40m QIL Cryo_Lab CTN SUS_Lab CAML OMC_Lab CRIME_Lab FEA ENG_Labs OptContFac Mariner WBEEShop
  40m Log, Page 214 of 349  Not logged in ELOG logo
ID Date Authorup Type Category Subject
  12833   Wed Feb 15 23:54:13 2017 gautamUpdateIMCIMC saga continues...

Following the discussion at the meeting today, I wanted to finish up the WFS tuning and then hand over the IFO to Johannes for his loss stuff. So I did the following:

  1. First I set the dark offsets on the WFS (with PSL shutter closed). Then I hand aligned the MC to maximize transmission, centered the beam on the WFS, and set the RF offsets with the MC unlocked.
  2. Given that the demod phase for the IMC PDH demodulation board changed by |45 degrees|, I tried changing the digital demod phases in each of the WFS quadrant signals by +/- 45 degrees. Turns out +45 degrees put all the error signal into the I Phase, which is what we use for the WFS loops.
  3. Then I attempted to check the WFS loops. I estimated that we have ~25 times the modulation depth now, so I reduced the WFS1/2 P/Y gains by this factor (but left the MC2 TRANS P/Y gains as is). The loop gain seemed overall too low, so I upped the gain till I saw instability in the loop (error signals ringing up). Then I set the loop gains to 1/3 of this value - it was 0.01 before, and I found the loop behaved well (no oscillations, MC TRANS stabilized) at a gain of 0.002.

At this point, I figured I would leave the WFS in this state and observe its behaviour overnight. But abruptly, the IMC behaviour changed dramatically. I saw first that the IMC had trouble re-acquiring lock. Moreover, the PC Drive seemed saturated at 10.0V, even when there was no error signal to the MC Servo board. Looking at the MEDM screen, I noticed that the "C1-IOO_MC_SUM_MON" channel had picked up a large (~3V) DC offset, even with In1 and In2 disabled. Moreover, this phenomenon seemed completely correlated with opening/closing the PSL shutter. Johannes and I did some debugging to make sure that this wasn't a sticky button/slider issue, by disconnecting all the cables from the front panel of the servo board - but the behaviour persisted, there seemed to be some integration of the above-mentioned channel as soon as I opened the PSL shutter.

  

 

Next, I blocked first the MC REFL PD, and then each of the WFS - turns out, if the light to WFS2 was blocked and the PSL shutter opened, there was no integrating behaviour. But still, locking the MC was impossible. So I suspected that something was wrong with the LO inputs to the WFS Demod Boards. Sure enough, when I disconnected and terminated those outputs of the RF distribution box, I was able to re-lock the MC fine.

I can't explain this bizzare behaviour - why should an internal monitor channel of the MC Servo board integrate anything when the only input to it is the backplane connector (all front panel inputs physically disconnected, In1 and In2 MEDM switches off)? Also, I am not sure how my work on the WFS could have affected any hardware - I did not mess around at the 1X1 rack in the evening, and the light has been incident on the WFS heads for the past few days. The change in modulation depth shouldn't have resulted in the RF power in this chain crossing any sort of damage threshold since the measured power before the changes was at the level of -70dBm, and so should be at most -40dBm now (at the WFS demod board input). The only thing different today was that the digital inputs of the WFS servos were turned on...

So for tonight I am leaving the two outputs of the RF distribution box that serve as the LO for the WFS demod boards terminated, and have also blocked the light to both WFS with beam blocks. The IMC seems to be holding lock steady, PC drive levels look normal...


Unrelated to this work, but I have committed to the svn the updated versions of the mcup and mcdown scripts, to reflect the new gains for the autolocker...

  12834   Thu Feb 16 13:29:38 2017 gautamSummaryGeneralAlternative Calibration Scheme

Summary:

Craig and I have been trying to put together a Simulink diagram of the proposed alternative calibration scheme. Each time I talk the idea over with someone, I convince myself it makes sense, but then I try and explain it to someone else and get more confused. Probably I am not even thinking about this in the right way. So I am putting what I have here for comments/suggestions.

What's the general idea?

Suppose the PSL is locked to the MC cavity, and the AUX laser is locked to the arm cavity (with sufficiently high BW). Then by driving a line in the arm cavity length, and beating the PSL and AUX lasers, we can determine how much we are modulating the arm cavity length in metres by reading out the beat frequency between the two lasers, provided the arm cavity length is precisely known.

So we need:

  1. Both lasers to be stabilized to be able to sense the line we are driving
  2. A high bandwidth PDH loop for locking the AUX laser to the arm cavity such that the AUX laser frequency is able to track the line we are driving
  3. An accurate and precise way to read out the beat frequency (the proposal here is to use an FPGA based readout)
  4. An accurate measurement of the arm length (I think we know the arm lengths to <0.1% so this shouldn't dominate any systematic error).

To be able to sense a 1kHz line being driven at 1e-16 m amplitude, I estimate we need a beat note stability of ~1mHz/rtHz at 1kHz.

Requirements and what we have currently:

  • The PSL is locked to the mode-cleaner, and the arm cavity is locked to the PSL. The former PDH loop is high BW, and so we expect the stabilized PSL to have frequency noise of ~1mHz/rtHz at about 1kHz (to be measured and confirmed)
  • The AUX laser is locked to the arm cavity with a medium-BW (~10kHz UGF) PDH servo. From past out-of-loop ALS beat measurements, I estimate the expected frequency noise of the AUX laser at 1kHz to be ~1Hz/rtHz with the current PDH setup
  • Rana suggested we "borrow" the stability of the PSL by locking the AUX laser and PSL in a high bandwidth PLL - if we want this loop to have ~300kHz BW, then we need to use an EOM as an actuator. The attached Simulink diagram (schematic representation only, though I think I have measurements of many of those transfer functions/gains anyways) shows the topology I had in mind. Perhaps I did not understand this correctly, but if we have such a loop with high gain at 1kHz, and the error signal being the beat between PSL and AUX, won't it squish the modulation we are applying @1kHz?
  • Is it feasible to instead add a parallel path to the end PDH loop with an EOM as an actuator (similar to what we do for the IMC locking)? Ideally, what we want is an end PDH loop which squishes the free-running NPRO noise to ~1mHz/rtHz at 1kHz instead of the 1Hz/rtHz we have currently. This loop would then also have negligible tracking error at 1kHz. Then, we could have a low bandwidth PLL offloading onto the temperature of the crystal to keep the beat between the two lasers hovering around the PSL frequency.

Hardware:

On the hardware side of things, we need:

  • Broadband EOM
  • FSS box to drive the EOM (Rana mentioned there is a spare available in the Cryo lab)

Koji and I briefly looked through the fiber inventory we have yesterday. We have some couplers (one mounted) and short (5m) patch fibers. But I think the fiber infrastructure we have in place currently is adequate - we have the AUX light brought to the PSL table, and there is a spare fiber running the other way if we want to bring the PSL IR to the end as well.

I need to also think about where we can stick the EOM in given physical constraints on the EX table and the beam diameter/aperture of EOM...

Attachment 1: AltCal.pdf
AltCal.pdf
  12838   Fri Feb 17 20:10:18 2017 gautamUpdateIMCWFS servos turned back on

[Koji, gautam]

Turns out the "problem" with WFS2 and the apparent offset accumulation on the IMC Servo board is probably a slow machine problem.

Today, Koji and I looked at the situation a little more closely. This anomalous behaviour of the C1:IOO-MC_SUM channel picking up an offset seems correlated with light being incident on WFS2 head. Placing an ND filter in front of WFS 2 slowed down the rate of accumulation (though it was still present). But we also looked at the in-loop error signal on the IMC board (using the "Out 2" BNC on the front panel), and this didn't seem to show any offset accumulation. Anyways, the ability of the Autolocker doesn't seem to be affected by this change, so I am leaving the WFS servo turned on.

The new demod phases (old +45degrees) and gains (old gains *0.2) have been updated in the SDF table. It remains to see that the WFS loops don't drag the alignment over longer timescales. I will post a more detailed analysis here over the weekend...

Also, we thought it would be nice to have DQ channels for the WFS error signals for analysis of the servo (rather than wait for 30 mins to grab live fine resolution spectra of the error signals with the loop On/Off). So I have added 16 DQ channels [recorded at 2048 Hz] to the c1ioo model (for the I and Q demodulated signal from each quadrant for the 8 quadrants). The "DRATE" for the c1ioo model has increased from ~200 to 410. Comparing to the "DRATE" of c1lsc, which is around 3200, we think this isn't significantly stretching the DAQ abilities of the c1ioo model...

 

  12840   Sat Feb 18 21:50:48 2017 gautamUpdateIMCWFS servos turned back on

Here is a comparison of the error signal spectra after increasing the IMC modulation depth, to the contribution with RF inputs / whitening inputs terminated (which I borrowed from Koji's characterization of the same in Dec 2016, these shouldn't have changed).

Some general observations:

  1. This data was taken with the WFS servos disabled, but with the IMC hand-aligned to a good state (MC_TRANS ~15,000). The error signal spectra are from the new DQ channels (but still sampled at 2048Hz, I had not implemented the change to 512Hz).
  2. The error signals seem to have increased by ~25x yes, which is consistent with how much we expect the modulation depth to have increased
  3. The bump around 1 Hz is now cleaerly visible in all 16 channels, as is the bounce peak at 16Hz (relative to Dec 2016). In general, between 0.1Hz and 5Hz, there is now a fair bit of daylight between the error signals and the electronics noise contribution. 

I will update with the in-loop error signal spectra, which should give us some idea of the loop bandwidth.


I will look into lowering the sampling rate, and how much out-of-band power is aliasing into the 0-256 Hz band and update with my findings.

Quote:

Yikes. Please change the all teh WFS DQ channels sample rates from 2048 down to 512 Hz. I doubt we ever need anything about 180 Hz.

There is sometimes an issue with this: if our digital AA filters are not strong enough, the noise about above 256 Hz can alias into the 0-256 Hz band. We ought to check this quantitatively and make some elog statement about our AA filters. This issue is also seen in DTT when requesting a low frequency spectrum: DTT uses FIR filters which are sometimes not sharp enough to prevent this issue.

