness symptomes (no fever), so I hope that this small disease will not last for a long time, but I feel that it is better for me to cure my sore throat today at home (and probably it is safer for others in 40-m).

I took yesterday the book "Digital Signal Processing", so I have it for reading at home.

Hope to see you tomorrow.

I've added a new category--TMI--for entries along these lines.
  8402   Wed Apr 3 15:00:24 2013 JamieSummaryElectronicsSorensen supplies in LSC rack (1Y2)

I investigated the situation of the two Sorensen supplies in the LSC rack (1Y2).  They are there solely to supply power to the LSC LO RF distribution box.  One is +18 V and the other is +28 V.  All we need to do is make a new longer cable with the appropriate plug on one end (see below), long enough to go from the bottom of the 1Y3 rack to the top of 1Y2, and we could move them over quickly.  Some sort of non-standard circular socket connector is used on the distribution box:


It could probably use thicker conduction wire as well.

If someone else makes the cable I'll move everything over.

  12814   Thu Feb 9 11:22:56 2017 gautamUpdateGeneralSorensens and DIN connections at 1X1

I'd like to fix a few things at 1X1 when we plug in the new amplifier for the 29.5MHz modulation signal. 

  1. Split off separate +24 and ground wires to the green BBPD RF amplifiers and the AOM driver (they are sharing a single fuse at the moment)
  2. Tap a new +24 GND -24V set for the FSS Fast summing box - this is currently running with a bench power supply underneath the PSL table set to +/-18V, but I checked the 7815/7915 datasheets and they accept up to 35V input for a 15V output, so it should be fine to use 24V
  3. Hook up the ZHL-2A for the IMC modulation.

Steve has ordered rolls of pre-twisted wire to run from 1X1 to the PSL table, so that part can be handled later.

But at 1X1, we need to tap new paths from +/- 24V to the DIN connectors. I think it's probably fine to turn off the two Sorensens, do the wiring, and then turn them back on, but is there any procedure for how this should be done? 

Attachment 1: Screen_Shot_2017-02-10_at_9.01.46_AM.png
  341   Tue Feb 26 20:24:04 2008 AndreySummaryTMISorrow
As for that plot of three-dimensional surface, I indeed was wrong with the axis "Q_ETMX-Q_ITMX" (I put there wrong string "Q_ITMX-Q_ETMX"). On Friday plot there were values 10^(-12) on the z-axis, and that should be really meters, but the point that as I realized on Monday, I have never calibrated experimental measurement results from counts to meters , that's why it is this difference between 10^(-6) and 10^(-12). I still did not find the way to compare experim. and theoretical plots, because even if I leave "counts" on both plots, so that I have scale 10^(-6) on both plots, then the change in theoretical plot is just 0.02*10^(-6) for the range of Q-factors change, while the change in experimental measurements is an order of magnitude more 0.4*10^(-6), so the surface for theretical plot would be almost flat in the same axes as experimental results.
  16026   Wed Apr 14 13:12:13 2021 AnchalUpdateGeneralSorry, it was me

Sorry about that. It must be me. I'll make sure it doesn't happen again. I was careless to not check back, no further explanation.indecision

  16029   Wed Apr 14 15:30:29 2021 ranaUpdateGeneralSorry, it was me

Maybe tighten the tensioner on the door closer so that it closes by itself even in the low velocity case. Or maybe just use the front door like everyone else?

  7751   Tue Nov 27 01:03:42 2012 AyakaUpdateWienerFilteringSound on PSL

 Last Thursday, I put the speaker and my laptop in the PSL table, and make triangular wave sound with the basic frequency of 40Hz, and Gaussian distributed sound.
(I create the sounds from my laptop using the software 'NHC Tone Generator' because I could not find the connector from BNC to speaker plug.)
And I measured the acoustic coupling in MCF signal. The all the 6 microphones were set in PSL table around PMC and PSL output optics. 

The performance of the offline noise cancellation with wiener filter is below.
(The target signal is MCF and the witness signals are 6 microphones.)

  • With Gaussian sound (Sorry for wrong labeling 'XARM' and no calibration)
  • With 40Hz Triangular sound (Sorry for no calibration again)

I can see some effects on MCF due to the sound on PSL table. Though I can subtract some acoustic signal and there are no coherence between MCF signal and mic signals, still some acoustic noise remains.
This is maybe because of some non-linearity effects or maybe because we have other effective places for acoustic coupling measurement. More investigations are needed.

Also, I compared the wiener filter and the transfer function from microphones signal to MCF signal. They should be the same ideally.

(Left: Wiener filter, Right: Transfer function estimated by the spectrum. They are measured when the Gaussian sound is on.)

These are different especially lower frequencies than 50 Hz. The wiener filter is bigger at lower frequencies. I guess this adds extra noise on the MCF signal. (see the 1st figure.)
The wiener filter can be improved by filterings. But if so, I want to know how can we determine the filters. It is interesting if we have some algorithms to determine the filters and taps and so on.
The more investigations are also needed.

  7760   Wed Nov 28 23:55:13 2012 AyakaUpdateWienerFilteringSound on PSL

 I have been searching for the way we can subtract signal better since I could see the acoustic coupling signal remains in the target signal even though there are no coherence between them.

I changed the training time which is used to decide wiener filter.
I have total 10 minutes data, and the wiener filter was decided using the whole data before.

(Right: the performance with the data when the triangular sound was created. Left: the performance with the data when the gaussian sound was created.)

I found that the acoustic signal can be fully subtracted above 40 Hz when the training time is short. This means the transfer functions between the acoustic signals and MCF signal change.
However, if the wiener filter is decided with short-time training, the performances at lower frequencies get worse. This is because wiener filter do not have enough low-frequency information.

So, I would like to find the way to combine the short-time training merit and long-time training merit. It should be useful to subtract the broad-band coupling noise.

  14148   Thu Aug 9 02:12:13 2018 gautamUpdateCOCSouth East or West?


For operating the SRC in the "Signal-Recycled" tuning, the SRC macroscopic length needs to be ~4.04m (compared to the current value of ~5.399m), assuming we don't do anything fancy like change the modulation frequencies and not transmit through the IMC. We're putting together a notebook with all the calculations, but today I was thinking about what the signal extraction path should be, specifically which chamber the SRM should be in. Just noting down the thoughts I had here while they're fresh in my head, all this has to be fleshed out, maybe I'm making this out to be more of a problem than it actually is.


