40m QIL Cryo_Lab CTN SUS_Lab TCS_Lab OMC_Lab CRIME_Lab FEA ENG_Labs OptContFac Mariner WBEEShop
  40m Log, Page 186 of 344  Not logged in ELOG logo
ID Date Author Type Categorydown Subject
  5726   Fri Oct 21 16:59:14 2011 KatrinUpdateGreen LockingYARM PDH box broken

I could not improve the locking. So, I checked the transfer function of the PDH box again. The transfer function looks okay if the gain knob is <=2.0.

If the gain knob is >2.0 the 20dB step appears in the transfer function (see elog page 5713). This step is shifted to higher frequencies if the gain is

increased. The PZT drive out was not saturated at any time. Yesterday, I checked the electronic circuit with a gain of 2.0. Thus,  I couldn't find the broken

gain amplifier (AD8336). The amplifier is ordered in will arrive on Monday.

  5742   Wed Oct 26 11:35:08 2011 KatrinUpdateGreen LockingYARM PDH box

PDH_w_wo_jump.png

From time to time the 20 dB jump in the transfer function still occurs. The new AD8336 op amp did not change that issue. I am sure that the op amp was broken,

because the amplitude of the sine did not change when I turned the gain knob.

The above two curves were measured with different input amplitude of the sine from the spectrum analyzer. Nothing changed in between except that there was no

jump when Kiwamu was around. Very strange. Testing the electronic board led to no clue what is happening.

For now, I will just use the PDH box as it is, but one should keep this odd behaviour in mind.

  5769   Mon Oct 31 14:01:56 2011 KatrinUpdateGreen LockingYARM locks for 2h

Today, I could lock the YARM laser for 2h to the YARM cavity. After to hours the output of the servo is saturated. I need to work on thermal feedback to the laser.

It is a nice TEM00 mode and the green light enters PSL table.

20111031_OLTF.png

Measured with pin-ball machine spectrum analyzer (I forgot the real name, but it is the one that makes sounds like a pin-ball machine), source power10mVp, Lb1005 gain 2.05.

 

Setup

YARM_setup.png

Input offset of LB1005 is zero

 

Locking history

On Thursday, Oct 27, lock for 3 min

On Friday, Oct 28, lock up to 18 min, improvements done by

  • finding the right adjustment of PI Corner frequency and gain
  • better alignment of the light to the cavity
  • I used a high-pass filter between LO and LB1005, but no improvement of lock. In contrast, it got worse.

On Monday,Oct 31, careful adjustment of summing box (rear of of LB1005), lock up to 2h, limited by saturated feedback signal --> work on slow control

 

Some more plots

feedback.png

 PD_DC1.png

PDH_error1.png

  5787   Wed Nov 2 17:33:28 2011 KatrinUpdateGreen LockingADC channels for slow control

connector J9B of hardware ADC --> ch1 in software ADC --> GCY_ERR

connector J14 of hardware ADC --> ch11 in software ADC --> GCY_PZT

connector J15 of hardware ADC --> ch13 in software ADC --> GCY_REFL_DC

 

 

  5797   Thu Nov 3 16:43:44 2011 KatrinUpdateGreen LockingSHG temperature (YARM)

Plugging in the thermal feedback BNC cable to the laser reduced the DC voltage of the green PDH photo diode from 3.12 V to 1.5V off resonance.

The power emitted by the laser was the same as in the case without that cable. Note LT, i.e. measured crystal temperature, of the laser show a

different value when the BNC is connected, but the manual clearly states that this display does not work properly if a cable is connected to the

slow BNC plug, an offset is added.

The power of the 532nm light behind the SHG oven has been reduced from 1mW to 0.4mW. I changed the crystal temperature such that the power

of the green light is 1mW. With this new temperature setting the laser can be locked again.

 

  w/o BNC cable at slow plug w/ BNC cable at slow plug
T (°C) 29.776 29.776
LT (°C) 39.2 48.4
1064nm power (mW) 440 448
Temp. at TC200 (°C) 35.7 36.4
532nm power in front of Isolator (mW) 1.0 1.0

 

 

 

  5798   Thu Nov 3 17:04:23 2011 KojiUpdateGreen LockingSHG temperature (YARM)

Changing the crystal temperature changes the laser frequency. This will causes the beat note missing at the vertex.

