40m QIL Cryo_Lab CTN SUS_Lab TCS_Lab OMC_Lab CRIME_Lab FEA ENG_Labs OptContFac Mariner WBEEShop
  40m Log, Page 193 of 344  Not logged in ELOG logo
ID Date Author Type Categorydown Subject
  12019   Fri Mar 4 01:11:41 2016 gautamUpdateGreen LockingLaser swap - both green beatnotes found

The good news: both green beatnotes have now been found. The problem was alignment on the green beat PD on the PSL table which I fixed. They are about -40dBm in amplitude (compare to -25dBm we used to see). But looking at the phase tracker Q output seems to suggest that there is adequate signal...

The bad news: the ALS noise still looks bad (see attachment)- I think the IR beat for the Y was perhaps marginally better. The beat amplitude for the X beat was optimized on the PSL table with the help of the oscilloscope. There may be some headroom for improvement with the Y beat.

I also did the AM/PM measurement for the replaced lightwave, chose an LO frequency based on this, and took the loop OLTF, plots to follow...

To do: 

  • Check Y-end PDH loop OLTF
  • Optimize beat note amplitude of Y beat
  • Align Y-green better to the arm using steering mirrors on the endtable.
  • Double check calibration of PM/AM measurement and that I've picked the correct LO frequency/ I don't have any other ideas for improving the situation with the X beat though
Attachment 1: IR_beat_20160303_green.pdf
  12023   Sat Mar 5 23:31:01 2016 gautamUpdateGreen LockingLaser swap - some updates

I've been a little behind on my elogs so here is an update of the end laser situation.

IR beat for X-end recovered

  • The issue was optimizing the alignment into the fiber at the end table.
  • Using Fluke fiber illuminator helped in aligning IR pickoff into mount. Useful note: there is an unused fiber running between the X-end and the PSL table, by connecting these at the PSL table, I was able to monitor the coupled power while remaining at the X-end.
  • Another major issue was that one of the steering mirrors (marked "Y1" in Attachment #1) was mounted with AR coated side facing the beam. This was fixed by simply rotating the post, the mirror was not removed from its mount. I can only assume that this mirror is in this kind of mount because of space constraints.
  • The fiber has a collimating telescope attached to the end of it. In principle, this gives us more angular acceptance while coupling the beam into the fiber, but as I found out, the acceptance is still tiny (I don't have a number to quantify it). Furthermore, the Fluke visual fault locator revealed that the lens in the collimating telescope is not set up great - when re-doing the X end table, we should fix this situation so as to have a fairly large collimated beam coming out of the fiber when illuminated from the other end, this would make the mode matching much easier.
  • Bottom line: we have ~1.2 mW of IR light incident on the coupler at the end table, and ~400uW of IR power at the PSL table => coupling efficiency is ~30%, not stellar, but sufficient for now I guess. After the various splitters etc, there is about 160uW of EX IR light and ~300uW of PSL IR light incident on the beat PD, and the beat amplitude is about -9dBm.

AM/PM characterization of newly installed Lightwave

  • Having recovered the IR beat, I set out to do the PM characterization for the end laser.
  • Attachment #2 shows the electrical setup. The IR beat was piped to the X-end via an existing long cable that runs between the vertex and the endtable. Not shown in the diagram, but I used a 20dB coupler to keep track of the beat frequency on the HP spectrum analyzer while doing this measurement.
  • I restricted myself to the range between 100kHz and 500kHz to do the scan, because it takes quite a while to do the scan with fine resolution (IF bandwidth = 10Hz).
  • To calibrate the magnitude response to rad/V, I divided the output of the network analyzer (converting dB to absolute magnitude first) by the amplitude of the signal seen on the monitoring oscilloscope while the PLL is unlockedThis number was 96mV/rad.
  • To confirm that the error signal spectrum is indeed a good approximation of the "plant" transfer function (i.e that 100kHz >> UGF of loop transfer function of the PLL), I measured the loop TF of the PLL - Attachment #3 suggests a UGF of ~ 16kHz, which means the assumption is reasonable.
  • Excitation amplitude was -25dBm (which gave reasonable SNR), and 3 averages were taken.
  • The AM measurement was done using the same procedure as detailed here - the DC block was used. The DC level of the PD output was 2.72 V. The excitation amplitude was 0dBm.
  • Attachment #4 shows the AM response, PM response and PM/AM ratio
  • The peak in the PM/AM ratio at 256620 Hz is compelling because it is not too sharp (and so we can be reasonably confident we are at a good operating point) and the PM response of 23.83 rad/V is also acceptable. 
  • As a consistency check, the PM response of ~30rad/V at 100kHz => PZT actuator gain is ~3MHz/V, which is in the region we expect it to be...