  • For the current modulation frequencies, if we want the reosnance conditions such that the f2 sideband is resonant in the SRC (but not f1, i.e. small Schnupp asymmetry regime) while the carrier is resonant in the arms (required for good sensing of the SRC length), the macroscopic length of the SRC needs to be changed to ~4.04m.
  • Practically, this means that the folded SRC would only have one folding mirror (SR2).
  • There is a shorter SRC length of ~1.something metres which would work, but that would involve changing the relative position between ITMs and BS (currently ~2.3m) so I reject that option for now.
  • So the SR2 would be roughly where it is right now, ~20cm from the BS.
  • The question then becomes, where do we direct the reflection from the SR2? We need an optical path length of ~1.5m from SR2. So options are 
    • ITMY table (East)
    • ITMX table (South)
    • IMC table (West)
  • Moreover, after the SRM, we have to accommodate:
    • Some kind of pickoff for in-air PDs.
    • OFI.
    • OMC MMT.
    • OMC.
  • Some kind of CBA (as of now I think going to the ITMY table is the best option):
Option Advantages Disadvantages
  • Easy to direct beam from BS/PRM chamber to the ITMY table (i.e. we don't have to worry too much about avoiding other optics in the path etc).
  • Ease of access to chamber, ease of working in there.
  • ITMY table probably has the most room to work out an OFI + OMC MMT + OMC solution.
  • AS beam extraction to air will be more complicated, possibly have to do it on ITMY optical table.
  • Not sure if the ITMY table can accommodate all of the output optics subsystems I listed above.
  • Routing the LO beam to this table would be tricky I guess.
  • Routing the LO beam for homodyne detection is probably easiest in this chamber.
  • Allows for small AoI on folding mirror, reducing the impact of astigmatism.
  • Pain to work in this chamber because of IMC tube.
  • Steering beam from SR2 to ITMX table means threading the needle between PRM and PR3 possibly.
  • Probably allows the use of (almost) the entire existing OMC chamber for the output optics (OFI, OMC MMT, OMC).
  • IMC table is crowded (2 SOS towers, several steering optics for the input beam, input faraday).
  • Not sure what is the performance of the seismic isolation stacks on these tables vs the larger optical tables.
  • Painful to work in these smaller chambers.
  15624   Tue Oct 13 21:22:29 2020 gautamUpdateGeneralSpace cleared in 1Y1 for new FEs

[JV, GV]

We cleared up some space in the 1Y1 electronics rack to install the 3 new FE machines. I removed the current driver and laser from 1Y1, they are now stored in the E10 cabinet. I will upload some photos to gPhotos soon.

  1. I think it's good to have all these FEs in one rack (at least the new ones) - we should then hook it up to an ethernet power source, so that we can remotely power cycle them. I think we have long enough cables to interface to expansion chasses / dolphin switches, but if not, I think it's still a good idea to have these machines in 1Y1 as it is the least sensitive area in terms of immunity to bumping some cable during setup work and disturbing the rest of the IFO.
  2. We found that the rails that the Supermicros shipped with the servers seem to be just a little too narrow - we mounted these in the rack, but had considerable difficulty sliding the server units in. Once they are in, they don't slide smoothly. Is there some special trick to installing these? 
  3. I spent a few minutes trying to get Debian 8 installed on these machines, so that the rest of the setup work could be done remotely - however, there appear to be some firmware issues and so I'm not gonna dive into this.
    • I couldn't find a disk image for Debian 8.5 which is what the KT wikl recommends, so the OS I tried to install was Debian 8.11.
    • The error that comes up is related to a "stalled CPU" - apparently this is related to some graphics driver issue (there's another forum page that suggests upgrading the BIOS, but I don't think that's the problem here).
    • Anyways, this part of the process is only to install some drivers and do the initial setup - these machines will eventually run a diskless boot from the image on FB, so who knows if there will be some other driver issues/hardware-software incompatibilities there 😱 .
    • We should also make an effort to set these machines up with IPMI, but I think we first need to install an OS and a CLI to setup the IPMI. My cursory browsing of the manual suggests that the initial setup maybe can be done without installing an OS, and then subsequent work, including OS install, can be done remotely. If someone reads more in detail and can provide me a step-by-step, I can follow those instructions (if they aren't available to come into the lab). See here for some brief documentation of how to access the IPMI.
  15168   Tue Jan 28 19:12:30 2020 JonConfigurationPSLSpare channels added to c1psl chassis

After some discussion with Gautam, I decided to build more spare channels into the new c1psl machine. This is anticipation of adding new laser and ISS channels in the near future, to avoid having to disconnect the installed chassis and pull it out of the rack. The spare channels will be wired to DB37M feedthroughs on the front side of the chassis, with enough wire length to be able to pull the breakout boards out of the front to reconfigure their wiring as needed (e.g., split off channels onto a separate connector).

To have enough overhead, this will require installing 1 additional ADC unit (XT1221) and 1 additional DAC (XT1541). We have enough spare BIO channels among the existing units (both sinking and sourcing). This will give us:

  • 13 spare ADC channels
  • 14 spare DAC channels
  • 16 spare sinking BIO channels
  • 12 spare sourcing BIO channels

The updated c1psl chassis wiring assignments are attached. It adds 4 new DB37M connectors for the spare channels (highlighted in yellow) and fixes one typo Jordan found while wiring today. The most current spreadsheet is available here.

Attachment 1: c1psl_feedthrough_wiring_v2.pdf
c1psl_feedthrough_wiring_v2.pdf c1psl_feedthrough_wiring_v2.pdf c1psl_feedthrough_wiring_v2.pdf c1psl_feedthrough_wiring_v2.pdf c1psl_feedthrough_wiring_v2.pdf
  15615   Tue Oct 6 14:35:16 2020 JordanUpdateVACSpare forepumps

I have placed 3 new in box, IDP 7 forepumps along the x arm of the interferometer. These are to be used as spares for both the 40m and Clean and Bake.

  12158   Wed Jun 8 13:50:39 2016 jamieConfigurationCDSSpectracom IRIG-B card installed on fb1

[EDIT: corrected name of installed card]

We just installed a Spectracom TSyc-PCIe timing card on fb1.  The hope is that this will help with the GPS timeing syncronization issues we've been seeing in the new daqd on fb1, hopefully elliminating some of the potential failure channels.