 

 

Attachment 1: WFS_error_noise.pdf
WFS_error_noise.pdf
  12847   Thu Feb 23 10:59:53 2017 gautamUpdateCOCRC folding mirrors - coating optimization

I've now made a DCC page for the mirror specifications, all revisions should be reflected there.

Over the last couple of days, I've been playing around with Rana's coating optimization code to come up with a coating design that will work for us. The basic idea is a to use MATLAB's particle swarm constrained optimization tool to minimize an error function that is a composite of four penalties:

  1. Thermal noise - we use the proxy function from E0900068-v3 to do this
  2. Deviation from target T @1064nm, p-pol
  3. Deviation from target T @532nm, p and s-pol
  4. HR Surface field

On the AR side, I only considered 2 and 3. The weighting of these four components were set somewhat arbitrarily, but I seem to be able to get reasonable results so I am going with this for now. 

From my first pass at it, the numbers I've been able to get, for 19 layer pairs, are (along with some plots):

HR Side:

  • T = 50ppm, 1064nm p-pol
  • T = 99%, 532nm s and p-pol

       (in this picture, the substrate is to the right of layer 38)

AR Side:

  • R ~50ppm for 532nm, s and p-pol

   (substrate to the right of layer 38)

These numbers are already matching the specs we have on the DCC page currently. I am not sure how much better we can get the specs on the HR side keeping with 19 layer pairs... 

All of this data, plus the code used to generate them, is on the gitlab coatings page...

 

Attachment 1: PR3_R_170222_2006.pdf
PR3_R_170222_2006.pdf
Attachment 2: PR3_123_TOnoise_170222_2203.pdf
PR3_123_TOnoise_170222_2203.pdf
Attachment 3: PR3_123_Layers_170222_2203.pdf
PR3_123_Layers_170222_2203.pdf
Attachment 4: PR3AR_R_170222_2258.pdf
PR3AR_R_170222_2258.pdf
Attachment 5: PR3AR_123_Layers_170222_2258.pdf
PR3AR_123_Layers_170222_2258.pdf
  12859   Wed Mar 1 16:00:41 2017 gautamUpdateComputer Scripts / ProgramsMatlab R2016b installed

Since it would be nice to have the latest version of Matlab, with all its swanky new features (?), available on the control room computers and Optimus, I downloaded Matlab R2016b and activated it with the Caltech Campus license. I installed it into /cvs/cds/caltech/apps/linux64/matlab16b. Specifically, I would like to run the coating optimization code on Optimus, where I can try giving it more stringent convergence criterion to see if it converges to a better spot.

I trust that this way, we don't interfere with any of the rtcds stuff.

If I've done something illegal license-wise or if this is likely to cause havoc, please point me to what is the correct way to do this.

GV 18 Mar 2017: Though I installed this using the campus network license key, this seems to only work on Rossa. If I run it on the other control room machines/Optimus, it throws up a licensing error. I will check with Larry W. as to how to resolve this...

 

  12862   Wed Mar 1 23:56:09 2017 gautamUpdateIMCFront panel for 29.5 MHz amplifier box

The alignment wasn't disturbed for the photo-taking - I just re-checked that the spot is indeed incident on the MC REFL PD. MC REFL appeared dark because I had placed a physical beam block in the path to avoid accidental PSL shutter opening to send a high power beam during the photo-taking. I removed this beam block, but MC wouldn't lock. I double checked the alignment onto the MC REFL PD, and verified that it was ok.

Walking over to the 1X1, I noticed that the +24V Sorensen that should be pushing 2.9A of current when our new 29.5MHz amplifier is running, was displaying 2.4A. This suggests the amplifier is not being powered. I toggled the power switch at the back and noticed no difference in either the MC locking behaviour or the current draw from the Sorensen.

To avoid driving a possibly un-powered RF amplifier, I turned off the Marconi and the 29.5MHz source. I can't debug this anymore tonight so I'm leaving things in this state so that Lydia can check that her box works fine...

Quote:

I turned the RF sources back on and opened the PSL shutter. MC REFL was dark on the camera; people were taking pictures of the PD face today so I assume it just needs to be realigned before the mode cleaner can be locked again. 

 

  12867   Sun Mar 5 12:41:23 2017 gautamUpdateIMCWFS servo-steppin

I've been sitting on some data for a while now which I finally got around to plotting. Here is a quick summary:

Attachment #1: I applied a step input to the offset of each of the six WFS loops and observed the step response. The 1/e time constant for all 4 WFS loops is <10s suggesting a bandwidth a little above 0.1Hz. However, the MC2 P and Y loops have a much longer time contant of ~150s. Moreover, it looks like the DC centering of the spot on the QPD isn't great - the upper two quadrants (as per the MEDM screen) have ~3x the cts of the lower pair.
I did not (yet) try increasing the gain of this loop to see if this could be mitigated. I accidentally saved this as a png, I will put up the pdf plot

Attachment #2: This is a comparison of the WFS error signals with the loops engaged (solid lines) vs disabled (dashed lines). Though these measurements were taken at slightly different times, they are consistent with the WFS loop bandwidths being ~0.1Hz.

Attachment #3: Comparison of the spectra of the testpoint channels and their DQ counterparts at the same time which are sampled at 512Hz. It does not look like there is any dramatic aliasing going on, although it is hard to tell what exactly is the order of the digital AA filter implemented by the RCG. Further investigation remains to be done... For reference, here are some notes: T1600059, T1400719

GV 7 March 2017 6pm: It looks like we use RCG v2.9.6, so it should be the latter document that is applicable. I've been going through some directories to try and find the actual C-code where the filter coeffs are defined, but have been unsuccessful so far...

Quote:

I will update with the in-loop error signal spectra, which should give us some idea of the loop bandwidth.


I will look into lowering the sampling rate, and how much out-of-band power is aliasing into the 0-256 Hz band and update with my findings.

 

Attachment 1: WFS_stepping.png
WFS_stepping.png
Attachment 2: WFS_comparisons.pdf
WFS_comparisons.pdf WFS_comparisons.pdf
Attachment 3: WFSdigitalAA.pdf
WFSdigitalAA.pdf WFSdigitalAA.pdf
  12870   Mon Mar 6 14:47:49 2017 gautamUpdateSummary PagesCode status check script modified

For a few days now, the "code status" page has been telling us that the summary pages are DEAD, even though the pages themselves seemed to be generating plots. I logged into the 40m shared account on the cluster and checked the status of the condor job (with condor_q), and did not find anything odd there. I decided to consult Max, who pointed out that the script that checks the code status (/home/40m/DetectorChar/bin/checkstatus) was looking for a particular string in the log files ("gw_daily_summary"), while the recent change in the default output of condor_q meant that the string actually being written to the log files was "gw_daily_summa". This script has now been modified to look for instances of "gw_daily" instead, and so the code status indicator seems to be working again...

The execution of the summary page scripts has also been moved back to pcdev1 (from pcdev2, where it was moved to temporarily because of some technical problems with pcdev1).

  12880   Fri Mar 10 11:37:25 2017 gautamUpdateComputer Scripts / Programsloss script

This was still running at ~9.30am today morning, at which point I manually terminated it after confirming with Johannes that it was okay to do so. Judging by the StripTool traces in the control room, the mode cleaner remained locked for most of the night, there should be plenty of usable data...

Note that I re-aligned the Y-arm (to experiment further with photo-taking) at about 9.30am, so the data after this time should be disregarded...

Quote:

loss map script running on Rossa that moves the beam on ETMX. Yarm was misaligned for this, most recent PIT and YAW settings were saved beforehand. This will take until late at night, I estimate 2-3 am.

 

  12887   Tue Mar 14 10:56:33 2017 gautamUpdateCOCRC folding mirrors - coating optimization

Rana suggested including some additional terms to the cost function to penalize high sensitivity to deviations in the layer thickness (L). So the list of terms contributing to the cost function now reads:

  1. Thermal noise - we use the proxy function from E0900068-v3 to do this
  2. Deviation from target T @1064nm, p-pol
  3. Deviation from target T @532nm, p and s-pol
  4. HR Surface field
  5. The ratio \frac{d\mathcal{T}/\mathcal{T}}{dL/L} with dL/L = 1%, evaluated at 1064nm p-pol and 532nm p and s-pol (only the latter two for the AR side)

I did not include other sensitivity terms, like sensitivity to the refractive index values for the low and high index materials (which are just taken from GWINC).

There is still some arbitrariness in how I chose to weight the relative contributions to the cost function, but after some playing around, I think I have a solution that I think will work. Here are the spectral reflectivity and layer thickness plots for the HR and AR sides respectively. 

HR side: for a 1% increase in the thickness of all layers, the transmission changes by 5% @ 1064nm p-pol and 0.5% @ 532nm s and p-pol

  

AR sidefor a 1% change in the thickness of all layers, the transmission changes by <0.5% @ 532nm s and p-pol

  (substrate to the right of layer 38)

I've also checked that we need 19 layer pairs to meet the spec requirements, running the code with fewer layer pairs leads to (in particular) large deviations from the target value of 50ppm @ 1064nm p-pol.

Do these look reasonable? 

 

Attachment 1: PR3_R_170313_1701.pdf
PR3_R_170313_1701.pdf
Attachment 2: PR3AR_123_Layers_170313_1701.pdf
PR3AR_123_Layers_170313_1701.pdf
Attachment 3: PR3AR_R_170313_1752.pdf
PR3AR_R_170313_1752.pdf
Attachment 4: PR3AR_123_Layers_170313_1752.pdf
PR3AR_123_Layers_170313_1752.pdf
  12891   Fri Mar 17 14:49:09 2017 gautamUpdateLSCMCREFL condition pictures

I did a quick measurement of the beam size on the MC REFL PD today morning. I disabled the MC autolocker while this measurement was in progress. The measurement set up was as follows:

This way I was able to get right up to the heat sink - so this is approximately 2cm away from the active area of the PD. I could also measure the beam size in both the horizontal and vertical directions.

The measured and fitted data are:

  

The beam size is ~0.4mm in diameter, while the active area of the photodiode is 2mm in diameter according to the datasheet. So the beam is ~5x smaller than the active area of the PD. I couldn't find anything in the datasheet about what the damage threshold is in terms of incident optical power, but there is ~100mW on th MC REFL PD when the MC is unlocked, which corresponds to a peak intensity of ~1.7 W / mm^2...