Next steps in recovering ALS and trying to lock again

  • Having set the PDH modulation frequency to 256.62kHz, I took the spectrum of ALS noise using the IR beat (i.e. by piping the IR beat signal through the electronics the green beats usually go through - 6dB and 10dB attenuators were placed immediately after the beat PDs for the X and Y arms respectively, to make the signal levels compatible with the electronics), Attachment #5 unfortunately suggests that the noise performance is still poor, and I suspect the situation will be similar using the green beat (though I have not measured this yet).
  • The modulation depth could be sub-optimal for the X-end PDH, I have to measure this and check that it is at an acceptable level. This will also tell me if I need to change the sum+HPF pomona box used to send the PDH control signal + piezo dither signal to the laser PZT. In order to do this, I need to know what the input impedance to the FAST control BNC is - the manual isn't very helpful, it just says the piezo has a capacitance less than 10,000pF. I suppose I will have to actually measure this.
  • PDH loop OLTFs have to be re-measured for both ends to check that the servo gain's are appropriately placed.
  • We know that the mode-matching into the arm for the X end is poor (I have yet to quantify this) - I suspect that the beam ellipticity is the main culprit. However, the DC transmitted power levels at the PSL table are comparable to (even slightly better than) the Y arm numbers, and so this cannot be the sole reason why the X-arm ALS noise is so much worse... I will continue my investigations next week...
Attachment 1: AUXxTelescope.png.png
Attachment 2: PM_setup.pdf
Attachment 3: PLLolg.pdf
Attachment 4: AMPM20160303.pdf
Attachment 5: IRbeat_20160304.pdf
  12026   Mon Mar 7 23:51:36 2016 gautamUpdateGreen LockingLaser swap - some improvement


Next steps in recovering ALS and trying to lock again

  • Having set the PDH modulation frequency to 256.62kHz, I took the spectrum of ALS noise using the IR beat (i.e. by piping the IR beat signal through the electronics the green beats usually go through - 6dB and 10dB attenuators were placed immediately after the beat PDs for the X and Y arms respectively, to make the signal levels compatible with the electronics), Attachment #5 unfortunately suggests that the noise performance is still poor, and I suspect the situation will be similar using the green beat (though I have not measured this yet).
  • The modulation depth could be sub-optimal for the X-end PDH, I have to measure this and check that it is at an acceptable level. This will also tell me if I need to change the sum+HPF pomona box used to send the PDH control signal + piezo dither signal to the laser PZT. In order to do this, I need to know what the input impedance to the FAST control BNC is - the manual isn't very helpful, it just says the piezo has a capacitance less than 10,000pF. I suppose I will have to actually measure this.
  • PDH loop OLTFs have to be re-measured for both ends to check that the servo gain's are appropriately placed.
  • We know that the mode-matching into the arm for the X end is poor (I have yet to quantify this) - I suspect that the beam ellipticity is the main culprit. However, the DC transmitted power levels at the PSL table are comparable to (even slightly better than) the Y arm numbers, and so this cannot be the sole reason why the X-arm ALS noise is so much worse... I will continue my investigations next week...

Attachment #1

Since I could not determine how many volts at the LO input of the pomona box input corresponds to how many volts at the laser PZT, I measured the transfer function between these points using the Agilent network analyzer. The measured TF suggests that for a function generator output of 2Vpp, we get approximately 75mrad of phase modulation, which compares reasonably well with the value of 120mrad reported here. I did not attempt to further increase the LO output signal to push this number closer to 120mrad, as with 2Vpp from the function generator we get +7dBm at the mixer, which is what it wants - so I wanted to avoid any attenuators etc...

Attachments #2 and #3

After ensuring that we have appreciable phase modulation, I set out to measure the PDH OLTFs and adjust the gain on the uPDH boxes accordingly. The X end gain is at 6.0, and the Y end gain is at 4.0. Before measuring the Y-end OLTF, I adjusted the steering mirrors to increase GTRY to ~0.45. GTRX remains a paltry 0.05... But the UGFs seem satisfactory..

Attachment #4

Finally, I took the ALS noise spectrum for the green beats. The beat note amplitudes on the network analyzer in the control room are still puny compared to what we had, -40dBm for Y and -45dBm for X. But the phase tracker Q values are ~1000 and ~3000 for X and Y respectively, which are pretty close to what these were if memory serves me right. There may still be some room for optimization of the PDH loop gains etc, and we could perhaps look at lowering the gain of the REFL PD at the X end? I also have yet to do the sweep for the 3 temperatures at which we can find a beatnote and park at the middle one...

These spectra suggest we could even possibly try locking? We are approximately a factor of 3 above the reference for X and on par with the reference for Y....

Unrelated to this work: I also realinged the PMC, PMC transmission is now 0.730V up from ~0.65V.

Attachment 1: PomonaTF.pdf
Attachment 2: XPDH.pdf
Attachment 3: YPDH.pdf
Attachment 4: greenbeat_20160307.pdf
  12027   Tue Mar 8 18:22:20 2016 ranaUpdateGreen LockingLaser swap - some improvement

Why is the transmission of X green so low? Perhaps you can phase lock the IR and then scan the X frequency, using the X arm as the analyzer. i.e. put a slow ramp into MC2 to pull the PSL frquency and thus the green frequency. You can record a movie of the scan using the framegrabber and record the green transmission peaks to see how big the mode match is exactly (which modes are so big)

  12564   Fri Oct 14 19:59:09 2016 YinziUpdateGreen LockingContinuing work with the TC 200

Oct. 15, 2016

Another attempt (following elog 8755) to extract the oven transfer function from time series data using Matlab’s system identification functionalities.

The same time series data from elog 8755 was used in Matlab’s system identification toolbox to try to find a transfer function model of the system.