In other words, you will find the beat note at the vertex when the actual temperature of the crystal is reproduced as before,
no matter how the dial setting/temp voltage input is.

  5800   Thu Nov 3 17:24:59 2011 ZachUpdateGreen LockingSHG temperature (YARM)

I must confess that I changed the temperature of the laser via the dial yesterday. I believe the initial (displayed) temperature was ~19o, whereas it is now probably in the high 20s. Sorry.

Quote:

Changing the crystal temperature changes the laser frequency. This will causes the beat note missing at the vertex.

In other words, you will find the beat note at the vertex when the actual temperature of the crystal is reproduced as before,
no matter how the dial setting/temp voltage input is.

 

  5807   Fri Nov 4 13:04:50 2011 ZachUpdateGreen LockingPassive summing box modifications

I spent some time the other day trying to diagnose the problem with the Y Arm universal PDH box (S/N 17), which Katrin has been unable to use for locking the green beam. As far as I can tell, there is nothing wrong with the box itself (though the weird TF behavior that Katrin noticed was not initially reproducible, so its cause may still be there).

I did notice that I was unable to generate a PDH error signal using the universal box. In this configuration, a summing circuit is needed to add the PZT modulation signal (fmod = 178875 Hz) in along with the feedback signal. To do this, Katrin was using a slightly different version of the passive summing box that Kiwamu built for the X Arm. I read this entry to understand how it is supposed to work and noticed that the "expected transfer functions" were not what the circuit actually does. I have talked to Kiwamu about it and he found that he posted the wrong TFs (he has the right ones on his computer). As you can see from the plot below, there is extra low passing that severely attenuates the modulation path to the PZT. In addition, there is a phase shift of ~-60 degrees, which is bad.

To combat this, I propose we simply change the resistor in the modulation path from 1M to 10k. This leaves the feedback path TF unchanged, and changes the mod path into a sort of bandpass filter for the modulation frequency. The fact that the phase is near zero at fmod means we don't have to come up with some way to phase shift the signal for demodulation. The attenuation level of ~-36 dB is also convenient: The ZAD-8 mixer wants 7 dBm, so, 10 dBm (FG) - 3 dB (splitter) - 36 dB (sumbox) = -25 dBm ~ 12 mV. This is roughly the desired PZT voltage level.

sum_circuit_new.png sumbox_TFs.png

  5808   Fri Nov 4 13:13:25 2011 ZachUpdateGreen LockingPDH box #17 modified, too

I also modified the Y-Arm PDH box itself slightly. Previously, there was a flying 10k resistor from the SWEEP input to TP2. I don't see the point of this, so I moved it from TP2 across R19 (to the same point where it is on the gyro PDH boxes) to allow for excitation signals to be injected with the loop closed (i.e., with the SWEEP switch off). This is useful for OLTF measurements.

  5809   Fri Nov 4 13:53:33 2011 KatrinUpdateGreen LockingSHG temperature (YARM)

Quote:

I must confess that I changed the temperature of the laser via the dial yesterday. I believe the initial (displayed) temperature was ~19o, whereas it is now probably in the high 20s. Sorry.

Quote:

Changing the crystal temperature changes the laser frequency. This will causes the beat note missing at the vertex.

In other words, you will find the beat note at the vertex when the actual temperature of the crystal is reproduced as before,
no matter how the dial setting/temp voltage input is.

 

Okay, my elog entry was not clear I changed the temperature of the SHG which only changes the conversion efficiency. 

 

 

Anyhow, since the laser set temperature and thus the laser frequency has been changed by Zach and I couldn't find a note

of the original laser crystal temperature, my plan is to reset the SHG temperature to the old value, set the laser crystal temperature

around 19°C and do fine adjustment of that temperature by optimising the doubling efficiency. Okay?