Even though no optics were intentionally touched for this measurement, I quickly verified that the spot is centered on the MC REFL PD by looking at the DC output of the PD, and then re-enabled the autolocker.

Attachment 2: MCREFL_X.pdf
MCREFL_X.pdf
Attachment 3: MCREFL_Y.pdf
MCREFL_Y.pdf
  12893   Mon Mar 20 11:18:58 2017 gautamUpdateCDSNo internet connectivity on control room machines

There is no internet connectivity on any of the control room machines. 

I have been trying to debug by tracing the cabling situation in the rack in the office area, and will update if/when this problem has been resolved. I had last come into the lab on Saturday and there was no problem then. There 40m wireless network servicing the office area seems to work fine.

 

  12894   Mon Mar 20 14:39:44 2017 gautamUpdateCDSNo internet connectivity on control room machines

Koji diagnosed that the NAT router was to blame for this problem. I simply power cycled this router, and now the connectivity has been restored. 

It was possible to log into nodus and then to pianosa - and it was also possible to log into the various control room machines once logged into nodus. However, the outward packets seemed to not get transmitted. Anyways, power cycling the NAT Router unit seems to have done the job.

Quote:

There is no internet connectivity on any of the control room machines. 

I have been trying to debug by tracing the cabling situation in the rack in the office area, and will update if/when this problem has been resolved. I had last come into the lab on Saturday and there was no problem then. There 40m wireless network servicing the office area seems to work fine.

 

 

  12896   Tue Mar 21 15:13:44 2017 gautamUpdateIMCIMC input beam mode matching

[valera, gautam]

Last night, Valera and I looked into two aspects of the IMC:

  1. How can we accurately set the offset at the error point of the PDH servo such that we lock to the true center of the resonance?
  2. What's up with the large common mode offset on the WFS?

I will post a more detailed elog about last night's work, but Valera also thought it might be a good idea to try and improve the mode-matching into the IMC. I couldn't find anything on the wiki/elog about the mode matching situation on the PSL table, so I quickly went over yesterday to measure some lengths. From looking at the MCREFL DC levels when the mode cleaner is locked (~0.37V) and unlocked (~5.7V), the current mode matching efficiency seems to be about 88%, so there is definitely some headroom for improvement.

Here is my cartoon of the situation on the PSL table. All lengths are measured in mm, and I would say correct to +/- 5 mm, so there could be considerable error here...

  (L1 : f=+200mm. L2: f=-150mm. L3:  f=+400mm)

I extracted the lengths from the edge of the PSL table to IM1 and MC1 from (what I think are) the latest CAD drawings on the DCC. I then put all this into an a la mode script [Attachment #5] - I assumed a waist of 370um at the PMC output mirror, and a waist of 1.78mm at MC1. I neglected the passage through the in-vac Faraday, EOM and BS1 (on the sketch above) and the MC1 substrate. I was able to achieve a theoretical mode-matching efficiency of 1 by just moving the positions of L2 and L3. 

Given that there are probably errors of the order 0.5cm in the lengths on the PSL table, and also the in-vacuum distance to MC1, I figured it would be ideal to just move one lens and see if we can improve the efficiency. It looks like it may be more effective to move L2 than L3. The plot on the right shows that the sensitivity is approximately equal to the positioning of L2 and L3. Judging by this plot, looks like w.r.t. the coordinates in this plot, we are somewhere around (0.02,-0.02).

It looks like if we want to do this, moving L2 (f = -150mm) may be the best way to go.

Attachment 2: IMC_ModeMatch.pdf
IMC_ModeMatch.pdf
Attachment 3: singleLensSensitivity.pdf
singleLensSensitivity.pdf
Attachment 4: sensitivity.pdf
sensitivity.pdf
Attachment 5: IMCmodeMatch.m
close all
clear all
clc

%Create a beamPath object
InpPath = beamPath;
%Add components - for a first pass, ignore Faraday and HWPs, so only
%mirrors and lenses..
InpPath.addComponent(component.flatMirror(35e-3,'M1'));
InpPath.addComponent(component.flatMirror(75e-3,'M2'));
... 115 more lines ...
  12897   Tue Mar 21 21:21:58 2017 gautamUpdateIOOWFS filter banks updated

The arrangement of filters in the WFS loop filter banks have been altered, Rana will update with details of the motivation behind these changes. Here is how the screen looks now:

I have updated the C1IOO SDF table, and also the mcwfson script to reflect these changes. The latter has been svn committed.

  12898   Tue Mar 21 21:59:48 2017 gautamUpdateIMCIMC input beam mode matching

[valera, gautam]

We implemented the plan outlined in the previous elog. The visibility (Pmax-Pmin)/(Pmax+Pmin) calculated with the MC REFL PD levels with the MC locked/unlocked is now ~96% (up from 88%yes). The MC REFL DC level in lock is now ~0.12V (compared to 0.4V). Assuming a modulation depth of 0.1 @ 29.5MHz, about 25% of this (i.e. 0.03V) is from sideband light.

The procedure followed was (see sketch in previous elog for various optic labels):

  1. Move L2 back (towards PMC) by ~2cm.
  2. Walk the beam using M3 and M4 to minimize MCREFL, re-lock IMC, run WFS. 
  3. Move L3 back (towards PMC) by ~2cm.
  4. Repeat steps 2 and 3, the latter with smaller steps, monitor MCREFL DC level.

We could probably tweak the fine positioning of L2 and L3 and improve the efficiency a little more, but the primary objective here was to see if there was any effect on the large common mode offset on the WFS demodulated "SUM" output. Unfortunately, we saw no effect.

Here are two photos of the relevant section of the PSL table before (left) and after (right) our work there:

   

  12899   Wed Mar 22 00:33:00 2017 gautamUpdateIMCIMC length offset nulling

[valera, gautam]

Motivation: see this elog

I was fiddling around for a few days trying to implement the method outlined in this paper to null this offset - I will post a separate elog about my efforts but Valera pointed out that we could try injecting an AF modulation at the IN2 input of the MC Servo Board. Last night, we hooked up an SR function generator (f = 312Hz, A = 0.01Vpp, IN2 gain = -5dB) to the unused BNC IN2 input of the MC Servo board. To avoid any additional offsets from the AO path during this measurement, I disconnected the LEMO cable (it is labelled).

We looked at the spectrum of the MC transmission around 312Hz and also 2*f = 624Hz. As a result of this modulation, we expect in the transmitted power, dP/P, a 2f term with amplitude ~(X_mod/X_0)^2 and a term at f with amplitude ~(X_offset * X_mod / X_0^2) - I may have missed out some numerical factors of order 1. So the latter should vanish if the offset at the error point is truly zero and the lock-point is the center of the resonance. Last night, we found that an offset in the range of -0.25 V to -0.19 V nulled this peak in the DTT spectrum. Today, the number was -0.05V. So the true offset seems to vary from lock to lock. Here are spectra around f=312Hz for a few different values of the offset slider (the center of the resonance seems to be -0.05V on the MEDM slider at this time).

Do these numbers make sense? Some time ago, I had pulled out the MC Servo board to find out what exactly is going on at this offset summing point. The MEDM slider goes from -10V to 10V, and by measuring the voltage at TP5 (see schematic below), I found that there is a 1/40 scaling factor between what is actually applied and the number on the MEDM slider (so for example, the numbers in the legend in the above plot have to be divided by 40). I've modified the MC Servo Board MEDM screen to reflect this. When I had pulled the board out, I noticed that in addition to the offset voltage applied via the backplane connector, there was also a potentiometer (R50 in the schematic below). I had nulled the voltage at TP5 using this potentiometer, but I guess drifts of ~5mV are possible. 

Discussion on calibration of offset slider in Hz/V:

I've yet to do a rigorous calibration of this slider into Hz, but looking at the spectrum of the transmitted intensity at 2f, we estimated the coefficient (X_mod/X_0) ~ 3e-3 for an offset of 0.2V. dP/P ~1 when the applied modulation equals the linewidth of the cavity, which is 3.6kHz. So 0.2V of offset slider corresponds to ~ 10Hz frequency offset. In other words, I estimate the slider calibration to be 50Hz/V. So with the full range of +/- 10V, we should be able to scan ~1kHz of frequency offset. What does this imply about the variation of the offset slider value that removes the peak at 1f between locks? As mentioned above, this variation is ~0.2V over a day - with the calibration mentioned above, this corresponds to a change in cavity length of ~10um, which seems reasonable to me...


So how did all of this tie in with WFS SUM offsets? We did the following:

  • After nulling the length offset using the procedure detailed above, we noticed non-zero offsets on both WFS1 and WFS2 "I" SUM outputs
  • So we set the dark offsets and RF offsets for the WFS, with no light incident on the WFS (PSL shutter closed). 
  • Re-locking the IMC and closing the WFS loops, we noticed that WFS2 SUM offset was still hovering around 0, but WFS1 SUM offset was ~ -2000cts.
  • Looking at some trends on dataviewer, this offset seems to drift around over a few days timescale by a few thousand counts - for example, the WFS1 offset today was +2000cts. Moreover, the WFS1 offset seems to drift around by ~factor of 3 times as much as WFS2 offset in the 24 hour period I looked up (plot to follow)...
  • Misaligned MC2 and looked at the sum offset with just the single bounce beam off MC1 onto the WFS

I neglected to screenshot the StripTool from the times we were doing these trials but I have the times, I will pull up some dataviewer plots and upload them here tomorrow...

Attachment 1: offsetInvestigation.pdf
offsetInvestigation.pdf
Attachment 2: offset_summing_amp.pdf
offset_summing_amp.pdf
  12900   Wed Mar 22 16:58:25 2017 gautamUpdateIMCWFS sensing matrix measurements

I've taken a bunch of transfer function measurements from the MC ASC PIT and YAW channels to the WFS error signals using the same set of DTT templates Koji used while characterizing the WFS loops a couple of months ago, before the IMC RF changes. Analysis is underway and I will post the results here shortly...