From elog 8755: H(s) is known from current PID gains: H(s) = 250 + 60/s +25s, and from the approximation G(s)=K/(1+Ts), we can expect the transfer function of the system to have 3 poles and 2 zeros.

I tried fitting a continuous-time and a discrete time transfer function with 3 poles and 2 zeros, as well as using the "quick start" option. Trying to fit a discrete time transfer function model with 3 poles and 2 zeros gave the least inaccurate results, but it’s still really far off (13.4% fit to the data).


1. Obtain more time domain data with some modulation of the input signal (also gives a way to characterize nonlinearities like passive cooling). This can be done with some minor modifications to the existing code on the raspberry pi. This should hopefully lead to a better system ID.

2. Try iterative tuning approach (sample gains above and below current gains?) so that a tune can be obtained without having to characterize the exact behavior of the heater.

Oct. 16, 2016

-Found the raspberry pi but it didn’t have an SD card

-Modified code to run directly on a computer connected to the TC 200. Communication seems to be happening, but a UnicodeDecodeError is thrown saying that the received data can’t be decoded.

-Some troubleshooting: tried utf-8 and utf-16 but neither worked. The raw data coming in is just strings of K’s, [‘s, and ?’s

-Will investigate possible reasons (update to Mac OS or a difference in Python version?), but it might be easier to just find an SD card for the raspberry pi which is known to work. In the meantime, modify code to obtain more time series data with variable input signals.

  12567   Tue Oct 18 17:11:42 2016 YinziUpdateGreen LockingMore serial port troubleshooting

I connected to the serial port using screen (through Terminal) and using Arduino's serial monitor and basically received the same strings that were received through python, so it's not a python issue. Checked the other TC 200 module and was also receiving nonsense, but it was all question marks instead of mostly K's and ['s.

This rules out a few possible reasons for the weird data. Next steps are to set up and configure the Raspberry Pi (which has been interfaced before) and see if the problem continues.

  12603   Mon Nov 7 17:24:12 2016 gautamUpdateGreen LockingGreen beat setup on PSL table

I've been trying to understand the green beat setup on the PSL table to see if I can explain the abysmal mode-matching of the arm and PSL green beams on the broadband beat PDs. My investigations suggest that the mode-matching is very sensitive to the position of one of the lenses in the arm green path. I will upload a sktech of the PSL beat setup along with some photos, but here is the quick summary.

  1. I first mapped the various optical components and distances between them on the PSL table, both for the arm green path and the PSL green path
  2. Next, setting the PSL green waist at the center of the doubling oven and the arm green waist at the ITMs (in vacuum distances for the arm green backed out of CAD drawing), I used a la mode to trace the Gaussian beam profile for our present configuration. The main aim here was to see what sort of mode matching we can achieve theoretically, assuming perfect alignment onto the BBPDs. The simulation is simplified, the various beam splitters and other transmissive optics are treated as having 0 width
  3. It is pretty difficult to accurately measure path lengths to mm accuracy, so to validate my measurement, I measured the beam widths of the arm and PSL green beams at a few locations, and compared them to what my simulation told me to expect. The measurements were taken with a beam profiler I borrowed from Andrew Wade, and both the arm and PSL green beams have smooth Gaussian intensity profiles for the TEM00 mode (as they should!). I will upload some plots shortly. The agreement is pretty good, to within 10%, although geometric constraints on the PSL table limited the number of measurements I could take (I didn't want to disturb any optics at this point)
  4. I then played around with the position of a fast (100mm EFL) lens in the arm green path, to which the mode matching efficiency on the BBPD is most sensitive, and found that in a +/- 1cm range, the mode matching efficiency changes dramatically


Attachments #1 and 2: Simulated and measured beam profiles for the PSL and arm green beams. The origin is chosen such that both beams have travelled to the same coordinate when they arrive at the BBPD. The agreement between simulation and measurement is pretty good, suggesting that I have modelled the system reasonably well. The solid black line indicates the (approximate) location of the BBPD


Attachment #3: Mode matching efficiency as a function of shift of the above-mentioned fast lens. Currently, after my best efforts to align the arm and PSL green beams in the near and far fields before sending them to the BBPD results in a mode matching efficiency of ~30% - the corresponding coordinate in the simulation is not 0 because my length measurements are evidently not precise to the mm level. But clearly the mode matching efficiency is strongly sensitive to the position of this lens. Nevertheless, I believe that the conclusion that shifting the position of this lens by just 2.5mm from its optimal position degrades the theoretical maximum mode matching efficiency from >95% to 50% remains valid. I propose that we align the beams onto the BBPD in the near and far fields, and then shift this lens which is conveniently mounted on a translational stage, by a few mm to maximize the beat amplitude from the BBPDs. 

Unrelated to this work: I also wish to shift the position of the PSL green shutter. Currently, it is located before the doubling oven. But the IR pickoff for the IR beat setup currently is located after the doubling oven, so when the PSL green shutter is closed, we don't have an IR beat. I wish to relocate the shutter to a position such that it being open or closed does not affect the IR beat setup. Eventually, we want to implement some kind of PID control to make the end laser frequencies track the PSL frequency continuously using the frequency counter setup, for which we need this change...