 

  5815   Fri Nov 4 21:15:38 2011 KatrinUpdateGreen LockingNew fiber coupler (YARM)

63% coupling efficiency into the new fiber collimator (Thorlabs XXXX) and the blue fiber.This should be sufficient for a beat measurement with the PSL laser.

I think the coupling efficiency is not too bad with having no mode matching lenses and no adjustable collimator lens.

 

252mW in front of the fiber

159 mW fiber output

  5820   Sat Nov 5 04:30:21 2011 kiwamuUpdateGreen LockingRe:Passive summing box modifications

I think you also should check the PZT's capacitance of the 700mW LightWave because 2.36 nF is the one for the 1W Innolight laser.

Quote from #5807

To combat this, I propose we simply change the resistor in the modulation path from 1M to 10k. This leaves the feedback path TF unchanged, and changes the mod path into a sort of bandpass filter for the modulation frequency. The fact that the phase is near zero at fmod means we don't have to come up with some way to phase shift the signal for demodulation.

  5837   Mon Nov 7 17:38:18 2011 KatrinUpdateGreen LockingYARM length fluctuation

fluctuation.png

I measured the power spectrum of channel C1:GCY_SLOW_SERVO1_IN1, which is the PZT driving voltage.

I converted the output to a PSD. Next, I converted counts/sqrt(Hz) to volts/sqrt(Hz) by multiplying with 40 V / 2^16 counts.

Finally, I multiplied it with 5MHz/V for the PZT to end up with Hz/sqrt(Hz).

 

This corresponds to a cavity length fluctuation of

fluctuation_length.png

with lambda = 532nm and a YARM cavity length of 37.757m (elog # 5626).

All in one plot

fluctuation_Hz_length.png

  5838   Mon Nov 7 22:20:18 2011 kiwamuUpdateGreen LockingRe:YARM length fluctuation

A nice plot !

Can you put another y-axis on the right hand side of the same plot  in terms of the cavity displacements ?

And can you also measure a more important spectrum, namely the suppressed error signal ?

Quote from #5837

I measured the power spectrum of channel C1:GCY_SLOW_SERVO1_IN1, which is the PZT driving voltage.

  5846   Wed Nov 9 12:05:08 2011 KatrinUpdateGreen LockingYARM error signal and feedback signal

error signal = signal measured behind the low-pass filter

feedback signal = output of the gain servo, going to the PZT

 

First of all both signals in V/sqrt(Hz) just in case I mess up the next calibration step.

fluctuation_test.png

The 60 Hz line (and its multiple) are a new feature. They show up as soon as the feedback loop is closed. So far, I couldn't find their origin.

 

For the next calibration step:

  • width of a typical error signal, i.e. the frequency band width of the carrier slope, ~1.4 kHz
  • height of a typical error signal 182 mV
  5852   Wed Nov 9 16:49:17 2011 kiwamuUpdateGreen LockingY end laser temperature with slow input connected

Indeed it is strange. I took a quick look at it.

In order to recover the same condition (e.g. the same amount of the reflected DC light and the same temperature readout),

it needed to have +8.9V in the slow input from the DAC through EPICS.

Obviously applying an offset in the slow input to maintain the same condition is not good.

It needs another solution to maintain the sweet frequency where the frequency of the PSL and the Y end laser is close in a range of 200 MHz.

Quote from #5797

Plugging in the thermal feedback BNC cable to the laser reduced the DC voltage of the green PDH photo diode from 3.12 V to 1.5V off resonance.

 

  5860   Thu Nov 10 05:54:23 2011 kiwamuUpdateGreen LockingBeat-note detected : PSL vs Y arm

[Katrin / Kiwamu]
The beat-note between the PSL green laser and the Y end green laser was successfully detected.
The detection was done by the new broad-band RFPD.
The next step will be an extraction of the frequency fluctuation signal using the delay-line-mixer frequency discriminator.