The driver, called "symmetricom" in the advLigoRTS source (name of product from competing vendor), was built/installed (from DCC T1500227):

controls@fb1:~/rtscore/tests/advLigoRTS-40m 0$ cd src/drv/symmetricom/
controls@fb1:~/rtscore/tests/advLigoRTS-40m/src/drv/symmetricom 0$ ls
Makefile  stest.c  symmetricom.c  symmetricom.h
controls@fb1:~/rtscore/tests/advLigoRTS-40m/src/drv/symmetricom 0$ make
make -C /lib/modules/3.2.0-4-amd64/build SUBDIRS=/home/controls/rtscore/tests/advLigoRTS-40m/src/drv/symmetricom modules
make[1]: Entering directory `/usr/src/linux-headers-3.2.0-4-amd64'
  CC [M]  /home/controls/rtscore/tests/advLigoRTS-40m/src/drv/symmetricom/symmetricom.o
/home/controls/rtscore/tests/advLigoRTS-40m/src/drv/symmetricom/symmetricom.c:59:9: warning: initialization from incompatible pointer type [enabled by default]
/home/controls/rtscore/tests/advLigoRTS-40m/src/drv/symmetricom/symmetricom.c:59:9: warning: (near initialization for ‘symmetricom_fops.unlocked_ioctl’) [enabled by default]
/home/controls/rtscore/tests/advLigoRTS-40m/src/drv/symmetricom/symmetricom.c: In function ‘get_cur_time’:
/home/controls/rtscore/tests/advLigoRTS-40m/src/drv/symmetricom/symmetricom.c:89:2: warning: ISO C90 forbids mixed declarations and code [-Wdeclaration-after-statement]
/home/controls/rtscore/tests/advLigoRTS-40m/src/drv/symmetricom/symmetricom.c: In function ‘symmetricom_init’:
/home/controls/rtscore/tests/advLigoRTS-40m/src/drv/symmetricom/symmetricom.c:188:2: warning: ISO C90 forbids mixed declarations and code [-Wdeclaration-after-statement]
/home/controls/rtscore/tests/advLigoRTS-40m/src/drv/symmetricom/symmetricom.c:222:3: warning: label ‘out_remove_proc_entry’ defined but not used [-Wunused-label]
/home/controls/rtscore/tests/advLigoRTS-40m/src/drv/symmetricom/symmetricom.c:158:22: warning: unused variable ‘pci_io_addr’ [-Wunused-variable]
/home/controls/rtscore/tests/advLigoRTS-40m/src/drv/symmetricom/symmetricom.c:156:6: warning: unused variable ‘i’ [-Wunused-variable]
  Building modules, stage 2.
  MODPOST 1 modules
  CC      /home/controls/rtscore/tests/advLigoRTS-40m/src/drv/symmetricom/symmetricom.mod.o
  LD [M]  /home/controls/rtscore/tests/advLigoRTS-40m/src/drv/symmetricom/symmetricom.ko
make[1]: Leaving directory `/usr/src/linux-headers-3.2.0-4-amd64'
controls@fb1:~/rtscore/tests/advLigoRTS-40m/src/drv/symmetricom 0$ sudo make install
#remove all old versions of the driver
find /lib/modules/3.2.0-4-amd64 -name symmetricom.ko -exec rm -f {} \; || true
find /lib/modules/3.2.0-4-amd64 -name symmetricom.ko.gz -exec rm -f {} \; || true
# Install new driver
install -D -m 644 symmetricom.ko /lib/modules/3.2.0-4-amd64/extra/symmetricom.ko
/sbin/depmod -a || true
/sbin/modprobe symmetricom
if [ -e /dev/symmetricom ] ; then \
        rm -f /dev/symmetricom ; \
mknod /dev/symmetricom c `grep symmetricom /proc/devices|awk '{print $1}'` 0
chown controls /dev/symmetricom
controls@fb1:~/rtscore/tests/advLigoRTS-40m/src/drv/symmetricom 0$ ls /dev/symmetricom
controls@fb1:~/rtscore/tests/advLigoRTS-40m/src/drv/symmetricom 0$ ls -al /dev/symmetricom
crw-r--r-- 1 controls root 250, 0 Jun  8 13:42 /dev/symmetricom
controls@fb1:~/rtscore/tests/advLigoRTS-40m/src/drv/symmetricom 0$ 
  12161   Thu Jun 9 13:28:07 2016 jamieConfigurationCDSSpectracom IRIG-B card installed on fb1

Something is wrong with the timing we're getting out of the symmetricom driver, associated with the new spectracom card.

controls@fb1:~/rtscore/tests/advLigoRTS-40m/src/drv/symmetricom 127$ lalapps_tconvert 
controls@fb1:~/rtscore/tests/advLigoRTS-40m/src/drv/symmetricom 0$ cat /proc/gps 
controls@fb1:~/rtscore/tests/advLigoRTS-40m/src/drv/symmetricom 0$ 

The GPS time is way off, and it's counting up at something like 900 seconds/second.  Something is misconfigured, but I haven't figured out what yet.

The timing distribution module we're using is spitting out what appears to be an IRIG B122 signal (amplitude moduled 1 kHz carrier), which I think is what we expect.  This is being fed into the "AM IRIG input" connector on the card.

Not sure why the driver is spinning so fast, though, with the wrong baseline time.  Reboot of the machine didn't help.

  15608   Fri Oct 2 12:52:22 2020 gautamUpdateGeneralSpectroscopic grade Isopropanol delivered

2x500 ml bottles of spectroscopic grade isopropanol were delivered. I marked them with today's date and placed them in the solvent cabinet. In the process, my shoulder bumped the laser interlock switch by the door to the VEA in the drill press area, which turned the PSL NPRO off. I turned it back on just now. The other NPROs are not connected to the interlock and so were unaffected.

  15898   Wed Mar 10 17:35:47 2021 gautamUpdateSUSSpooky action at a distance

As I am sitting in the control room, the PRM suspension watchdog tripped again. This time, there is clearly no seismic activity. Yet, the BS suspension also shows a slight disturbance at the same time as the PRM. ITMY shows no perturbation though. My best hypothesis here is that the problem is electrical. In Attachment #1, you can see that all of the Sensors go to -6000 cts (whut?) for ~30 seconds. Zooming in to that segment in Attachment #2, it would appear that the light detected by the LED changed dramatically (went dark?) on all 5 coils. The 4 face coils have the same time constant but the side has a different one, but in any case, this level of light change in half a second is clearly not physical. Then the watchdog trips because this huge apparent motion elicits a kick from the damping loops.

The plots I attach are for the DQed sensor channels, so there is some digital filtering involved. But I confirmed that the signal doesn't go negative if I disable the input to the filter module. So it would seem that the voltage input to the ADC really chanegd polarity, seems unphysical. Could be Satellite Box or whitening electronics I suppose - I think we can exclude bad cabling, as that would just lead to the signals going to 0, whereas it would appear here that they did really change sign (confirmed by looking at the ULPDmon channel, which is digitized by Acromag, which reports -10 V at the time of glitch). But why should the BS care about the PRM electronics going wonky?

In addition to an exorcist, we need functioning electronics!