Attachment 1: CurrentX.pdf
Attachment 2: CurrentY.pdf
Attachment 3: ProposedShift_copy.pdf
  12609   Wed Nov 9 23:21:44 2016 gautamUpdateGreen LockingGreen beat setup on PSL table

I tried to realize an improvement in the mode matching onto the BBPDs by moving the lens mentioned in the previous elog in this thread. My best efforts today yielded X and Y beats at amplitudes -15.9dBm (@37MHz) and -25.9dBm (@25MHz) respectively. The procedure I followed was roughly:

  1. Do the near-field far-field alignment of the arm and PSL green beams
  2. Steer beam onto BBPD, center as best as possible using the usual technique of walking the beam across the photodiode
  3. Hook up the output of the scope to the Agilent network analyzer. Tweak the arm and PSL green alignments to maximize the beat amplitude. Then move the lens to maximize the beat amplitude.

As per my earlier power budget, these numbers translate to a mode matching efficiency of ~53% for the X arm beat and ~58% for the Y arm beat, which is a far cry from the numbers promised by the a la mode simulation (~90% at the optimal point, I could not achieve this for either arm scanning the lens through a maximum of the beat amplitude). Looks like this is the best we can do without putting in any extra lenses. Still a marginal improvement from the previous state though...

  1   Wed Oct 17 18:46:33 2007 ranaConfigurationGeneraleLog Change
This is the first entry in the new 40m eLog.

Its GWs or bust now! Big grin

  3   Thu Oct 18 15:03:14 2007 ajwRoutineGeneralthis is only a test

  7   Mon Oct 22 12:02:59 2007 ajwRoutineGeneralSTACIS as microseismic shaker
In case we ever want to use our Stacis systems as shakers, check this:
  10   Tue Oct 23 11:08:20 2007 steveOtherGeneralbrush fires
There are big brush fires around LA
40 days plot show no effect in the 40m lab
Attachment 1: brushfires.jpg
  11   Wed Oct 24 01:43:32 2007 Andrey RodionovOtherGeneralPDF-file -> Will report about first results for XARM during Wednesday meeting

Here is the pdf-file with some graphs showing first results for XARM optimization.

We will discuss alltogether during our Wednesday meeting which starts at 2.40PM. Probably it would be necessary to project this pdf-file to the big screen,
so someone should bring laptop and probably connect it to the projector. I do not have a laptop.

See you on that meeting.
Attachment 1: Andrey_October_24.pdf
Andrey_October_24.pdf Andrey_October_24.pdf Andrey_October_24.pdf Andrey_October_24.pdf Andrey_October_24.pdf Andrey_October_24.pdf Andrey_October_24.pdf Andrey_October_24.pdf
  41   Wed Oct 31 19:26:08 2007 Andrey RodionovRoutineGeneralPhotographs of "Mode-Cleaner Entrance"

Here are the pictures of "inside the chamber".
Attachment 1: MC-Pictures-1.pdf
MC-Pictures-1.pdf MC-Pictures-1.pdf MC-Pictures-1.pdf MC-Pictures-1.pdf
Attachment 2: MC-Pictures-2.pdf
MC-Pictures-2.pdf MC-Pictures-2.pdf MC-Pictures-2.pdf MC-Pictures-2.pdf
Attachment 3: MC-Pictures-3.pdf
MC-Pictures-3.pdf MC-Pictures-3.pdf MC-Pictures-3.pdf MC-Pictures-3.pdf
Attachment 4: MC-Pictures-4.pdf
MC-Pictures-4.pdf MC-Pictures-4.pdf MC-Pictures-4.pdf MC-Pictures-4.pdf
Attachment 5: MC-Pictures-5.pdf
MC-Pictures-5.pdf MC-Pictures-5.pdf MC-Pictures-5.pdf MC-Pictures-5.pdf
Attachment 6: MC-Pictures-6.pdf
MC-Pictures-6.pdf MC-Pictures-6.pdf MC-Pictures-6.pdf MC-Pictures-6.pdf
Attachment 7: MC-Pictures-7.pdf
MC-Pictures-7.pdf MC-Pictures-7.pdf MC-Pictures-7.pdf MC-Pictures-7.pdf
Attachment 8: MC-Pictures-8.pdf
MC-Pictures-8.pdf MC-Pictures-8.pdf MC-Pictures-8.pdf MC-Pictures-8.pdf
Attachment 9: MC-Pictures-9.pdf
MC-Pictures-9.pdf MC-Pictures-9.pdf
  48   Thu Nov 1 16:51:33 2007 d40AoGGeneralD40
If you vant see D40 againn, you leave one plate goulash by N2 tank in morning.

Vit the good paprikash this time!!!
Attachment 1: PB010001.JPG
  94   Mon Nov 12 14:09:19 2007 robDAQGeneraltpman dead on fb40m
The testpoint manager was dead on fb40m. I know I re-started it sometime after the power outage, so something must have killed it. If you get an error from DTT like
"diagnostic kernel does not support: testpoints", then log into fb40m as root, check for the tpman with a ps -ef | grep tpman. If it's not there, then run /usr/controls/tpman & and close the terminal window.
  150   Fri Nov 30 20:13:57 2007 dmassSummaryGeneralHeNe UniPhase Laser
Data for the Uniphase 1.9 mW HeNe laser (labeled: "051507 From ISCT-BS") SN: 1284131 Model: 1103P

I used the Photon Beamscanner to obtain all data, then fit w(z) as shown on the plot with parameters w_0, z_R, and hidden parameter delta,
where z = delta + x, z is waist distance, x is distance from the laser.