 

Here is a picture of the RF spectrum analyzer displaying the direct output signal from the broad-band RFPD.
The beat-note was moving around 100 MHz with an RF power of -36 dBm. The frequency fluctuation was about +/- 7MHz in a time scale of 1 sec or so.
DSC_3606_small.jpg


(What we did)
 + Connected a BNC cable which goes from the c1iscey's DAC to the laser slow input
    => this enables a remote control of the laser frequency via the temeperature actuation
 + Realigned the beam pointing of the Y end green laser
 + Installed all the necessary optics on the PSL table
     => currently the PSL green light is adjusted to completely S-polarization
 + readjusted the mode matching telescopes
     => the Y green beam becomes the one with a long Rayleigh range
 + Health check on the broad-band RFPD to see if it is working
 + Installed the BB-RFPD with a +/-15V power supply
 + Fine alignment of the beam combining path
 + Fine tuning of the Y end laser temperature
     => T_PSL = 31.72 deg when the slow FSS feedback is zero.
     => Based on Bryan's measurement (see #elog) the Y end laser temperature was adjusted to 34.0 deg by applying an offset to the slow input.
 + Found the beat note at 100 MHz or so.
     => optimizing the alignment of the beam combining path by maximizing the peak height of the beat-note.
     => maximum peak height observed with an RF spectrum analyzer was about -36 dBm.

  5872   Fri Nov 11 12:32:45 2011 KatrinUpdateGreen Lockingbeat PSL - YARM laser

[Suresh, Katrin]

Measured frequency fluctuation of the beat between PSL and YARM lasers.

beat_psl_y.png

Yesterday, it was very tricky to adjust the voltage offset to the slow YARM laser input to achieve the appropriate beat frequency. Today, it was much easier. During measurement beat around 25 MHz. Calibration factor 40 mV per 10 MHz.

  5874   Fri Nov 11 13:35:19 2011 KatrinUpdateGreen LockingFeedback to ETMY

[Kiwamu, Katrin]

20111111_freq_supp.png

 

Red and blue curves: frequency fluctuation of the beat node between PSL and YARM laser.

Green and broen curves: Actuation on ETMY.  In ALS_CONTROL.adl  ETMY filter bank 4 and 5 were switched on. Gain was 0.3

 

Nice reduction of the frequency fluctuation.

 

Y axis is in volts^2 per counts. In order to go to MHz/sqrt(Hz) you have to take the square root and then times [20Volts/(2^16)counts]*[10Hz/0.04V].

 

Started to scan the cavity, but this didn't work. Green light all out of lock. IR beam was badly aligned to cavity. Now, my time is over and I have to leave you.

Thanks, for your help and the nice time.

  5888   Mon Nov 14 17:01:14 2011 kiwamuUpdateGreen LockingALS feedback on MC2

Leaving a note on the ALS feedback before I forget:

The MC2 suspension needs to have an input for the ALS feedback in the realtime model like ETMs.

  5890   Mon Nov 14 22:56:31 2011 kiwamuUpdateGreen LockingY end PDH lock : UGF at 17 kHz

[Tomotada / Kiwamu]

  The open loop transfer function of the Y end PDH loop was remeasured : the UGF was found to be at 17 kHz.

The phase margin at the UGF was about 27 deg.

YendOLTF.png

 

While the measurement we noticed that the modulation onto the laser PZT was too big

and it was creating a big AM on the reflected light with an amplitude of a few mV.

So we put a 20 dB attenuator to decrease the modulations and the reflected light became much quitter.

Also the servo shape formed by Newfocus LB1005 looks too simple : we should have a more sophisticated servo filter (i.e. PDH box!!).

  5893   Tue Nov 15 09:51:04 2011 ZachUpdateGreen LockingY end PDH lock : UGF at 17 kHz

Also the servo shape formed by Newfocus LB1005 looks too simple : we should have a more sophisticated servo filter (i.e. PDH box!!).

 As promised, I will get on this this week.

  5894   Tue Nov 15 12:25:38 2011 kiwamuUpdateGreen LockingY arm ALS : beat-note free run fluctuation

Locking activity last night :

  The free run beat-note in 532 nm has been measured.

However I couldn't close the ALS loop somehow.

Every time I tried closing the loop it broke the Y end PDH lock in a couple of minutes.