This optic has been hampering my locking attempts all evening. I switched the PRM and SRM satellite boxes, but then I remembered PRM has the Al foil "hats" to attenuate scattered light. of course the Al foil is conducting and can short the OSEM leads. I put some kapton pieces in between OSEM and foil to try and mitigate this issue but I suppose over time it could have slipped, and is making some intermittent contact, shorting PD anode and cathode (that would explain the PD reporting -10 V instead of some physical value).

If this is the problem we would need a vent to address it. In the daytime I'll measure L and R of the coils to see if the actuator imbalance I reported is also due to the same problem...

Attachment 1: PRMtrip.png
Attachment 2: PRMtrip_zoom.png
  14531   Wed Apr 10 22:59:22 2019 gautamUpdateIOOSpooled fiber

Steve had showed me some stock of long fibers a while back - they are from Oz Optics, and are 50m long, and are already spooled - so barring objections, we will try the MZ setup with the spooled fiber and see if there is any improvement in the fringing rate of the MZ. Then we can evaluate what additional stabilization of the fiber length is required. Anjali will upload a photo of the spooled fiber.

  14534   Thu Apr 11 09:05:06 2019 AnjaliUpdateIOOSpooled fiber
  • Attchment #1,2,3 and 4 shows the results with frequency modulation of 32 Hz, 140 Hz , 300 Hz and without frequency modulation. I am trying to understand these results better.
  • A lot of fringing is there even when no modulation is applied. We hope to improve this by spooling the fiber and then encasing it in a box. 
  • As mentioned by Gautam, we have got a 50 m spooled fiber. Attachment #5 shows the photo of the same

Steve had showed me some stock of long fibers a while back - they are from Oz Optics, and are 50m long, and are already spooled - so barring objections, we will try the MZ setup with the spooled fiber and see if there is any improvement in the fringing rate of the MZ. Then we can evaluate what additional stabilization of the fiber length is required. Anjali will upload a photo of the spooled fiber.

Attachment 1: Frequecy_modulation_32_Hz.pdf
Attachment 2: Frequecy_modulation_140_Hz.pdf
Attachment 3: Frequecy_modulation_300_Hz.pdf
Attachment 4: Without_modulation.pdf
Attachment 5: New_fiber_spool.JPG
  2864   Sun May 2 15:28:25 2010 KojiUpdateIOOSpot Positions of MC1/MC3


The spot positions on the MC mirrors were measured with coil balance gains.
The estimated spot positions from the center of the MC1 and MC3 are as followings:

MC1H = +0.29 mm
MC1V = -0.43 mm
MC3H = +1.16 mm
MC3V = -0.68 mm

The cordinates are described in the figure


As far as the cavity mirrors are aligned to the incident beam, spots on the MC1 and MC3 tell us the geometry of the incident beam.
Note that spot position on the MC2 is determined by the alignment of the MC1 and MC3, so it does not a big issue now.
The calibration between the coil balance and the spot position are described in the previous entry.

  1. Lock the MC. Align it with MC2/MC3
  2. Run A2L scripts. script/A2L/A2L_MC1 and so on.
    • The scripts run only on the solaris machines. They require "expect" in stalled some specific place which does not exist on the linux machines.
    • Excitation amplitude, excitation freq, readback channels were modified


Beam powers
MC Trans: 0.18
MC Refl: 0.12-0.13

Alignment biases
MC1P 3.2531
MC1Y -1.0827
MC2P 3.4534
MC2Y -1.1747
MC3P -0.9054
MC3Y -3.1393

Coil balances
MC1H 1.02682
MC1V 0.959605
MC3H 0.936519
MC3V 1.10755

(subtract 1, then multiply 10.8mm => spot position.)

Attachment 1: spot_position.png
  7413   Wed Sep 19 19:38:37 2012 JenneUpdateGeneralSpot centered on BS, ETMY, ETMX

[Unni, Manasa, Jenne]

It turned out that the beam was a teeny bit high in the corner, so we touched PZT1 and PZT2 knobs to translate the beam down a bit.

Now the beam is centered on the BS (using the 45 degree non-iris target), centered on ETMY (using Steve's latest target, which worked perfectly), and then BS was aligned a tiny bit (really, it didn't need much) to get the beam centered on ETMX.

After dinner I'll align ITMX and ITMY such that their beams retroreflect and I get MICH fringes.  I'll also align SRM and PRM to retroreflect.  Check no clipping on AS path, get REFL path out, center IPPOS and IPANG, check POX, POY and POP.  Then, I think we might be almost done.

  15967   Thu Mar 25 17:39:28 2021 gautamUpdateComputer Scripts / ProgramsSpot position measurement scripts "modernized"

I want to measure the spot positions on the IMC mirrors. We know that they can't be too far off centerBasically I did the bare minimum to get these scripts in /opt/rtcds/caltech/c1/scripts/ASS/MC/ running on rossa (python3 mainly). I confirmed that I get some kind of spot measurement from this, but not sure of the data quality / calibration to convert the demodulated response into mm of decentering on the MC mirrors. Perhaps it's something the MC suspension team can look into - seems implausible to me that we are off by 5mm in PIT and YAW on MC2? The spot positions I get are (in mm from the center):

MC1 P          MC2P           MC3P           MC1Y          MC2Y           MC3Y

0.640515    -5.149050    0.476649    -0.279035    5.715120    -2.901459

A future iteration of the script should also truncate the number of significant figures per a reasonable statistical error estimation.

Attachment 1: MCdecenter202103251735_mcmirror0.pdf
Attachment 2: MCdecenter202103251735_mcdecenter0.pdf
  14225   Tue Oct 2 23:57:16 2018 gautamUpdatePonderSqueezeSqueezing scenarios

[kevin, gautam]

We have been working on double checking the noise budget calculations. We wanted to evaluate the amount of squeezing for a few different scenarios that vary in cost and time. Here are the findings:

Squeezing scenarios

Sqz [dBvac] fmin [Hz] PPRM [W] PBS [W] TPRM [%] TSRM [%]
-0.41 215 0.8 40 5.637 9.903
-0.58 230 1.7 80 5.637 9.903
-1.05 250 1.7 150 1 17
-2.26 340 10 900 1 17

All calculations done with

  • 4.5kohm series resistance on ETMs, 15kohms on ITMs, 25kohm on slow path on all four TMs.
  • Detuning of SRC = -0.01 deg.
  • Homodyne angle = 89.5 deg.
  • Homodyne QE = 0.9. 
  • Arm losses is 20ppm RT.
  • LO beam assumed to be extracted from PR2 transmission, and is ~20ppm of circulating power in PRC.


  1. Existing setup, new RC folding mirrors for PRG of ~45.
  2. Existing setup, send Innolight (Edwin) for repair (= diode replacement?) and hope we get 1.7 W on back of PRM.
  3. Repair Innolight, new PRM and SRM, former for higher PRG, latter for higher DARM pole.
  4. Same as #3, but with 10 W input power on back of PRM (i.e. assuming we get a fiber amp).