Copies of the matlab code used to fit (/plot) are attached in .zip below.
Attachment 1: Matlabcode.zip
Attachment 2: UniPhaseWaist.jpg
  218   Sun Dec 30 02:36:35 2007 pkpUpdateGeneralAnother update
So I followed suggestions 1 and 3 so far and have started writing up what all needs to be done in order to compile and use the camera. I wrote a program to ping the camera and get its properties and am working on a program to get an image. The reason why I want to write my own programs to do this, is that it will be easier to reuse and also to compile/use in the first place. The programs currently rest in /cvs/cds/caltech/target/Prosilica/ . Unfortunately I will be away for the next couple of days and will have another update on the 2nd.
  238   Mon Jan 14 23:11:26 2008 tobinConfigurationGeneralfiber
John and I removed the fiber that ran from the SP table to the cleanroom. We plan to build a MZ interferometer with this fiber inserted into one of the arms, for the purpose of measuring its phase noise.
  247   Thu Jan 17 20:50:55 2008 tobinUpdateGeneralfiber coupling
Sam, John, and I matched the beam from an NPRO into a fiber on the SP table today. In doing so we used our GigE camera for a physics application for perhaps the first time, viewing the transmitted mode from the fiber during initial alignment. (I used my laptop running Windows and a 100 megabit switch.)
  250   Fri Jan 18 20:53:56 2008 tobinConfigurationGeneralETMY oplev
I monkeyed around with the ETMY oplev, adding a folding mirror and moving the HeNe so that John, Sam, and I have more room for our auxiliary laser setup. (The ISCT-EY has more room than ISCT-EX; the latter has an extra photodiode for IP ANG.) I believe I successfully recommissioned the oplev, though it might not be up to the SV standard. I verified that wiggling the ETMY alignment sliders showed corresponding wiggles in the oplev signals. However, it seems poorly diagonalized.

Our current plan is to have an NPRO, EOM, and fiber coupler on the SP table. This fiber will take light to ISCT-EY where we'll have a mode-matching telescope and inject light to the Y arm via a polarized beamsplitter. This auxiliary beam will have polarization orthogonal to the beam from the PSL.
  262   Thu Jan 24 22:52:18 2008 AndreyBureaucracyGeneralAnts around a dirty glass (David - please read!)

Dear coleagues,

there are rains outside these days, so ants tend to go inside our premises.

David was drinking some beverage from a glass earlier today (at 2PM) and left a dirty glass near the computer.

There are dozens, if not hundreds, of ants inside of that glass now.

Of course, I am washing this glass.

  263   Fri Jan 25 08:55:26 2008 robConfigurationGeneralChanges to Dataviewer channels (XARM)

As a general rule,

clicking random blue buttons chaotically

is not a good problem solving technique. It is thus now explicitly discouraged as an option in the LIGO 40m Lab.
  269   Fri Jan 25 17:11:07 2008 Max , AndreyConfigurationGeneralNEW_FETCH_SHOUROV and GET_DATA do not work

The problem which started yesterday after Andrey's framebuilder restart still persists.

It is still impossible to read data in the past from the channels using "get_data" which in turn uses "new_fetch_shourov".

Max was trying to read data from the channel

and he got the same error messages as Andrey.

Andrey tried earlier today to read data from "C1:SUS-ITMS_SUS" or "C1:SUS-ETMX_SUS" with the error meassge
Error in ==> new_fetch_shourov at 22
at (start_time+duration) > stops(end)

So, it seems that Robert Ward fixed just one problem out of two problems.

Robert revived the realtime signals in Dataviewer,
but did not revive the memory of channels for new_fetch_shourov.

To be more precise, channels have memory (it is possible to see the "Playback" curves in Dataviewer"),
but "get_data" and "new_fetch_shourov" do not see the data from those channels. The problem appeared immediately after Andrey's clicking on blue buttons to restart the framebuilder.

Andrey again apologizes.
  271   Sat Jan 26 02:02:43 2008 JohnSummaryGeneralNew Channels
I added the following channels.



The old .ini file is /cvs/cds/caltech/chans/daq/C0EDCU_26_1_2008.ini
  276   Sat Jan 26 22:00:03 2008 JohnUpdateGeneralLSC-TRY_OUT and ETMY-QPD
In the path from the ETM to the trans PD and QPD at the Y end I have replaced a BS1-1064-10-2037-45P with a polariser. The power falling on these diodes has been reduced. When the arm is locked in its nominal state the transmitted power is now less than 1.

This polariser should serve as an injection point for the auxiliary arm locking. I am attempting to use crossed polarisations to separate this loop from the main arm light.
  277   Sun Jan 27 13:13:21 2008 tobinMetaphysicsGeneraldeparture
It's been grand. Thanks for having me!


Sugar napoleons may be forwarded to T. F., c/o LLO, P.O. Box 940, Livingston, LA 70754-0940.
  288   Thu Jan 31 12:39:14 2008 JohnConfigurationGeneralY arm test mass cameras
I've adjusted the test mass cameras on the y arm to make the beam injected through ETMY more visible.
  328   Thu Feb 21 18:29:28 2008 JohnSummaryGeneralHP Network Analyser Analyzer
The HP 4195A network analyser may be broken, measurements below 150MHz are not reliable. Above 150MHz everything looks normal. This may be caused by a problem with its output (the one you'd use as an excitation) which is varying in amplitude in a strange way.