 

noise_budget.png

 

 (Things to be done)

   1.  Optimization of the Y end PDH servo loop

      1.1 Measurement of the arm fluctuation => to allow re-designing the servo shape
      1.2 Preparation of PDH box, and temporary SR560 servo
      1.3 Sanity checks on the modulation depth, reflectivity, PD dark noise and etc.,
      1.4 Make the servo more robust
      1.5 Some modifications on the medm screens
      1.6 Activation of the temperature feedback through the realtime digital control

   2. Refinement of the broadband RFPD setup

      2.1 Investigation of the peak source => there was a relatively big peak around 50 MHz or so.
      2.2 Noise characterization of the frequency detection system
      2.3 Nicer routing of some cables.
      2.4 Make two-more ADC channel connectors
      2.5 Power budget on the PSL beat-note setup => estimate the expected RF level of the beat-note
      2.6 Realignment of the PSL doubling and resetting of the doubling oven temperature
     
  3. Noise budgeting
 
     3.1 IR locked condition  => measure the noise in the green beat-note system.
     3.2 ALS engaged condition
          3.2.0 shot noise
          3.2.1 ADC noise
          3.2.2 PD dark noise
          3.2.3 freq. discriminator noise
          3.3.4 DAC noise through the coil-magnet actuators
          3.3.5 End laser suppression
          3.3.6 Intensity noise
          3.3.7 Thermo-elastic noise
          3.3.8 Thermo-refractive noise

 

  5914   Wed Nov 16 17:29:46 2011 kiwamuUpdateGreen LockingSome updates on the Y end green PDH
Quote from #5894

 (Things to be done)

   [DONE]   1.1 Measurement of the arm fluctuation => to allow re-designing the servo shape
   [DONE]   1.2 temporary SR560 servo
   [ONGOING]1.3 Sanity checks on the modulation depth, reflectivity, PD dark noise and etc.,
   [DONE]  1.4 Make the servo more robust
   [DONE]  1.5 Some modifications on the medm screens
   [NOTYET]   1.6 Activation of the temperature feedback through the realtime digital control

Some updates on the Y end green PDH lock

(Measurement of the Y arm fluctuation)

In order to design the PDH box's servo shape we wanted to measure the Y arm fluctuation.
Here is the spectrum taken by looking at the control signal before the laser PZT.
 
 Yarm_fluctuation.png
 The scale of the Y axis is calibrated by using the PZT response of 5 MHz/V.
Above 10 Hz the spectrum shows 1/f noise which I believe the laser frequency noise.
 

(Temporary servo setup)

 We have found that the servo shape was not enough (#5890) to well-suppress the fluctuation shown above.
 Since the Newfocus fast servo box only makes 1/f shape, the error signal wasn't suppressed within the linear range.
So I have added an SR560 in the other input of the Newfocus servo box to make the filter shape 1/f^2.
Then the lock became more solid and the reflected DC light in time series is now much flat if the alignments are good.
I will post the servo shape and diagram later.

(Sanity checks)

 I looked at the reflected DC light when the laser was kept locked.
The reflectivity of the Y arm cavity went down to about 30% and this is good because it is supposed to be 27.5% when it is locked according the spec.
This means the mode-matching is not so bad.
  5920   Thu Nov 17 03:46:52 2011 kiwamuUpdateGreen LockingPSL doubling had been diabled

I found that the temperature controller of the PSL doubling oven had been disabled.

Because of that I took a little bit long time to recover the beat-note.
I have no idea why its been disabled.
I turned it on to make the PSL green beam bright,
Also the I-parameter of the PID temperature control was too big
and because of that a big overshoot in the temperature happened (overshoot of ~ 5 deg !).
So I decreased the I-parameter from 175 to 85 (250 is the maximum).
Now the intensity of the green light seems reasonably bright and stable.
  5929   Thu Nov 17 17:21:22 2011 kiwamuUpdateGreen LockingY end green PDH servo : it's okay

Quote from #5914
So I have added an SR560 in the other input of the Newfocus servo box to make the filter shape 1/f^2.
I will post the servo shape and diagram later.