As an aside, Rana had added 10dB and 20dB gains to all of the WFS filter banks yesterday. I tried engaging the 10dB gains on the two MC2_TRANS PD loops, and this did not seem to induce any instability. I stepped both loops and saw that as expected, the 1/e times for both of these loops is about 45 seconds now (compared to ~150 seconds at the nominal gain). These have been running all day today, and the IMC seems well behaved, so I am going to leave these on for now... Jacking up the gain on the MC2_TRANS_QPD loops by 20dB induced instability - same story for the 4 WFS loops with 10dB additional gain...

  12901   Thu Mar 23 01:44:53 2017 gautamUpdateIMCWFS sensing matrix measurements

Thanks to Koji's nice MATLAB script using DttData functions, I was able to quickly analyze the TF data. Essentially, this measurement was a repetition of what was done here. The difference is that the modulation depth has been increased by ~25x compared to that measurement from December 2016. Here are the measured TFs (before accounting for the 1/f^2 normalization) for the various quadrants and the PIT/YAW channels:

  

The plots above are just to illustrate that the measurement was clean between the band over which the averaging will be done to compute the TF amplitude - i.e. 7-15Hz. The full summary of TF amplitudes, standard deviations, and the sensing matrix in the style of the referenced elog (the actual excel spreadsheet is Attachment #4, minus some of the graphics Koji had on his excel sheet):

Inverting those matrices, we get the matrices that diagonalize the sensor-actuator chain:

PITCH:

\begin{pmatrix} -0.00518 & -0.00305 & -639.6\\ 0.00354 & -0.00281 & 198.8\\ 0.00102 & 0.00672 & -756.6 \end{pmatrix}

YAW:

\begin{pmatrix} 0.00523 & -0.00276 & -856.7\\ 0.000318 & 0.00010 & -366.4\\ 0.00039 & -0.00548 & -851.9 \end{pmatrix}

I will try implementing these matrices tomorrow and take a look at the step responses of the loops - the idea is that perhaps the system wasn't optimally diagonalized before and perhaps we can now improve the bandwidths of all the loops.

 

Attachment 1: IMC_WFS_segment_TF.pdf
IMC_WFS_segment_TF.pdf
Attachment 2: IMC_WFS_channels_TF.pdf
IMC_WFS_channels_TF.pdf
Attachment 3: TFsummary.pdf
TFsummary.pdf
Attachment 4: IMC_WFS_170322.xlsx.zip
  12903   Thu Mar 23 23:38:58 2017 gautamUpdateIMCMC SUS damping gains stepped down

I've reduced the gains of the damping on all 3 MC SUS by a factor of 3 for overnight observation as part of the ongoing feedforward noise cancellation investigations. I will return them to the nominal values tomorrow morning.

  12904   Fri Mar 24 11:26:57 2017 gautamUpdateIMCMC SUS damping gains restored

I've restored the damping loop gains to their nominal values. Analysis of the coherence between MCL and seismometer channels under this reduced gain setting is underway, results to follow.

  12905   Fri Mar 24 12:21:27 2017 gautamSummaryIOOMCL / MCF / Calibration

I repeated this measurement as follows:

  1. Added a filter in the MC_F filterbank (FM9) to account for the Pomona box between the PZT control signal and the laser PZT (pole@2.9Hz). So the filter bank at the time of TF measurement looks like this:
  2. Measured TF from driving MC2 (with C1:SUS-MC2_MCL_OUT channel) to C1:IOO-MC_F, which is the output of the above filter bank. The response is the expected 1/f^2 shape of the free optic
     
  3. From this transfer function, the magnitude is 0.0316 ct/ct. Using the value of 6nm/ct for the MC2 actuator gain that I found in a previous elog entry, I calibrated the MC_F output into Hz using the calibration factor 3.95MHz/ct (FM10 in the above filterbank).

Here is a calibrated MC_F spectrum:

RXA: I've added this plot of the free-running noise of the Lightwave NPRO which is probably similar to our Innolight Mephisto. Seems like the laser is quieter than MC_F everywhere below 100 Hz.

Attachment 2: MCF_cal.pdf
MCF_cal.pdf
Attachment 3: MCFTF_mag.pdf
MCFTF_mag.pdf
Attachment 4: MCFTF_phase.pdf
MCFTF_phase.pdf
Attachment 5: MCFTF_coh.pdf
MCFTF_coh.pdf
Attachment 6: FreqNoiseReq.pdf
FreqNoiseReq.pdf
  12906   Fri Mar 24 19:04:18 2017 gautamUpdateIMCSeismic feedforward and WFS

[valera, gautam]

On Wednesday at the meeting, we were discussing why we aren't able to achieve more seismic feedforward subtraction in MCL. We spent some time thinking about this yesterday, and this elog is meant to be a summary of the stuff we tried. 

  1. We let the WFS loops run for a while and settle, and then turned the input gain down to zero so that the integrators held the outputs to the suspension at a "good" alignment. If the WFS loop bandwidth is ~0.1 Hz, then they aren't helping us at 1Hz anyways. We then looked at coherence between the seismometer signals in this state compared to when the WFS loops were running, and noticed negligible difference. It doesn't seem like the WFS loops are injecting noise into MCL at ~1Hz.
  2. We decided agains implementing the WFS sensing matrix I measured on Wednesday evening, as we found that the relative magnitudes of the matrix elements are virtually the same as in Koji's measurement back in December 2016. But looking at matrix elements like MC1P->WFS1P compared to MC3P->WFS1P - there is a difference of a factor of ~3. Why should there be? The response should be completely symmetric to MC1 and MC3?
  3. While looking at the OSEM channels (i.e. SUSPIT_IN1_DQ, SUSYAW_IN1_DQ etc) for each of the MC optics, we noticed a dramatic difference between MC1 (factor of ~10 higher) and the other two MC optics.
  4. Looking at coherence between MCL and the seismometer channels, we felt that there is less coherence at low frequencies (1Hz and lower) now than there was back in January when I took a measurement. However, there was coherence between the OSEM signals and the seismometers - so it doesn't look like the seismometer is to blame. To make an apples-to-apples comparison, I compared the MCL and Seismometer channel spectra from January to now (for the latter, at two different settings of the damping loop gains on the MC suspensions), and also the maximum predicted achievable subtraction (using EricQs frequency domain multicoherence tool). The two changes I can think of since January are that the MC1 satellite box has been interchanged with the SRM satellite box, and the IMC servo gains have been reallocated since the RF upgrade. My findings are summarized in attachments #1 and #2.

The seismometer spectra look similar enough to be explained by time of day variations, so perhaps the culprit is MC1. The ambient MCL spectrum is almost an order of magnitude higher above 4Hz now, with the nominal damping loop gains, as compared to back in January. I think the damping loops on MC1 need to be tweaked.

 

Attachment 1: MCL_comparison.pdf
MCL_comparison.pdf
Attachment 2: seis_comparison.pdf
seis_comparison.pdf
  12916   Wed Mar 29 11:41:19 2017 gautamUpdatePSLPMC DAQ assay for feed-forward integration

The C1IOO frontend machine that resides in 1X1/1X2 has 2 ADCs, ADC0 and ADC1. The latter has 28 out of 32 channels unused at the moment, so I decided to use this for setting up fast channels for the PMC DAQ. On the RTCDS side of things, the PSL namespace block lives in the C1ALS model. I made the following modifications to it:

  1. Added channels for the PMC DAQ
  2. Added CDS filters for both the newly added PMC DAQ channels and the existing FSS DAQ channels, so that we can calibrate these into physical units
  3. Changed the names of the existing FSS channels from FSS_MIXER and FSS_NPRO to FSS_ERR and FSS_CTRL. The latter is still a bit ambiguous, but I felt that FSS_CM_BOARD_CTRL was too long. 
  4. Added DQ channels for the new PMC channels. These are recording at 16K at the moment, but since we have the fast testpoints courtesy of the CDS filter modules for diagnostics, perhaps the DQ channels need only be recorded at 2K?

The PSL namespace block in C1ALS looks like this now:

I then tried hooking up the DAQ signals from the PMC servo board to the ADC via the 1U generic ADC interface chassis in 1X2 - this has 4pin LEMO inputs corresponding to 2 differential input channels. I used J6 (corresponding to ADC channels 10 and 11) for the PMC_ERR and PMC_CTRL respectively. I was a little confused about the status of the 4 pin LEMO output on the front panel of the PMC servo board. According to the DCC page for the modified 40m servo board, the DAQ outputs are wired to the backplane connector instead of the 4 pin LEMO. But looking at photographs on the same DCC page, there are wires soldered on the rear-side of the PCB from the 4-pin LEMO to the backplane connector. Also, I believe the measurements made by Rana in the preceeding elog were made via the front panel LEMO. In any case, I decided to use the single pin LEMO monitor points on the front panel as a preliminary test. The uncalibrated spectra with ADC terminated, IMC unlocked and IMC locked look like:

So it looks like at the very least, we want to add some gain to the AD620 instrumentation amplifiers to better match the input range of the ADC. We also want to make the PZT voltage monitor path AC coupled. My plan then is the following:

  1. Figure out what is going on with the 4-pin LEMO connector on the front panel - is it connected to the DAQ monitor points or not?
  2. Ground pin 5 of U15 (this has already been done by Koji for U14 according to the DCC page)
  3. Add a resistor between pins 1 and 8 of U14 and U15 to get some gain. According to the datasheet, a 1k resistor will give a gain of 50, which for U15 will mean that we undo the existing 1/50 attenuation. Of course we need to AC couple this path first by adding a capacitor in series with R14. 
  4. Figure out where the RF harmonics are coming from and what is the best way to attenuate them.

I will update with a circuit diagram with proposed changes shortly.

Proposed changes:

  1. Cut PCB trace between R14 and R13, install capacitor - what is is correct type of capacitor to use here? I figured installing a series capacitor after the resistive divider, to the input of the instrumentation amplifier avoids the need for a HV capacitor, so we can use a 1uF WIMA capacitor.
  2. Add gains to U14 and U15 (error and control signal monitors respectively). Based on the uncalibrated spectra attached, I think we should go for a gain of ~50 for U15 (1kohm between pins 1 and 8), and a gain of ~200 for U14 (250ohms between pins 1 and 8).