  • The errors on the small dB numbers is large - 1% change in model parameters (e.g. arm losses, PRG, coil driver noise etc) can mean no observable squeezing. 
  • Actually, this entire discussion is moot unless we can get the RIN of the light incident on the PRM lower than the current level (estimated from MC2 transmission, filtered by CARM pole and ARM zero) by a factor of 60dB.
    • This is because even if we have 1mW contrast defect light leaking through the OMC, the beating of this field (in the amplitude quadrature) with the 20mW LO RIN (also almost entirely in the amplitude quad) yields significant noise contribution at 100 Hz (see Attachment #1).
    • Actually, we could have much more contrast defect leakage, as we have not accounted for asymmetries like arm loss imbalance.
    • So we need an ISS that has 60dB of gain at 100 Hz. 
    • The requirement on LO RIN is consistent with Eq 12 of this paper.
  • There is probably room to optimize SRC detuning and homodyne angle for each of these scenarios - for now, we just took the optimized combo for scenario #1 for evaluating all four scenarios.
  • OMC displacement noise seems to only be at the level of 1e-22 m/rtHz, assuming that the detuning for s-pol and p-pol is ~30 kHz if we were to lock at the middle of the two resonances
    • This assumes 0.02 deg difference in amplitude reflectivity b/w polarizations per optic, other parameters taken from aLIGO OMC design numbers.
    • We took OMC displacement noise from here.

Main unbudgeted noises:

  • Scattered light.
  • Angular control noise reinjection (not sure about the RP angular dynamics for the higher power yet).
  • Shot noise due to vacuum leaking from sym port (= DC contrast defect), but we expect this to not be significant at the level of the other noises in Atm #1.
  • Osc amp / phase.
  • AUX DoF cross coupling into DARM readout.
  • Laser frequency noise (although we should be immune to this because of our homodyne angle choice).

Threat matrix has been updated.

Attachment 1: PonderSqueeze_NB_LORIN.pdf
  13841   Mon May 14 18:58:32 2018 KevinUpdatePonderSqueezeSqueezing with no SRM

Note that for Signal Recycling, which is what Kevin tells us we need to do, there is a DARM pole at ~150 Hz.

To be quantitative, since we are looking at smaller squeezing levels and considering the possibility of using 5 W input power, it is possible to see a small amount of squeezing below vacuum with no SRM.

Attachment 1 shows the amount of squeezing below vacuum obtainable as a function of homodyne angle with no SRM and 5 W incident on the back of PRM. The optimum homodyne angle at 210 Hz is 89.2 deg which gives -0.38 dBvac of squeezing. Figure 2 is the displacement noise at this optimal homodyne angle and attachment 3 is the same noise budget shown as the ratio of the various noise sources to the unsqueezed vacuum.

The other parameters used for these calculations are:

  • 4.5 kΩ series resistance for the ETM coils; 15 kΩ for the ITM coils
  • 100 ppm transmissivity on the folding mirrors giving a PRC gain of 40
  • PD quantum efficiency of 0.88

So maybe it's worth considering going for less squeezing with no SRM if that makes it technically more feasible.

Attachment 1: homodyne_heatmap.pdf
Attachment 2: displacement_noise.pdf
Attachment 3: noise_budget.pdf
  9116   Fri Sep 6 23:01:08 2013 KojiUpdateLSCStable DRMI lock was recovered from the impact on the RF system modification


Stable DRMI lock was recovered. The AS110 phase was adjusted. PRCL and MICH were locked with REFL33I and REFL165Q.
Still SRCL is controlled with REFL55Q.

PRMI sensing matrix

Thursday night, Jenne and I found DRMI can not be locked at all. Also the PRMI lock with REFL55 showed change in the optical gain.

In order to investigate what is happening, the PRMI sensing matrix was measured and compared with the previous one taken in the night of 8/26.


It shows that some signals are unchanged, some are partial change, and some are completely different.
My intuition saids something is wierd with the sensing matrix measurement.
Right now I can't trust these plots.

- Jenne and I have adjusted REFL55 demod angle so that REFL55Q has no PRCL. And I have confirmed with DTT that this is still true.
  However, the radar chart shows that REFL55Q is almost correct phase for PRCL instead of MICH.

- REFL11 shows the same amplitude and angle as before. But POX11/POY11 shows different MICH angle.

- I have rotated REFL55 demod phase and remearsured the sensing matrix. Evrything else looked same but REFL55.
  Since REFL55I&Q were not used for the control for this measurement, what we expect is to see no change of the sensing matrix and
  only see the angle of "I"&"Q" rotates. But the result was different from the expectation.

DRMI locking

Since no real info was obtained from the sensing matrix, I had to make a fight without any weapon.
After sevral hours of work, stable DRMI lock was recovered.

Basically I gave larger gains to REFL55 signals: REFL55I for SRCL was 100 instead of 1, and REFL55Q for MICH was 2 instead of 0.1.
This was enough to get a second locking. Using this short sections, I have optimized the FM triggers and the gain boosts (i.e. FM1)
as well as the mirror alignment.

Then, PRM ASS was left running during the lock. This actually stabilized the lock a lot.
This made thee lock indefinite.

The demod phase of AS110I was adjusted so that AS110Q fluctuates around zero.
In this condition, the nominal AS110I was 7300 with the whitening gain of 30dB.

Note that the AS110I&Q were also measured with PRMI. With the same phase and gains, AS110I and Q were -35,  -170, respectively.
Do we expect to have this phase shift? If I believe these numbers, the aplitude of 110MHz at the optimal phase is 173,
The ratio of AS110 between DRMI and PRMI is 7300/173 = 42. This corresponds to the ratio of the 110MHz sideband power at the AS port.
According to the wiki, this ratio shoud be ~160.

AS110I was in fact glitchy as you can see in the StripTool chart. I wonder this signal is suitable for the normalization or not.