  377   Thu Mar 13 18:20:29 2008 JohnUpdateGeneralNew Focus 4003 EOM 29.489MHz
I measured the modulation index as a function of drive power using an OSA. Agrees well with spec of 0.2 rad/V.
  395   Sun Mar 23 00:43:08 2008 mevansHowToGeneralOnline Adaptive Filtering
I wrote a short document about the OAF running on the ASS. Since there is no BURT setup, I put a script in /cvs/cds/caltech/scripts to help with setting initial parameters: upass.
Attachment 1: OnlineAdaptiveFilter.pdf
OnlineAdaptiveFilter.pdf OnlineAdaptiveFilter.pdf OnlineAdaptiveFilter.pdf OnlineAdaptiveFilter.pdf OnlineAdaptiveFilter.pdf OnlineAdaptiveFilter.pdf
  409   Wed Apr 2 15:03:51 2008 steveUpdateGeneralreflectivity of black glass
The reflectivity of black glass, shade 12 was supplied by Donald O'Shea
of Emerald Glass Inc., Westlake, OH 44145

The reflectivity of this glass was measured as shown

Old 1064 nm Crysta Laser with poor beam quality was the source.
Attachment 1: bg12refl.pdf
Attachment 2: bg12refsetup.pdf
  417   Mon Apr 7 18:58:49 2008 steveUpdateGeneralreflectivity of SS304
The reflectivity of stainless steel 304 super polished # 8 was measured the same way as elog entry 409

The reflectivity: 74 +- 1 % from incident angle 10 to 80 degrees
Attachment 1: ss304s8refl.pdf
ss304s8refl.pdf ss304s8refl.pdf
  446   Thu Apr 24 23:50:10 2008 ranaUpdateGeneralSyringes in George the Freezer
There are some packets of syringes in the freezer which are labeled as belonging to an S. Waldman.
Thu Apr 24 23:48:55 2008

Be careful of them, don't give them out to the undergrads, and just generally leave them alone. I
will consult with the proper authorities about it.
  478   Thu May 15 10:40:21 2008 steveHowToGeneralLisa Goggin, PhD
Lisa Goggin successfully defended her thesis on May, 13 2008

"A Search For Gravitational Waves from Perturbed Black Hole Ringdowns in Ligo Data"

She started out as a surf student in the 40m.

Attachment 1: lisa.JPG
  483   Fri May 16 17:27:55 2008 AndreyOmnistructureGeneralToilets are broken, do not use them !!!

Both toilets in 40-meter were constantly flushing, the leaking water was on the floor inside of the restrooms, so


I have heard the constant loud sound of flushing water, opened the door, and was unpleasantly surprised because all the floor was under the layer of water and the toilets were constantly flushing. I called security at X5000, a plumber came in and told that a team of plumbers needs to repair the flushing system after the weekend. The plumber today just shut off the flushing water, wiped off the floor and told not to use the restrooms in the weekend. We should expect a team of plumbers on Monday.

Sinks are working, so you can wash your hands.
  494   Fri May 23 21:21:52 2008 CarynSummaryGeneralfiltering mode cleaner with wiener filter
I tried filtering some saved MC_L data (from Mon May19 4:30pm) with multiple MISO filters of different orders, with various sampling rates, at different times. Plotted the max rms error (where error is signal minus signal-estimate). 2min of data (around Mon May19 4:30pm) were used to calculate each filter. And each filter was applied to data at later times to see how well it performed as time progressed. Plots are attached. There appears to have been a disturbance during the 3rd hour. Rana pointed out perhaps it would be better to use data from the evening rather than during the day.
Attachment 1: error_vs_N_for_different_times_64Hz.pdf
Attachment 2: error_vs_N_for_different_times_128Hz.pdf
Attachment 3: error_vs_N_for_different_times_256Hz.pdf
Attachment 4: error_vs_N_for_different_times_512Hz.pdf
Attachment 5: error_vs_srate_for_different_times_256.pdf
Attachment 6: error_vs_srate_for_different_times_512.pdf
Attachment 7: error_vs_srate_for_different_times_1024.pdf
Attachment 8: error_vs_time_for_different_srates_256.pdf
Attachment 9: error_vs_time_for_different_srates_512.pdf
Attachment 10: error_vs_time_for_different_srates_1024.pdf
  546   Thu Jun 19 20:22:03 2008 ranaUpdateGeneralFE Computer Status
I called Rolf (@LLO) who called Alex (@MIT) who suggested that we power cycle every crate
with an RFM connection as we did before (twice in the past year).

Rob and I followed Yoichi around the lab as he turned off and on everything. There
was no special order; he started at the Y-end and worked his way into the corner and
finishing at the X-End. Along the way we also reset the 2 RFM switches around fb0.

This cured the EPICS problem; the FEs could now boot and received the EPICS data.