The PCB layout is such that I think using components with leads is easier rather than SMD components.

If this sounds like a reasonable plan, I will pull out the servo card from the eurocrate and implement these changes today evening...

Attachment 2: PMCcheckout.pdf
PMCcheckout.pdf
Attachment 3: D980352-A-40m_151119.pdf
D980352-A-40m_151119.pdf
  12918   Thu Mar 30 00:16:09 2017 gautamUpdatePSLPSL NPRO PZT calibration

As part of the ongoing effort to try and calibrate the PMC DAQ channels into physical units, I tried to get a calibration for the PSL NPRO PZT actuator gain. In order to do this, I selected "Blank" on the PMC servo MEDM screen such that there was no feedback signal to the PMC PZT for length control. Then I used the summing box right before the  PSL PZT to inject a ~1Hz triangular wave, 4Vpp. This was sufficient to sweep the NPRO frequency over 70MHz such that both sidebands and the carrier go through resonances in the PMC cavity. I then simultaneously monitored the applied triangular wave voltage and the PMC error signal (using the single pin LEMO connector on the front panel) on an oscilloscope. Analysis is underway, but a quick look at one measurement suggests a PZT actuator gain of ~1.44MHz/V, which is close to what we expect for the Innolight NPROs. The idea is to use this calibration to convert the DQ channels into physical units. 

Details + plots + error analysis to follow...

  12924   Mon Apr 3 17:09:47 2017 gautamUpdateCDSC1PSL burt-restored

When I came in this morning, Steve had re-locked the PMC and IMC - but I could see a ~1Hz intensity fluctuation on the PMC REFL video monitor. I unlocked the PMC and tried to re-lock it, but couldn't using the usual prescription of turning the servo gain down and moving the DC bias slider around. I checked the status of the slow machines - all were responding to pings and could be telnet'ed into, so that didn't seem to be the problem. In the past, this sort of behaviour was characteristic of the infamous "sticky slider" problem - so I simply burt-restored c1psl using a snapshot from 29 March, after which I could easily re-lock the PMC. The transmitted light level looked normal on the scope on the PSL table, and the PMC REFL video monitor also look normal now.

  12925   Mon Apr 3 17:25:13 2017 gautamUpdatePSLPSL NPRO PZT calibration

Summary:

By sweeping the laser frequency and looking at the PMC PDH error signal, I have determined the 2W Mephisto Innolight PZT actuator gain to be 1.47 +/- 0.04 MHz/V

Method:

  1. Re-aligned the input beam into the PMC to maximize transmission level on the oscilloscope on the PSL table to 0.73V.
  2. Disabled control signal from IMC servo to PSL. 
  3. Unlocked the PMC and disabled the loop by selecting "BLANK" on the PMC MEDM screen.
  4. Connected a 0.381 Hz 5Vpp triangular wave with SR function generator to the "SUM" input of the Fast I/F box just before the PSL PZT input. These params were chosen considering the Pomona box just before the NPRO has a corner at 2.9Hz, and also to sweep the voltage to the NPRO PZT over the full 150V permitted by the Thorlabs HV amplifier unit. Monitored the voltage to the Thorlabs HV amp from the "AFTER SUM" monitor point on the same box. Monitored the PMC PDH error signal using the single-pin LEMO monitor point on the PMC servo board (call this Vmon). Both of these signals were monitored using a Tektronix digital O'scope.
  5. Downloaded the data using ethernet.
  6. Fit a line to the voltage applied to the NPRO PZT - I assumed the actual voltage being applied to the PZT is 15*Vmon, the pre-factor being what the Thorlabs HV amplifier outputs. The zero crossings of the sideband resonances in the PDH error signal are separated by 2*fmod (separated by fmod from the carrier resonance, fmod = 35.5MHz assumed). With this information, the x-axis of the sweeps can be converted to Hz, from which we get the PZT actuator gain in MHz/V. 

An example of the data used to calculate the actuator gain (left), and the spread of the calculated actuator gain (right - error bars calculated assuming 5e-4 s uncertainty in the sideband zero-crossing interval, and using the error in the slope of the linear fit to the sweep voltage):

This will now allow calibration of the PMC DAQ channels into Hz.

GV 4 April - The y-axis of the lower plot in Attachment #1 has mis-labelled units. It should be [V], not [MHz/V].

Attachment 1: PDHerr.pdf
PDHerr.pdf
Attachment 2: NPROcalib.pdf
NPROcalib.pdf
  12926   Mon Apr 3 23:07:09 2017 gautamUpdatePSLPMC DAQ assay for feed-forward integration

I made some changes to the DAQ path on the PMC servo board, as per the plan posted earlier in this thread. Summary of changes:

  1. AC coupling PMC control signal path using 2 x 47uF metal film capacitors (in parallel)
  2. Grounding pin 5 of U15
  3. Adding gain to U14 (gain of ~500) and U15 (gain of ~50)

Details + photos + calibration of DAQ channels to follow. The PMC and IMC both seem to remain stably locked after this work.

  12929   Wed Apr 5 16:05:47 2017 gautamUpdateGeneralNB code checkout

[evan, gautam]

We spent some time trying to get the noise-budgeting code running today. I guess eventually we want this to be usable on the workstations so we cloned the git repo into /ligo/svncommon. The main objective was to see if we had all the dependencies for getting this code running already installed. The way Evan has set the code up is with a bunch of dictionaries for each of the noise curves we are interested in - so we just commented out everything that required real IFO data. We also commented out all the gwpy stuff, since (if I remember right) we want to be using nds2 to get the data. 

Running the code with just the gwinc curves produces the plots it is supposed to, so it looks like we have all the dependencies required. It now remains to integrate actual IFO data, I will try and set up the infrastructure for this using the archived frame data from the 2016 DRFPMI locks..

  12936   Mon Apr 10 15:37:11 2017 gautamUpdateCOCRC folding mirrors - v3 of specs uploaded

Koji and I have been going over these calculations again before we send a list of revised requirements to Ramin. I've uploaded v3 of the specs to the DCC page. Here is a summary of important changes.

  1. Change in RoC specification - I condensed the mode-matching information previously in 8 plots into the following 2 plots. Between tangential and saggital planes, the harmonic mean was taken. Between X and Y cavities, the arithmetic mean was taken. Considering the information in the following plots, we decided to change the spec RoC from 600 +/- 50m to 1000 +/- 150m. The required sensitivity in sag measurement is similar to the previous case, so I think this should be feasible.

    Why this change? From the phase map information at  /users/public_html/40m_phasemap/40m_TTI gather that we have 2 G&H mirrors, one with curvature ~ -700m and the other with curvature ~ -500m. An elog search suggests that the installed PR2 has RoC ~ -700m, so this choice of RoC for PR3 should give us the best chance of achieving optimal modematching between the RCs and arms as per the plots below.

  2. Cavity stability checks - these plots confirm that the cavity remains stable for this choice of RoC on PR3...
      
  3. Coating design - I've been playing around with the code and my understanding of the situation is as follows. to really hit low AR of 10s of ppms, we need many dielectric layer pairs. But by adding more pairs, we essentially become more susceptible to errors in layer thickness etc, so that even though the code may tell us we can achieve R_AR(532nm) < 50ppm, the minima is pretty sharp so even small perturbations can lead to much higher R of the order of a few percent. On the HR side, we need a large number of layer pairs to achieve T_HR(1064nm)=50ppm. Anyways, the MC studies suggest that for the HR coating design, with 19 layer pairs, we can be fairly certain of T_HR(1064nm)<100ppm and R_HR(532nm)>97% for both polarizations, which seems reasonable. In order to make the R_HR(532nm) less susceptible to errors, we need to reduce the number of layer pairs, but then it becomes difficult to achieve the 50ppm T_HR(1064nm) requirement. Now, I tried using very few layer pairs on the AR side - the best result seems to be with 3 layer pairs, for which we get R_AR(532nm)<1% and T_AR(1064nm)>95%, both numbers seem reasonable to me. In the spectral reflectivity, we also see that the minima are much broader than with large number of layer pairs.

    First row below is for the HR side, second row is for the AR side. For the MC studies, I perturbed the layer thicknesses and refractive indices by 1%, and the angle of incidence by 5%.
        
       

If there are no objections, I would like to send this version of the specs to Ramin and get his feedback. Specifically, I have assumed values for the refractive indices of SiOand Ta2O5 from google, Garilynn tells me that we should get these values from Ramin. Then we can run the code again if necessary, but these MC studies already suggest this coating design is robust to small changes in assumed values of the parameters...

Attachment 1: PRC_modematch.pdf
PRC_modematch.pdf
Attachment 2: SRC_modematch.pdf
SRC_modematch.pdf
Attachment 3: TMS_PRC.pdf
TMS_PRC.pdf
Attachment 4: TMS_SRC.pdf
TMS_SRC.pdf
Attachment 5: PR3_HR_spectralRefl.pdf
PR3_HR_spectralRefl.pdf
Attachment 6: PR3_HR_MC_CDF_revised.pdf
PR3_HR_MC_CDF_revised.pdf
Attachment 7: PR3_AR_spectralRefl_new.pdf
PR3_AR_spectralRefl_new.pdf
Attachment 8: PR3_AR_MC_CDF_new.pdf
PR3_AR_MC_CDF_new.pdf
  12939   Tue Apr 11 00:38:37 2017 gautamUpdatePSLPMC demod moved off servo board

As discussed at the Wednesday meeting last week, I tried moving the demodulation of the PMC error signal off the PMC servo board, by using some minicircuits components. This is just a quick summary elog, more details to follow tomorrow.

  • I used the Mini Circuits ZAD-6+. This is a level 7 mixer, and the LO board puts out ~16dBm, so I replaced the existing 3dB attenuator between the LO board and the input to the PMC servo board with a 9dB attenuator.
  • On the RF side, I retained the 35.5 MHz bandpass filter on the PD input.
  • On the IF output, I used an in-line 50ohm terminator in series with a minicircuits BLP1.9+ low pass filter
  • The mixer output was routed to the FP1 test input of the servo board
  • After some twiddling with the demod phase MEDM screen, I was able to lock the PMC. I've not done a thorough characterization of the loop with the current configuration, this will be done tomorrow. But the PMC and IMC have been stably locked for the last couple of hours...