=== SENSING ===

REFL11 -67deg / whitening gain 0dB
REFL33 -20deg / whitening gain 30dB
REFL55 45deg / whitening gain 6dB
REFL165 96deg / whitening gain 45dB

POP110 69deg whitening on / 15dB
POP22 102.2deg whitening on / 21dB
AS110 145deg whitening off / 30dB (seems to be related to AS11 whitening setting)


REFL11I x -0.125 => PRCL (REFL33I x 2.5 was also OK)
REFL55I x 100 => SRCL
REFL55Q x 2 => MICH (REFL165Q x 0.1 was also OK)


No normalization

Trigger settings


MICH x -0.8 FM4/5 ON, no limitter
FM Trigger: delay 2sec, FM1 (modified from 6dB to 20dB), FM2, FM3

PRCL x +0.035 FM4/5 ON, no limitter
FM Trigger: delay 0.5sec, FM2/3/6

SRCL x -0.1 FM4/5 ON, no limitter
FM Trigger: delay 5sec, FM1, FM2


MICH => PRM -0.267 / BS +0.5

PRCL => PRM +1.0

SRCL => SRM +1.0


delay 1sec: FM1/FM2/FM3/FM6

=== ASC/ASS ===

PITCH&YAW: FM1/9 (ALWAYS ON) + FM2/3 (turned on by the up-script)

PRM ASS left turned on for slow tracking

Attachment 1: DRMI.png
  2274   Mon Nov 16 15:18:10 2009 haixingUpdateSUSStable magnetic levitation without eddy-current damping

By including a differentiator from 10 Hz to 50 Hz, we increase the phase margin and the resulting

magnetic levitation system is stable even without the help of eddy-current damping.

The new block diagram for the system is the following:


Here the eddy-current damping component is removed and we add an additional differential

circuit with an operational amplifier OP27G.

In addition, we place the Hall sensor below the magnet to minimize the coupling between

the coil and the Hall sensor.

The resulting levitation system is shown by the figure below:


  560   Tue Jun 24 22:43:23 2008 ranaSummarySEIStack TF
Attachment 1: Screenshot.png
  3252   Tue Jul 20 17:38:16 2010 GopalConfigurationOptic StacksStack Type Clarifications

Some clarification is warranted regarding the different shapes of stacks. Corrections are appreciated:

1) The single-leg stack that I just completed should function as a working model for the IO, OO, and MC1/3. Rana commented, however, that the current dimensions are slightly off for MC1/3 (which makes sense since I could only find drawings for the IOC). If anyone knows the whereabouts of similar drawings for MC1/3, I'd much appreciate it.

2) A triple-leg stack can model the BS, ITMX, and ITMY chambers. I don't have exact dimensions for these, but I can make decent approximations from to-scale stack drawings. I'll probably work on a model for this style next, since at least I have some information regarding this version.

3) The MC2 chamber has its own stack model, about which I haven't found any drawings in the binders. I can't start on MC2C at all until I find such drawings.

  13821   Mon May 7 15:27:28 2018 gautamUpdateSUSStack measurement expectation


We tried to estimate what the load cell measurement should yield. Here is the weight breakdown (fudge factor for Al table is to try and account for tapped holes):


Diameter [m]

Height [m]

Density [kg/m^3]

Mass [kg]

Number or fudge factor

Dim in inches

Table 1.22 0.08 2700.00 240.07 0.85 Dia=48", thickness=3"
Stack leg 0.36 0.13 8000.00 100.85 9 Dia=14", thickness=5"
Base plate 1.37 0.05 8000.00 600.18 1 Dia=60",thickness=2"
Base rods 0.10 1.83 8000.00 118.55 2 Dia=4", length=6ft
Stuff on table       100.00    
Blue beams       100.00    
Total [kg]       2149.01    
Total [lbs]       4835.28  


  • Steve pointed out that there is some material removed from the stack legs for stability (hollows into which the viton springs fit). These countersinks have dimensions of diameter=2", height=1.75". So if we assume each leg has 10% less mass, the total weight becomes ~4600lbs.
  • I think we will need to use one more load cell (i.e. total 4) for this measurement (we have more load cells, just need to setup one more controller).
  • Steve is looking into acquiring some low profile jacks to deal with the fact that we only have limited travel range on the overall stack height because of the bellows.
  • A useful document, from which we pulled some numbers (which also look reasonable using estimated dimensions and density calculations): P952005
Attachment 1: 40m_TMstack.JPG
  13815   Fri May 4 18:59:39 2018 gautamUpdateSUSStack measurement ongoing


The stack weight measurement is going on at EX. ETMX watchdog is shutdown. Area is off limits over the weekend until the test is finished.

Not related to this work, but the dog clamps used on the EX table have to be re-positioned such that the clamping force is better distributed. The 2" beam splitter mount used to pick off a portion of the EX NPRO beam to the fiber has to be rotated. Also, there was a M6.9 EQ in Hawaii while we were doing this work it seems..

  13846   Tue May 15 21:56:57 2018 gautamUpdateGeneralStack measurement setup decommissioned


Since we think we already know the stack mass to ~25% (i.e. 5000 +/- 1000 lbs), we decided to restore the ETMX stack. Procedure followed was:

  • Take photos of all dial indicators and spirit level. We were at ~-22 mils on all 3 indicators, with 0 being the level before we touched the stack two Fridays ago, i.e. May4.
  • Raised all four jacks installed underneat blue crossbeams in 5mil increments until we were at +25mils on all of them. At this point, there was negligible load on the load cells on top of the STACIS legs, and we could easily slide the load cells out.
  • Rotated all jack screws clockwise (i.e. moving jack screws downwards) by 270 degrees. The southeast jackscrew was rotated by an additional 360 degrees. This was to undo all the jack-screw raising we did on Friday, May 4.
  • Re-installed jacks which were present originally on the STACIS legs, taking care to center the jack as best as we could by eye on the STACIS leg, per Dennis Coyne's suggestion not to impose shear strain on STACIS legs. There were supposedly never carrying any load, and are according to Steve, are there more for safety purposes.
  • Lowered all four jacks in 5 mil steps until dial indicators read ~0. The Northwest jack resting on the STACIS leg was somehow ~0.5cm (!!) below the blue crossbeam even though the corresponding dial gauge read 0, so we raised the jack until it was barely grazing the bottom of the blue crossbeam (confirmed by looking at the point where the dial indicator started going up again). Not sure why this should have been, best hypothesis we have is that someone (one of us) changed the level of this jack while it was removed from the setup.
  • Checked that jack screws could not be turned by hand. At this point, all the load has to be resting on the jack screws, as the jacks we had installed to raise the blue crossbeams could be slid out from underneath the blue beams and hence were carrying no load.
  • Took photographs of all dial indicators, spirit level. We were satisfied that we had recovered the "nominal" stack alignment as best as we could judge with the available indicators.
  • ETMX Oplev spot had returned to the PD. ETMX watchdog was re-engaged, optic was re-aligned using SLOW bias sliders to center Oplev spot.
  • EX NPRO was turned back on, and the green beam was readily locked to a cavity TEM00 mode yes.

I will upload the photos to the PICASA page and post the link here later.


In this case, we only need a mass estimate of the end chamber contents with an accuracy of ~25%. If we think we have that already, we don't need to keep doing the jacks-strain gauge adventure.