However, there are still some residual channel hopping-ish issues which Rob and Yoichi are
now working on.
  551   Sun Jun 22 21:38:49 2008 robHowToGeneralIFO CONFIGURE

Now that we're getting back into locking, it's nice to have a stable alignment of the interferometer.
Thus, after you're done with your experiment using subsets of the interferometer (such as a single arm),

please use the IFO_CONFIGURE screen, and click "Restore last Auto-Alignment" in the yellow "Full IFO" section.

If you don't know what this means/how to do this, you shouldn't be using the interferometer on your own.
  555   Mon Jun 23 21:51:19 2008 AlbertoUpdateGeneralArm Cavity Length Measurement
We measured the arm cavity lengths sweeping the ETM mirror position and looking at the reflected demodulated output. We excited the mirror by a sine wave of 0.2 Hz and amplitude of 30000 counts. From the time series of the occurrences of the resonances of the sidebands and of the carrier we evaluated the free spectral range of the cavities and thus the lengths. The details of the procedure are explained in the attached document. As discussed in it, for each cavity we obtain two possible values of the length depending on which of the sideband resonances is that corresponding to the upper sideband and which corresponds to the lower one instead. The numbers are:
Lx=(38.30 +/- 0.08)m / (38.45 +/- 0.08)m
Ly=(38.16 +/- 0.08)m / (38.70 +/- 0.08)m

Since the difference between the two possibilities is quite large, we should be able to decide which one is correct by somehow measuring directly the cavity length. We want to try it tomorrow by a tape meter.

Alberto and Koji
Attachment 1: 40mLengthMeasure.pdf
40mLengthMeasure.pdf 40mLengthMeasure.pdf
  556   Tue Jun 24 10:24:43 2008 KojiUpdateGeneralAbs. Len. Meas. ~ Cavity Swing Measurement (2)
At the entry 555, Alberto reported the results of the cavity length measurement using cavity sweeping.
As expected, each result inevitably has an ambiguity depending on which resonance do we take as an upper sideband.

In order to exclude this ambiguity Steve and Koji performed a primitive non-optical measurement using a tape and photos:
This morning Steve and Koji did tape measurements to know the lengths between the ITM/ETM chambers.
Yesterday, Koji took photos of the optical tables in vacuum to know the actual positions of the suspensions.

The results are shown in the figures attached. From those non-optical measurements the lengths of the X/Y arm are known to be 38.48+-0.03 / 38.67+-/0.03 [m].

Then, we could exclude the shorter lengths of the values in the entry 555. i.e. The Y arm is longer than the X arm about 0.2 m.

These approximate lengths will be used in the further precise measurements which use precise scans of the FSR frequencies.
Attachment 1: armlength.png
Attachment 2: armlength2.png
  561   Wed Jun 25 00:35:40 2008 KojiSummaryGeneralOptical Layout on the AP table
I have visited the AP table in order to investigate where we are going to put the optical setup for the abs. length meas.
I have attached the PNG and PDF files to share the optical layout. It is not complete. Any comments or corrections are welcome.
Attachment 1: optical_layout_ap_table.png
Attachment 2: optical_layout_ap_table.pdf
  567   Wed Jun 25 13:38:22 2008 KojiUpdateGeneralAbs. Len. Meas. ~ Placement of the 700mW NPRO on the AP table
This morning I have put the 700mW NPRO on the AP table for the abs length measurement.

The RF amplifier was moved (the cables were not changed). I cleaned up some cable arrangements. I was keen not to disturb any of the other optical path. Even so, please let me know if any suspicious behaviour is found on the AP table.
Attachment 1: NPRO700mW_placement.jpg
  570   Thu Jun 26 01:08:22 2008 ranaConfigurationGeneralAlarm Handler Revived
I have revived the Alarm Handler by turning it on on op540m and adjusting the levels of
several of the alarming channels to not alarm (like laser power). The alarm levels are now
set to something reasonable and people should start actually paying attention to them.

I also removed the EO Shutter and Stacis alarm stuff since we don't use them.

To really get in and edit it, you have to close the Alarm Handler and edit the file
in /cvs/cds/caltech/alh/. It allows you to add/subtract useful channels and put in
guidance information.

If the alarm handler beeps about something, don't just close it or silence it, Steve. Just
fix it somehow (either set the threshold better or find the real cause).
Attachment 1: b.gif
  574   Thu Jun 26 14:06:00 2008 MashaUpdateGeneral500mW INNOLIGHT NPRO info
Below is the placement of 500mW INNOLIGHT NPRO mephisto laser. It is set up on the Symmetric Port table.
  590   Sun Jun 29 02:33:28 2008 KojiUpdateGeneralAbs. Len. Meas. ~ Optical setup (I)
I have constructed the beam injection optics for the abs length measurement.

The injection beam was coarsely aligned to the interferometer. The reflected beam from SRM was already seen at AS CCD.
I have attached the optical configration for this measurement and the optics layout at the AP table.

I am going to go to LHO for three weeks. During the absence Alberto tunes the mode matching and the alignment of the interferometer.

In the process of making this report, I noticed that one of the iris apertures is about disturbing the beam for OMCR CCD. I will check this before I go to Hanford. Also an RF spectrum analyzer is at the AP table. I try to return this near the PSL on Monday morning.