During the course of this work, I noticed that there was a 35.5MHz line (at ~-55dBm) in the 4-pin LEMO DAQ outputs even when all other inputs to the servo board were terminated. So it seems like this pickup is not coming from the RFPD or demod path. The LO board has a shield enclosure similar to what we have on the LSC demod boards, but perhaps this shield does not enclose the full RF path, and there is some residual pickup between the two cards in close proximity in the Eurocrate?

On the bright side, with this demod setup, the higher harmonic peaks seem to be significantly suppressed.

In particular, the 3x35.5 MHz peak which was very prominent when I looked at these spectra with the nominal demod setup, seems to be much suppressed. 

I'm leaving the PMC servo in this configuration (off servo board demodulation using minicircuits parts) overnight.

Attachment 1: PMC_Ctrl_spec.pdf
PMC_Ctrl_spec.pdf
  12940   Wed Apr 12 00:36:53 2017 gautamUpdatePSLPMC demod moved off servo board

Here is a more detailed comparison of the spectra of the signals at the front panel DAQ LEMO output, measured with the Agilent analyzer. I've left the scale linear, it looks like when the demodulation is done on the servo board, the 1x, 3x and 5x harmonics of the 35.5MHz modulation are clearly visible. I also plut in a plot of the spectra when both the PD and LO inputs to the servo board are terminated (and so the PMC is unlocked), but with the HV In and OUT of the servo board still connected. In this case, the higher harmonics vanish, but a 35.5MHz peak of ~-50dBm remains. Since this is present with no input to the servo board, this must be direct pickup from the nearby LO board? 

In any case, it looks like many of the harmonics that are present with the nominal demod setup either vanish or are much more suppressed when the error signal demodulation is done off the servo board yes.


Further down the signal chain, I had noticed sometime last week that the ADC signals for the PMC DAQ channels I set up seemed to saturate around 4000 counts. Rana mentioned that the ADC interface box with LEMO connectors on the front is powered with +/-5V. Valera and co. had simply increased the suppy voltage sometime ago to get around this problem, so I did something similar, and increased the supply voltage to +/- 15V. I then confirmed that the ADC doesn't get saturated by driving the input with a +/-5V signal. So now the amplified AD620 signals from the PMC servo board are better matched to the ADC range. 

Here is an uncalibrated spectrum (taken with IMC locked), compared to the current ADC noise and signal levels before the AD620s were given gain.

I now need to think a little about what exactly the control scheme would be if the PMC is used as a reference for the IMC over some frequency range...

 

Attachment 1: PMC_digitalSpec.pdf
PMC_digitalSpec.pdf
Attachment 2: PMC_DAQ_spectra.pdf
PMC_DAQ_spectra.pdf
  12944   Tue Apr 18 01:01:03 2017 gautamUpdatePSLPMC OLTF measured, DAQ channels calibrated

Quick entry, details to follow in the AM tomorrow.

  • I calibrated the PMC DAQ channels into physical units - there now exists in the filter modules  cts2m and cts2Hz filter modules, though of course only one must be used at a time
  • Finally measured the PMC OLTF, after moving the PMC PDH error signal demodulation off the servo board - I used the same procedure as Koji when he made the modifications to the PMC servo board, I will put up the algebra here tomorrow. Turns out the previously nominal servo gain of +10dB on the MEDM sliders was a little low, the new nominal gain is +20dB, and has been updated on the MEDM screen.

ToDo:

  • Put up the modified schematic on the 40m DCC tree Done April 18 10pm
  • Check calibration by comparing inferred PMC cavity displacement from error point and control point spectra, using the measured OLTF
  • Finish up looking at multicoherence with MCL and various witness channel combinations

   

Attachment 1: PMCspectra_calibrated.pdf
PMCspectra_calibrated.pdf
  12945   Tue Apr 18 16:10:00 2017 gautamUpdatePSLPMC OLTF measured, DAQ channels calibrated

Here are the details:

  1. PMC OLTF:
    • the procedure used was identical to what Koji describes in this entry.
    • I used the SR785 to take the measurement.
    • MEDM gain slider was at +20dB 
    • I used the two single pin LEMO front panel monitor points to make the measurement. 
    • Mix_out_mon was CH2A, HV_out_mon was CH1A on the SR785
    • A = CH2A/CH1A with the SR785 excitation applied to the EXT_DC single pin LEMO input on the front panel. I used an excitation amplitude of 15mV
    • B = CH2A/CH1A without any excitation
    • Couple of lines of loop algebra tells us that the OLTF is given by the ratio A/B. The plot below lines up fairly well with what Koji measured here, UGF is ~3.3kHz with a phase margin of ~60degrees, and comparable gain margin at ~28kHz. As noted by Koji, the feature at ~8kHz prevents further increase of the servo gain. I've updated the nominal gain on the PMC MEDM screen accordingly... I couldn't figure out how to easily extract Koji's modelled OLTF so I didn't overlay that here... Overlaid is the model OLTF. No great care was taken in analyzing the goodness of the agreement with the model and measurement by looking at residuals etc, except that the feature that was previously at 28.8kHz now seems to have migrated to about 33.5 kHz. I'm not sure what to make of that. 
  2. PMC DAQ calibration:
    • The calibration was done using the swept cavity, the procedure is basically the same as described by Koji in this elog.
    • The procedure was slightly complicated by the fact that I added gain to the AD620 buffers that provide the DAQ signals. So simply sweeping the cavity saturates the AD620 very quickly.
    • To workaround this, I first hooked up the un-amplified single pin LEMO front panel monitor points to the DAQ channels using some of the available BNC-LEMO patch cables.
    • I then did the swept cavity measurement, and recorded the error and control signals fron the single pin LEMO front panel monitor points. Sweep signal was applied to EXT_DC input on front panel.
    • In the nominal DAQ setup however, we have the amplification on the AD620. I measured this amplification factor by hooking up the single pin LEMO monitor point, along with its corresponding AD620 amplified counterpart, to an SR785 and measuring the transfer function. For the PMC_ERR channel, the AD620 gain is ~53.7dB (i.e. approx 484x). For the PMC_CTRL channel, the AD620 gain is ~33.6dB (i.e. approx 48x). These numbers match up well with what I would expect given the resistors I installed on the PMC board between pins 1 and 8 of the AD620. These gains are digitally undone in the corresponding filter modules, FM1.
    • To calibrate the time axis into frequency, I located the zero crossings of the sidebands and equated the interval to 2 x fmod. For the PMC servo, fmod = 35.5MHz. I used ~1Hz triangle wave, 2Vpp to do the sweep. The resulting slope was 1.7026 GHz/s.
    • The linear part of the PDH error signal for the carrier resonance was fitted with a line. It had a slope of 1.5*10^6 cts/s.
    • The round trip length of the PMC cavity was assumed to be 0.4095m as per Koji's previous entry. This allows us to calibrate the swept cavity motion from Hz to m. The number is 1.4534 * 10^-15 m/Hz. I guess we could confirm this by sweeping the cavity with the DC bias slider through the full range of 0-250V, but we only have a slow readback of the PMC reflection (and no readback of the PMC transmission).
    • Putting the last three numbers together, I get the PMC_ERR signal calibration as 1.6496 pm/ct. This is the number in the "cts2m" filter module (FM10).
    • An analogous procedure was done to calibrate the control signal slope: from the sweep, I got 4617 cts/s, which corresponds to 2.7117*10^-6 cts/Hz. Using the FSR to convert into cts/m, I get for PMC_CTRL, 535.96 pm/ct. This is the number in the "cts2m" filter module (FM10).
    • For convenience, I also added "cts2Hz" calibration filters in FM9 in the corresponding filter modules. 

The updated schematic with changes made, along with some pictures, have been uploaded to the DCC page...

Quote:

Quick entry, details to follow in the AM tomorrow.​

 

Attachment 1: PMC_OLTF_170418.pdf
PMC_OLTF_170418.pdf
  12947   Wed Apr 19 15:13:30 2017 gautamUpdatePSLPMC/MCL multicoherence

I used a one hour stretch of data from last night to look at coherence between the PMC control signal and MCL, to see if the former can be used as a witness channel in some frequency band for MCL stabilization. Here is a plot of the predicted subtraction and coherence, made using EricQs pynoisesub code. I had thought about adopting the greedy channel ranking algorithm that Eric has been developing for noise subtraction in site data, but since I am just considering 3 witness channels, I figured this straight up comparison between different sets of witness channels was adequate. Looks like we get some additional coherence with MCL by adding the PMC control signal to the list of witness channels, there is about a factor of a few improvement in in the 1-2Hz band...  

Attachment 1: PMC_MCL_multicoherence.pdf
PMC_MCL_multicoherence.pdf
  12948   Wed Apr 19 15:46:24 2017 gautamUpdateGeneral1611/1811 inventory check

I looked through the lab area to do a fast photodiode inventory check, as we may need to buy some for the higher order mode spectroscopy SURF project. I looked on the following optical tables: ETMY, ITMY, BS, AS, PSL, SP, ITMX, Jenne laser table, and ETMX, as well as the photodiode cabinet, and could only find two 1611s. Here is a summary of the inventory: 

  • Power supply 0901: 2x in photodiode cabinet (E6 along the Y arm), 1x on Jenne laser table
  • Newfocus 1611 S/N 7284-WX, labelled "REF DET" on ITMY optical table, currently unused
  • Newfocus 1611 S/N 57109 on Jenne laser table

I have not yet checked if these photodiodes are in working order.

 

  12950   Tue Apr 25 19:35:41 2017 gautamUpdateGeneralIPCS -q

Dataviewer wouldn't launch on pianosa - it seemed to work fine on Donatella though. Rana suggested using the ipcs -q command. The complete fix can be found in this elog. This did the trick, dataviewer runs fine on Pianosa now...