  13851   Thu May 17 09:14:38 2018 SteveUpdateGeneralStack measurement setup decommissioned

The final set-up of stack measurment with 3 load cells and 4 leveling wedge mounts as Atm 1

Sensor voltages BEFORE and AFTER this attempt.

Attachment 1: Load_Cell_Measurement_Set_Up.jpg
Attachment 2: ETMX_stack_up_down.png
  4158   Fri Jan 14 17:58:50 2011 OsamuConfigurationGeneralStandalone RT setup

 I'll be gone to Hanford site next week and come back to Caltech on 24th's week.

I setup a standalone RT system at the desk around circuit stock in the 40m.

Please leave this setup until I come back. I'll keep working when I come back.


  818   Fri Aug 8 17:54:52 2008 JenneUpdateSUSStandoffs and Guide Rods
After closer inspection of other small optics, it is clear that the guide rods should be above the standoffs on our small optics. Yoichi took a picture of the SRM that shows this clearly. This makes sense since the tension of the wire will make the standoff 'want' to go up during pre-epoxy adjustment, so the guide rod prevents the standoff from popping up and out.

Looking at the side of the PRM without the groove, it looks like there is lots of space between the guide rod and the alignment etch in the glass, so we can just place a standoff directly under the guide rod that is present.

A spare standoff is being shipped tomorrow morning, so we should have it by Monday for installation on the PRM.
Attachment 1: SRM_Standoff_and_guide.JPG
  16419   Thu Oct 21 11:38:43 2021 JordanUpdateSUSStandoffs for Side Magnet on 3" Adapter Ring SOS Assembly

I had 8 standoffs made at the Caltech chemistry machine shop to be used as spacers for the side magnets on the 3" Ring assembly. This is to create enough clearance between the magnet and the cap screws directly above on the wire clamp.

These are 0.075" diameter by .10" length. Putting them through clean and bake now.

Attachment 1: Magnet_Standoffs.jpg
  16095   Thu Apr 29 11:51:27 2021 AnchalSummaryLSCStart of measuring IMC WFS noise contribution in ar cavity length noise

Tried locking the arms

  • Ran IFO > Configure > ! (YARM) > Restore YARM. Nothing happened.
  • Trying to align through tip-tilt:
    • Previous values: TT1: PIT: -1.7845, YAW: -0.2775; TT2: PIT: -1.3376, YAW: -0.0436
    • Couldn't get flashing of light in the arms at all.
    • Restored values to previous values.
  • Noticed that ITMY OPLEV YAWW Error has gone very high overnight while other oplevs remained the same.
  • Trying to change the C1:SUS-ITMY_YAW_OFFSET to bring this oplev yaw error back to near zero.
  • Changed C1:SUS-ITMY_YAW_OFFSET from -34 to 50. OPLEV_YEROR reduced to around -23 from -70.
  • Same thing with BS PIT. OPLEV_PERROR is highlighted in red at -52.
  • Changing C1:SUS-BS_PIT_OFFSET from 55 to 30. This brought OPLEV_PERROR to -15 from -52.
  • Trying to align PRM by changing C1:SUS-PRM_PIT_OFFSET and C1:SUS-PRM_YAW_OFFSET.
  • Inital values: C1:SUS-PRM_PIT_OFFSET: -20 , C1:SUS-PRM_YAW_OFFSET: 39.

Did the WFS step response test on IMC in between while waiting for help. See 16094.

Back to trying arm locking

  • Tried IFO > Configure > ! (XARM) > Restore YARM. Nothing happened.
  • Tried IFO > Configure > ! (YARM) > Restore YARM. Nothing happened again.
  • Tried Movie Capture of AS screen from VIDEO > Movie Capture > AS. But the script failed due to module not present error.

PMC got unlocked

  • Infront of me, PMC got unlocked. I did not go to PMC locking the screen at all since morning.
  • I opened the C1PSL_PMC screen. The PSL Autolocker blinker is not blinking but the switch is set to Enable. 
  • I do not see any automatic effort happening for regaining lock at PMC.
  • I'll try it manually. I was able to get the PMC locked again. C1:PSL-PMC_PMCTRANSPD is showing 0.761 V and C1:PSL-PMC_RFPDDC is showing 0.053 V.
  • Now IMC auto locker seems to be trying to get the lock acquired.
  • It acquired a lock a few times but struggled to keep it on. I reduced C1:IOO-WFS_GAIN to 0 and then the lock could stay on. Seemed like the accumulated offsets were not good.
  • So I cleared the history on WFS1, TRANS and WFS2 filter banks and then ramped the WFS overall gain (C1:IOO-WFS_GAIN) back to 1 and now IMC seems to stay locked in a stable configuration.
  • However, I still don't know what caused the PMC to get unlocked in the first place. Did my repeated arm locking attempts did something to the main laser frequency?

Back to trying arm locking

  • Tried IFO > Configure > ! (YARM) > Restore YARM again. Nothing happened again.
  16101   Thu Apr 29 17:51:19 2021 AnchalSummaryLSCStart of measuring IMC WFS noise contribution in arm cavity length noise

t Both arms were locked simply by using IFO > Configure > ! (YARM) > Restore YARM. I had to use ASS to improve the TRX/TRY to ~0.95.

I measured C1:LSC-XARM_IN1_DQ and C1:LSC-YARM_IN1_DQ while injecting band limited noise in C1:IOO-WFS1_PIT_EXC using uniform noise with amplitude 1000 along with filter defined by string: cheby1("BandPass",4,1,80,100). I calibrated the control arms signals by 2.44 nm/cts calibration factor directly picked up from 13984.

For the duration of this test, all LIMIT switches in the WFS loops were switched OFF.

I do not see any affect on the arm control signal power spectrums with or without the noise injection. Attachement 1 shows the PSD along with PSD of the injection site IN2 signal. I must be doing something wrong, so would like feedback before I go further.

Attachment 1: WFS1_PIT_exc_80-100Hz_Arms_ASD.pdf
  16104   Fri Apr 30 00:18:40 2021 gautamSummaryLSCStart of measuring IMC WFS noise contribution in arm cavity length noise

This is the actuator calibration. For the error point calibration, you have to look at the filter in the calibration model. I think it's something like 8e-13m/ct for POX and similar for POY.


I calibrated the control arms signals by 2.44 nm/cts calibration factor directly picked up from 13984.

  2836   Fri Apr 23 21:02:14 2010 rana, joeUpdateLSCStarted dev of LSC FE

Joe and I started working on the new LSC FE control today. We made a diagram of the system in Simulink, but were unable to compile it.

Joe checked out the latest CDS software out of their new SVN and put it somewhere (perhaps his home directory).

We then copied the directory with the .mdl files and the CDS parts library into our real Simulink Model Directory:


Use this and not someplace in Alex or Rob's home directory !