Attachment 1: Optical configuration for the abs length measurement.
1) One of the arms is locked to the PSL beam by the main control system (red).
2) A laser beam is injected from the AS port (blue). This laser essentially has different frequency from that of PSL.
3) The injected beam and the outgoing PSL beam appear at the output of the faraday in the injection system.
4) They beat each other at the frequency difference of those two lasers.
5) A PLL is used to lock the frequency difference to a local oscillator (LO).
6) The LO frequency is swept at around 3.87MHz, that is the approximate FSR frequency of the arm cavity.
7) If the LO frequency hits the FSR within the resonant width, the beating also appears at the transmitted light as the injected beam also becomes resonant to the arm cavity.
8) Amplitude of the beating at the transmitted light is measured by a RF spectrum analyzer as a function of the LO frequency. We get the FSR frequency (= the arm cavity length) from the top of the resonance.

Attachment 2: Optics at the AP table for the laser injection
700mW NPRO, laser source. vertically polarized.
Periscope, to raise the beam 1 inch to make the beam at the 4 inch elevation.
INJ_SM1/INJ_SM2, steering mirrors to align the injection beam to the IFO beam.
HWP1, half wave plate to make the beam to the farady horiz-polarized. nominal 42deg on the readout.
FI, Faraday isolator for protection of the NPRO from the returning light, for obtaining the returning light.
HWP2, to make the beam from the Faraday horiz-polarized. nominal 357deg on the readout.
MM_Lens, f=125mm to match the laser mode to the IFO beam.
SM1/SM2, steering mirrors to align the IFO beam to the Farady Isolator.
IRIS1/IRIS2, for the coarse alignment of the injection beam.
FLIP, flipper mount to turn on/off the injection optics.

Alignment procedure of the injection system
0) Ignite NPRO several hours before the experiment so that the laser frequency can be stable.
1) Turn up FLIP. Close the shutter of NPRO.
2) Adjust SM1/SM2 so that the ifo beam can appear at the output of FI.
3) Adjust height and position of IRIS1/IRIS2 with regard to the ifo beam so that the ifo beam goes through IRIS1/IRIS2 even when they are closed.
4) Turn down FLIP. Open the shutter of NPRO.
5) Adjust INJ_SM1/INJ_SM2 so that the injection beam can go through IRIS1/IRIS2 even when they are closed.
6) At this time, it is expected that the reflection of the injection beam from SRM appears at AS CCD, if SRM is aligned.
7) Adjust INJ_SM1/INJ_SM2 so that the injection beam at AS CCD can overlap to the IFO beam.
8) Confirm the beam at the output of the FI also overlaps.
---- We are here ----
9) Change the ifo configuration to the X or Y arm only.
10) Scan the crystal temperature of the 700mW NPRO in order to try to have the beating of the two beams at the PD. AS OSA may be useful to obtain the beating.
11) Once the beating is obtained, adjust INJ_SM1/INJ_SM2 such that the beating amplitude is maximized.
Attachment 1: optical_configuration.png
Attachment 2: optical_layout_ap_table2.png
Attachment 3: optical_layout_ap_table2.pdf
  599   Mon Jun 30 05:33:38 2008 KojiUpdateGeneralAbs. Len. Meas. ~ Optical setup (II)
o The position of the iris was adjusted so as not to disturub the beam for OMCR CCD.

o The RF spectrum analyzer was returned to the place of the network analyzer.


In the process of making this report, I noticed that one of the iris apertures is about disturbing the beam for OMCR CCD. I will check this before I go to Hanford. Also an RF spectrum analyzer is at the AP table. I try to return this near the PSL on Monday morning.
  613   Tue Jul 1 12:51:34 2008 JohnSummaryGeneralIFO alignment
Rana, Rob, Yoichi, John

The recent computer problems and MZ work had disturbed the alignment of the interferometer.

We adjusted the MC alignment back to nominal positions using old OSEM values. We then walked
the input beam to match the MC. Coupling into the interferometer has increased noticeably.
The rest of the IFO was then aligned to the new input beam.

Proceeding to full IFO locking we were able to engage the AO path and hand off CARM to SPOBDC.
Arm powers got up to 4.

If the new alignment proves successful we will centre all QPDs etc so we can easily return to
this state.
Attachment 1: align080701.png
  619   Tue Jul 1 21:54:05 2008 KojiUpdateGeneralRe: Abs. Length Meas. setup
I tried to look for the beating in the signal from the PD but I couldn't find. I had the temperature of the laser initially set to 40deg and then slowly increased by one degree. The manual of the laser says the frequency should change by several GHz. The problem is then that our PD is limited to no more than 30Mhz.

Although the two beams seem to overlap quite well, we might still need a better matching of the injected beam.


o The position of the iris was adjusted so as not to disturub the beam for OMCR CCD.

o The RF spectrum analyzer was returned to the place of the network analyzer.


In the process of making this report, I noticed that one of the iris apertures is about disturbing the beam for OMCR CCD. I will check this before I go to Hanford. Also an RF spectrum analyzer is at the AP table. I try to return this near the PSL on Monday morning.
  621   Wed Jul 2 06:46:05 2008 AlbertoConfigurationGeneralNPRO on to warm up
This morning I turned on the NPRO on the AP table so that it can warm up for a few hours before I start using it today.
The flipping mirror is down so no beam is injected in to the IFO.

ELOG V3.1.3-