  12951   Wed Apr 26 01:00:23 2017 gautamUpdateGeneralDRMI locking

Since we'd like to get back to DRSE locking, I tried locking the DRMI tonight. I did the following:

  • First, I aligned the arms, and ran the dither alignment scripts to maximize the arm transmission
  • Next, I misaligned the ETMs, and tried to lock the PRC resonant for the carrier (i.e. PRCL on REFL11I, MICH on AS55Q). I got brief lock stretches of a few seconds but not longer. Turns out the AS55 beam was barely hitting the photodiode. I guess this wasn't looked at since Johannes modified the AS path for the loss measurements. Anyways, it just required a minor tweak to center the beam on the AS55 photodiode.
  • Once the PRC was locked, I ran the PRC and MICH dither align scripts. The way these are set up right now, the error signals to these servos are REFLDC and ASDC respectively (demodulated at the respective dither frequencies). But looking at the spots on the ITM cameras with the PRC resonant, the spots seem shifted (in both PIT and YAW) relative to the spots when the arm cavity is resonant. Shouldn't they be the same mode? Or maybe I am missing something.
       
  • Next, I tried to lock the DRMI with the 1f error signals: i.e. PRCL on REFL11 I, SRCL on REFL55 I, and MICH on AS55 Q. After some demod phase tweaking, I was able to get some locks going. Turning on the PRC angular feedforward seemed to help the locking, but I have no idea if the installed filters are still the correct ones. I believe the POP QPD channels are the witnesses used to train this filter, I will look at the predicted vs achieved subtraction.
  • At this point, I was able to get locks lasting a few minutes - see the attachment. I ran the UGF servos and tweaked the loop gains a little, but before I could start a loop measurement, I lost the lock. I am calling it for the night.

GV 26 April 2017, 3pm: Forgot to note yesterday that I re-connected the suspect Satellite box, which has been connected to the SRM signal chain, back to the SRM suspension. I did not see any instances of glitching during my work last night. Also added pictures showing shifted spots on ITMs when PRC is locked relative to when arms are locked...

  12954   Fri Apr 28 02:04:36 2017 gautamUpdateGeneralDRMI locking

I got a couple of ~30min long DRMI lock stretches today. The settings I used are essentially the same as what I had back in November. Though we have since made some changes to the IMC RF signal chain, I guess it is not unreasonable that the LSC Demod phases that worked then work now as well. 

In the lock stretches, I did the following:

  • Took loop measurements for MICH, PRCL, SRCL
  • Turned on the sensing oscillator lines for error signal calibration
  • Tried turning on the analog whitening on AS55, REFL11 and REFL55. The latter two worked fine, but everytime I turned the REFL55 whitening on, I broke the lock. I'm also unable to acquire lock if I leave the whitening turned on all the time. The ADC overflow indicators also indicate frequent overflows when I turn the whitening on. Oddly, this seems to happen even if I turn the analog whitening gain to 0dB - the signals look well within the ADC range on dataviewer and DTT timeseries mode. Not sure what's going on here, I will investigate further tomorrow.
  • We should have some stretches where we can look at the possibility of seismic feedforward for some DRMI length DOFs.

On the side, I'm also looking at whether the PRC angular feedforward filters, last trained in October 2016, remain valid. Even post midnight, I am unable to lock the DRMI without turning on the FF, and looking at the POP QPD PIT and YAW signal spectra with the FF on vs FF off, there is definitely some improvement in the 1-4Hz band (plot to follow), question is whether we can do better and hence improve the DRMI duty cycle/ make the lock acquisition easier. To this end, I centered the beam on the POP QPD after locking and dither aligning the PRC on carrier, and have taken some data to look at.

So, much data analysis to follow - the idea is to put together a DRMI noise budget with Evan's NB code. For now, here are the uncalibrated control signal spectra.

Attachment 1: 20170428_DRMI.pdf
20170428_DRMI.pdf
  12957   Fri Apr 28 19:32:06 2017 gautamUpdateGeneralDRMI locking - PRCL angular FF

I took a closer look at the POP QPD/ PRC angular feedforward situation yesterday. I thought it would be useful to have a POP QPD MEDM screen. Looking at the PIT and YAW channel filter modules, the anti-whitening filters seemed different from what we have for other channels that are connected to the Pentek interface board (e.g. MCL). So I copied over the 150:15 (z:p) filter, and also turned on a 60Hz comb. The LSC offsets script does not set the dark offsets for this QPD, so I manually put in the dark offsets for the PIT, YAW and SUM channels as well. For the locking, I first locked the arms on IR an dither aligned them. Then I locked the PRMI on carrier, ran the PRC dither alignment, and went over to the ITMX pickoff table and centered the beam on the QPD by making the PIT and YAW channel timeseries oscillate around approximately zero. 

After these tweaks, I collected ~40mins of data with the angular FF OFF/ON. I did not DC couple the ITM Oplev servos, but Eric tells me that this did not make a difference to the achievable subtraction in the past. Here is the frequency domain multicoherence analysis - I used the BS_X and BS_Y seismometer channels as witnesses. I've also put a plot with what the raw FF filter coefficients look like (no fitting yet). 

      

Looks like we can do better for both DOFs - it even seems like we are injecting noise with the current FF filters in some bands, perhaps we can do a better job of rolling off the filters outside the band of interest. Eric and I were discussing MATLAB's "reduce" routine for this purpose, I will play around with it and see if I get a better fit.

Unfortunately, I encountered a strange error when trying to pull data with nds2 today, it kept complaining RuntimeError: Too many channels or too much data requestedeven though I have pulled longer stretches of data for more channels with 16k sampling rate as recently as last week. Shorter duration requests (<600 seconds) seemed to work fine though... So I had to use cds.getdata to pull the data, and they're much too large to attach. Has anyone else encountered a similar error?


The mystery of the spots on the ITMs when the PRC is locked on carrier remains - after talking this over with Koji, we figured that even with the carrier resonant, the spot will be much dimmer than the spots when the arms are locked, but what I see on the cameras is still a pretty beefy spot. The real cavity mode is actually visible where it should be (I marked the locations of the spots with arms well-aligned with a marker on the monitors), as given away by some twinkling that is visible only when the cavity is locked. But what ghost beam is so intense it looks almost as bright as when the arm is locked?

GV 10pm 28 April 2017: Turns out this is the spot from the single bounce off the ETM transmitting back through the ITM and hitting the suspension cage (hence the bright spot). Johannes and I confirmed by moving the ETM, the spot moved with it. I just never paid attention to this spot before.

Attachment 1: PRC_angularFF.pdf
PRC_angularFF.pdf
Attachment 2: PRC_TFs.pdf
PRC_TFs.pdf
  12960   Mon May 1 16:29:51 2017 gautamUpdateGeneralDRMI locking

For the traces I posted, I had not turned on the whitening for the SRCL sensing PD (REFL55). However, I took a spectrum on a subsequent lock, with the analog whitening + digital dewhitening turned on for all 3 PDs (AS55, REFL11 and REFL55), and the HF part of the SRCL spectrum still looked anomalous. I'm putting together the detailed NB, but here's a comparison between the signals from the 3 RFPDs with the PSL shutter closed (but whitening engaged, and with the analog gains at the same values as used during the locking).

 

To convert the y-axis into m/rtHz, I used data from a sensing matrix measurement I took yesterday night during a DRMI lock - I turned on lines between 300 Hz and 325 Hz for the 3DOFs for ~5 minutes, downloaded the RFPD error signal data and did the demodulation. I used numbers from this elog to convert the actuator drive from cts to m. The final numbers I used were:

MICH (AS55_Q):   8.706 * 10^11 cts/m

PRCL (REFL11_I): 2.757 * 10^12 cts/m

SRCL (REFL55_I): 1.995 * 10^10 cts/m

So it looks like there may be something weird going on with the REFL55 signal chain. Looking at the LSC rack (and also suggested by an elog search), it looks like the demodulation is done by a demod board labelled "POP55" - moreover, the demodulated outputs are taken not from the regular output ports on this board, but from the "MON" ports on the front panel. 

Quote:

one of these signals does not look like the others: explanation?

 

Attachment 1: LSC_sensingNoise.pdf
LSC_sensingNoise.pdf
  12963   Wed May 3 16:00:00 2017 gautamSummaryGeneralNetwork Topology Check

[johannes, gautam]

I forgot we had done this last year already, but we updated the control room network switch labels and double checked all the connections. Here is the status of the connections and labels as of today:

There are a few minor changes w.r.t. labeling and port numbers compared to the Dec 2015 entry. But it looks like there was no IP clash between Rossa and anything (which was one of the motivations behind embarking on this cleanup). We confirmed by detatching the cable at the PC end of Rossa, and noticed the break in the ping signals. Plugging the cable back in returned the pings. Because Rossa is currently un-bootable, I couldn't check the MAC address.

We also confirmed all of this by using the web browser interface for the switch (IP = 192.168.113.249).

Attachment 1: Network_topology_3May2017.pdf
Network_topology_3May2017.pdf
  12972   Thu May 4 19:03:15 2017 gautamUpdateGeneralDRMI locking - preliminary MICH NB

Summary:

I've been playing around with Evan's NB code trying to put together a noise budget for the data collected during the DRMI locks last week. Here is what I have so far.

Attachment #1: Sensing matrix measurement.

  • This is basically to show that the MICH error signal is mostly in AS55Q.
  • The whitening gain used was 0dB, and the demod phase was -82 degrees.
  • The MICH sensing response was 5.31*10^8 V/m, where V is the demod board output. The 40m wiki RFPD page for AS55 says the RF transimpedance is ~550ohms, and I measured the Demod Board puts out 5.1V of IF signal (measured at after the Preamp, which is what goes to the ADC) for 1V of RF signal at the PD input. Using these numbers, and assuming a PD responsivity of 0.8 A/W at 1064nm, the sensing response is 2.37*10^5 W/m. I don't have a feeling yet for whether this is a reasonable number, but it would be a number to compare to what my Finesse model tells me to expect, for example.
  • Actuator calibration used to arrive at these numbers was taken from this elog

Attachment #2: MICH OLTF measurement vs model

  • In order to build the MICH OLTF model, I used MATLAB to put together the following transfer functions:
    • BS pendulum
    • Digital servo filters from LSC_MICH
    • Violin mode filters 
    • Analog/Digital AA and AI filters. For the digital AA/AI filters, I took the coefficients from /opt/rtcds/rtscore/release/src/fe/controller.c
  • The loop measurement was taken with digital filter modules FM1, FM2, FM3, FM7, FM9 engaged. 
  • In order to fit the model to the measurement, I tried finding the best-fit values for an overall loop gain and delay. 
  • The agreement between model and measurement isn't stellar, but I decided to push ahead for a first attempt. This loop TF was used to convert various noises into displacement noise for plotting.