Joe will put in more details on Monday once he figures out how to build the new stuff. Basically, we decided not to support multiple versions of the CDS real time code here. We'll just stay synced to the latest stable ~versions.

I exported the current version of the LSC FE into our public_html/FE/ area on nodus where we will put all of the self-documenting FE diagrams:


To make a web setup like this, you just use the "Export to Web" feature from the top-level Simulink diagram (e.g. lsc.mdl). Choose the following options:


Note: in order to get the web page to work, I had to change the apache httpd.conf file to allow AddType file overriding. Here's the term cap of the diff:

nodus:etc>diff httpd.conf httpd.conf~
< ServerAdmin jenne@caltech.edu
> ServerAdmin aso@caltech.edu
<     AllowOverride FileInfo

  2839   Sun Apr 25 02:56:07 2010 ranaUpdateLSCStarted dev of LSC FE

LSC Plant Model. That is all.

  2840   Sun Apr 25 10:40:21 2010 KojiUpdateLSCStarted dev of LSC FE

Once you made a CDS model, please update the following wiki page. This will eventually help you.



LSC Plant Model. That is all.


  2841   Mon Apr 26 10:21:45 2010 josephbUpdateLSCStarted dev of LSC FE


Joe and I started working on the new LSC FE control today. We made a diagram of the system in Simulink, but were unable to compile it.

Joe checked out the latest CDS software out of their new SVN and put it somewhere (perhaps his home directory).

The SVN checkout was done on megatron.  It is located under /home/controls/cds/advLigoRTS

So, to compile (or at least try to) you need to copy the .mdl file from /cvs/cds/caltech/cds/advLigo/src/epics/simLink to /home/controls/cds/advLigoRTS/src/epics/simLink on megatron, then run make SYS in the advLigoRTS directory on megatron.

The old checkout from CVS exists on megatron under /home/controls/cds/advLigo.

  9956   Thu May 15 02:32:01 2014 JenneUpdateLSCStarted engaging the AO path, not getting all the way yet

I tried many times this evening to engage the AO path, with limited success.

Q's new scripts worked really well, and so I have some transfer functions!  To take these measurements, in ...../scripts/general/netgpib, I am running ./TFSR785 TFSR785_CARMloop_May2014.yml, where the file name is the name of my parameter file.  The data, and the saved pdfs, are in /users/jenne/PRFPMI/CARM_loop_measurements/2014May14/ .  For these measurements, the SR785 is hooked up to the "A" set of excitation and test points on the CM board.

All of these traces were taken while the IFO was PRFPMI, with PRCL and MICH on REFL33, DARM on ALS diff, and CARM on InvSqrtTrans.  carm_cm_up.sh is up to date, through the echo "REFL_I should now be zero" (~line 111 in the script).  All you need to do is set the beatnotes, and then run the script.  Follow instructions in the prompt (such as "press enter to confirm PRMI is locked"). 


Here are my notes for the various times:

23:01:44 - MC IN2 = 0dB, CARM gain = 5.0

23:13:45 - MC IN2 = 10dB, CARM gain = 5

23:26:10 - MC IN2 = 6dB, CARM gain = 10 (after Q suggested increasing overall gain, rather than just AO path)

00:13:07 - MC IN2 = 6dB?, CARM = 6ish?  don't remember exactly.

00:45:00ish, Realigned IFO using IR with arms.

01:03:17 - MC In2 = 0dB, CARM gain = 5

01:07:42 - MC IN2 = 8dB, CARM gain = 6.295  (AO went up to 6dB, then +1dB steps to both simultaneously using  ezcastep C1:LSC-CARM_GAIN 1dB C1:IOO-MC_AO_GAIN 1)

01:08:57 - MC IN2 = 10dB, CARM gain = 7.92447

01:10:08 - MC IN2 = 12dB, CARM gain = 9.97631

lockloss when trying to add 1 more dB to both.

01:41:36 - MC IN2 = 12dB, CARM gain = 9.97

lockloss when just MC IN2 up by 1dB, left CARM gain alone.

Other notes:

The 60Hz noise in TRY is back.  Since I thought I remembered someone suggesting that it was leakage light from the exit sign, Koji went in and wrapped the end table in foil, however the lines are still present.

  9957   Thu May 15 02:52:51 2014 JenneUpdateLSCStarted engaging the AO path, not getting all the way yet


 In addition to a transparent legend, we need the corresponding CM crossover measurements from DTT to compare with the Q-Mist-Loop model results. The xover tells us when the AO gain is high enough so that they can be ramped up together.

Also, I wonder how much power fluctuation we get from the large ALS DIFF noise and if that demands we get the TR signals normalized by POPDC.

  14077   Tue Jul 17 12:55:45 2018 KojiSummaryGeneralStarted pumping

[Steve, Koji, Gautam]

We started pumping down at ~12:15PM.

Vent finalization ~ YEND

  • The table leveling was way off. This was adjusted by the balancing weight. (Attachment 1~3)
  • The alignment of ETMY was not too much off. Just aligned it with the oplev spot on MEDM and this already made the green flashing.
  • The Green TEM00 was maximized with ITMY and ETMY. This made the PSL IR flashing.
  • The heater wires were checked. I found that one of the heater wires was touching the optical table via the cable shield. This is because the upper pins were shifted to the left side (Attachment 4&5). The pins were shifted and now all 4 cables are isolated form the table. I also checked the mutual resistance between the 4 terminals. They were measured to be isolated except two pairs that showed 4.4 Ohms and 4.0 Ohms (Attachment 6)
  • The tools were removed from the chamber. The Y arm was still flashing.
  • We closed the ETMY door.

Vent finalization ~ Vertex

  • Found the ITMX stuck. Gautam came in and showed us his black magic to release the optic...
  • This allowed us to align X arm. The green flash was found and the TEM00 flash was seen. This allowed us to see the PSL IR flash at the X end.
  • PRM Refl was aligned. SRM was aligned with the oplev.
  • The beam on the AS port was checked. The AS beam came out from the window.
  • Closed the OMC chamber.


  • Started pumping with RP1 and RP3. (~12:15PM)

Attachment 1: IMG_5408.JPG
Attachment 2: IMG_5400.JPG
Attachment 3: IMG_5401.JPG
Attachment 4: IMG_5402.JPG
Attachment 5: IMG_5403.JPG
Attachment 6: IMG_5404.JPG
  2730   Mon Mar 29 18:41:34 2010 KojiConfigurationSUSStarted to build TTs

Steve and Koji

WE started to build 5 TTs. 4 of them are used in the recycling cavities. One is the spare.

We built the structure and are building the cantilever springs.

Attachment 1: IMG_2348.jpg
ELOG V3.1.3-