Attachment #3: Noise budget

  • It took me a while to get Evan's code going, the main changes I made were to use nds2 to grab data instead of GWPy, and also to replace reading in .txt files with importing .mat files. This is a work in progress.
  • Noises plotted:
    • Measured - I took the in loop error signal and estimated the free-running displacement noise with the model OLTF, and calibrated it into metres using the sensing response measurement. This looks consistent with what was measured back in Dec 2015.
    • Shot noise - I used the measured DC power incident on the PD, 13mW, RF transimpedance of 550 V/A, and the V/m calibration factor mentioned above, to calculate this (labelled "Quantum Noise").
    • Dark noise - measured with PSL shutter closed.
    • Seismic noise, thermal noise, gas noise - calculated with GWINC

I think I did the various conversions/calibrations/loop algebra correctly, but I may have overlooked something. Now that the framework for doing this is somewhat set up, I will try and put together analogous NBs for PRCL and SRCL. 

GV 22 August 2017: Attachment #4 is the summary of my demod board efficiency investigations, useful for converting sensing measurement numbers from cts/m to W/m.

Attachment 1: DRMI_noArms_April30.pdf
DRMI_noArms_April30.pdf
Attachment 2: MICH_OLTF.pdf
MICH_OLTF.pdf
Attachment 3: C1NB_disp_40m_MICH_NB_30_April_2017.pdf
C1NB_disp_40m_MICH_NB_30_April_2017.pdf
Attachment 4: 40m_REFL_RFPDs_efficiency.pdf
40m_REFL_RFPDs_efficiency.pdf
  12975   Fri May 5 12:10:53 2017 gautamUpdateGeneralMICH NB questions

Quote:
Is suspension thermal noise missing? I take it &quot;Thermal&quot; refers just to thermal things going on in the optic, since I don&#39;t see any peaks at the bounce/roll modes as I would expect from suspension thermal noise. What goes into the GWINC calculation of seismic noise? Does it include real 40m ground motion data and our seismic stacks? I&#39;m surprised to see such a sharp corner in the &quot;Dark Noise&quot; trace, did you apply the OLG correction to a measured dark noise ASD? (The OLG correction only needs to be applied to the in-lock error signals to recover open loop behavior, there is no closed loop when you&#39;re measuring the dark noise so nothing to correct for.)


I've included the suspension thermal noise in the "Thermal" trace, but I guess the GWINC file I've been using to generate this trace only computes the thermal noise for the displacement DoF. I think this paper has the formulas to account for them, I will look into including these.

For the seismic noise, I've just been using the seis40.mat file from the 40m SVN. I think it includes a model of our stacks, but I did not re-calculate anything with current seismometer spectra. In the NB I updated yesterday, however, I think I was off by a factor of sqrt(3) as I had only included the seismic noise from 1 suspended optic. I've corrected this in the attached plot.

For the dark noise, you are right, I had it grouped in the wrong dictionary in the code so it was applying the OLG inversion. I've fixed this in the attached plot.
Attachment 1: C1NB_disp_40m_MICH_NB_30_April_2017.pdf
C1NB_disp_40m_MICH_NB_30_April_2017.pdf
  12979   Wed May 10 01:56:06 2017 gautamUpdateGeneralMICH NB - OL coupling

Last night, I tried to estimate the contribution of OL feedback signal to the MICH length error signal.

In order to do so, I took a swept sine measurement with a few points between 50 Hz and 500 Hz. The transfer function between C1:LSC-MICH_OUT_DQ and the Oplev Servo Output point (e.g. C1:SUS-BS_OL_PIT_OUT etc) was measured. I played around with the excitation amplitude till I got coherence > 0.9 for the TF measurement, while making sure I wasn't driving the Oplev error point too hard that side-lobes began to show up in the MICH control signal spectrum.

The Oplev control signal is not DQ-ed. So I locked the DRMI again and downloaded the 16k data "live" for ~5min stretch using cdsutils.getdata on the workstation. The Oplev error point is DQ-ed at 2k, but I found that the excitation amplitude needed for good SNR at the error point drove the servo to the limiter value of 2000cts - so I decided to use the control signal instead. Knowing the transfer function from the Oplev *_OUT* channel to C1:LSC-MICH_IN1_DQ, I backed out the coupling - the transfer function was only measured between 50 Hz and 500 Hz, and no extrapolation is done, so the estimation is only really valid in this range, which looks like where it is important anyways (see Attachment #2, contributions from ITMX, ITMY and BS PIT and YAW servos added in quadrature).

I was also looking at the Oplev servo shapes and noticed that they are different for the ITMs and the BS (Attachment #1). Specifically, for the ITM Oplevs, an "ELP15" is used to do the roll-off while an "ELP35" is employed in the BS servo (though an ELP35 also exists in the ITM Oplev filter banks). I got lost in an elog search for when these were tuned, but I guess the principles outlined in this elog still hold and can serve as a guideline for Oplev loop tweaking.

Coil driver noise estimation to follow

Quote:

I think the most important next two items to budget are the optical lever noise, and the coil driver noise. The coil driver noise is dominated at the moment by the DAC noise since we're operating with the dewhitening filters turned off.

GV 10 May 12:30pm: I've uploaded another copy of the NB (Attachment #3) with the contributions from the ITMs and BS separated. Looks like below 100Hz, the BS coupling dominates, while the hump/plateau around 350Hz is coming from ITMX.

Attachment 1: OL_BS_ITM_comp.pdf
OL_BS_ITM_comp.pdf
Attachment 2: C1NB_disp_40m_MICH_NB_8_May_2017.pdf
C1NB_disp_40m_MICH_NB_8_May_2017.pdf
Attachment 3: C1NB_disp_40m_MICH_NB_10_May_2017.pdf
C1NB_disp_40m_MICH_NB_10_May_2017.pdf
  12980   Wed May 10 12:37:41 2017 gautamUpdateCDSMCautolocker dead

The MCautolocker had stalled - there were no additional lines to the logfile after 12:17pm (~20mins ago). Normally, it suffices to ssh into megatron and run sudo initctl restart MCautolocker - but it seems that there was no running initctl instance of this, so I had to run sudo initctl start MCautolocker. The FSS Slow control initctl process also seemed to have been terminated, so I ran sudo initctl start FSSslowPy.

It is not clear to me why the initctl instances got killed in the first place, but MC locks fine now.

  12983   Wed May 10 17:17:05 2017 gautamUpdateGeneralDAC / Coil Driver noise

Suspension Actuator noise:

There are 3 main sources of electronics noise which come in through the coil driver:

  1. Voltage noise of the coil driver.
    1. The input referred noise is ~5 nV/rHz, so not a big issue.
    2. The Johnson noise of the output resistor which is in series with the coil is sqrt(4*k*T*R) ~ 3 nV/rHz. We probably want to increase this resistor from 200 to 1000 Ohms once Gautam convinces us that we don't need that range for lock acquisition.
  2. Voltage noise of the dewhitening board.
    1. In order to reduce DAC noise, we have a "dewhitening" filter which provides some low passing. There is an "antiDW" filter in the digital part which is the inverse of this, so that when they are both turned on, the result is that the main signal path has a flat transfer function, but the DAC noise gets attenuated.
    2. In particular, ours have 2 second order filters (each with 2 poles at 15 Hz and 2 zeros at 100 Hz).
    3. We also have a passive pole:zero network at the output which has z=130, 530 Hz and p = 14, 3185 Hz.
    4. The dewhitening board has an overall gain of 3 at DC to account for our old DACs having a range of +/-5 V and our coil drivers having +/- 15 V power supplies. We should get rid of this gain of 3.
    5. The dewhitening board (and probably the coil driver) use thick film resistors and so their noise is much worse than expected at low frequencies.
  3. DAC voltage noise. 
    1. The General Standards 16-bit DACs have a noise of ~5 uV/rHz.
  4. the satellite box is passive and not a significant source of noise; its just a flaky construction and so its problematic.
Attachment 1: actuation.jpg
actuation.jpg
  12984   Wed May 10 17:46:44 2017 gautamUpdateGeneralDAC / Coil Driver noise - SRM coil driver + dewhite board removed

I've removed the SOS coil driver (D010001-B, S/N B151, labelled "SRM") + Universal Dewhitening Board (D000183 Rev C, S/N B5172, labelled "B5") combo for SRM from 1X4, for photo taking + inspection.

I first shutdown the SRM watchdog, noted cabling between these boards and also the AI board as well as output to Sat. Box. I also needed to shutdown the MC2 watchdog as I had to remove the DAC output to MC2 in order to remove the SRM Dewhitening board from the rack. This connection has been restored, MC locks fine now.

 

  12986   Thu May 11 18:59:22 2017 gautamUpdateGeneralSRM coil driver + dewhite board initial survey

I've added marked-up schematics + high-res photographs of the SRM coil driver board and dewhitening board to the 40m DCC Document tree (D1700217 and D1700218). 

In the attached marked-up schematics, I've also added the proposed changes which Rana and I discussed earlier today. For the thick-film -> thin-film resistor switching, I will try and make a quick LISO model to see if we can get away with replacing just a few rather than re-stuff the whole board.

Since I have the board out, should I implement some of these changes (like AD797 removal) before sticking it back in and pulling out one of the ITM boards? I need to look at the locking transients and current digital limit-values for the various DoFs before deciding on what is an appropriate value for the output resistance in series with the coil.

Another change I think should be made, but I forgot to include on the markups: On the dewhitening board, we should probably replace the decoupling capacitors C41 and C52 with equivalent value electrolytic caps (they are currently tantalum caps which I think are susceptible to fail by shorting input to output).

Attachment 1: D010001-B_40m.pdf
D010001-B_40m.pdf D010001-B_40m.pdf D010001-B_40m.pdf D010001-B_40m.pdf
Attachment 2: D000183-C8_40m.pdf
D000183-C8_40m.pdf D000183-C8_40m.pdf D000183-C8_40m.pdf
ELOG V3.1.3-