The Y arm green PDH servo is working fine with a sufficient amount of suppression.

(Servo filters)

 As reported on the previous elog entry (#5914) an SR560 was installed to provide one more pole-zero combination in the servo filter.
Here is a plot showing the transfer function of the latest servo filter.
   servoTF.png

And the servo configuration looks like this :

  servofilter.png

 The demodulated signal is split into two path; one goes directly to the Newfocus servo box and the other goes through SR560.
With the SR560 the two way summing path makes a pole at 1 Hz and zero at 100 Hz with when the SR560 has a gain of 100.
The overall gain is adjustable from a knob on the Newfocus servo box.
 

(the Error signal)

 One of the reasons we wanted to increase the servo gain was that :
the laser frequency has to be tightly locked to the Y arm motion because the laser frequency must represent the arm motion in our scheme.
 
Our requirement for allowing a successful ALS is : RMS < 10 pm (1/100 of the cavity linewidth)

I took a spectrum of the error signal when the laser was locked to the Y arm and found that it meets the requirement.

   err_suppression.png

 In the plot I also put a dark noise from the PD to make sure the in-loop noise is above the dark noise.
Right now the power lines at 60 Hz and 180 Hz are lifting the RMS up.
Note that the UGF was at 20-30 kHz.
  5930   Thu Nov 17 18:20:26 2011 kiwamuUpdateGreen LockingY arm ALS : 1st trial of noise budget

The noise budget on the Y arm ALS has begun.

Right now the fluctuation of the green beat-note seems mostly covered by unknown noise which is relatively white.

(Though I feel I made a wrong calibration ... I have to check it again)

 

Yarm_ALS_2011Nov16.png

(Measurement condition)

 + The Y arm is locked to the PSL laser by acting o ETMY.
 + The end green laser is locked to the Y arm.
 + The fine resolution MFD (Mixer-base Frequency Discriminator) is used to observe the beat-note fluctuation
   (We have two MFDs : fine resolution and coarse resolution.)
  5937   Fri Nov 18 00:36:23 2011 ZachUpdateGreen LockingY-Arm PDH box modified

I modified the Y-Arm PDH box (S/N 17) to have the same TF as the one of the temporary setup described in Kiwamu's earlier entryNote that the TF below was taken with the gain knob set to 0, so that the proper DC gain is achieved with a setting of ~4. This is desirable because it gives us wiggle room.

The changes were:

  • R14: 25 -> 50
  • R29: 1k -> 10.5k
  • R30: 1k -> 20k
  • R28: 102 -> OMIT
  • C20: 84nF -> OMIT
  • R31: SHORT -> 475
  • R16: 10k -> 48.7k
  • R24: 10 -> 5

Below is the TF along with the LISO model. They are different at low frequencies because the box must have been railing internally (though the phase shows that the result is as expected), and there is a feature around 60 kHz that probably arises from some op amp instability. I will see if adding a small cap somewhere does the trick, and then take a new TF with a lower source voltage.

pdh17_tf_vs_liso_11_17_11.png

I'll try to lock the arm with the box tomorrow.

  5945   Fri Nov 18 11:28:39 2011 ranaUpdateGreen LockingY end green PDH servo : it's okay

Quote:

Quote from #5914
So I have added an SR560 in the other input of the Newfocus servo box to make the filter shape 1/f^2.
I will post the servo shape and diagram later.

 Another way to make a 1:100 pole:zero boost is to use resistors and capacitors in a Pomona box 

mixer -> LB box -> Pomona box -> PZT

Pomona Box =     R1 = 7.2 kOhm, C2 = 22 uF, R2 = 72 Ohms     (sr560 = $2400, pomona ~ $50)

 

For the RMS calculation, it would be good to notch out the harmonics. They don't matter since our ALS feedback will have notches at those frequencies.

  5946   Fri Nov 18 12:11:24 2011 ZachUpdateGreen LockingY end green PDH servo : it's okay

Quote:

 

 Another way to make a 1:100 pole:zero boost is to use resistors and capacitors in a Pomona box 

mixer -> LB box -> Pomona box -> PZT

Pomona Box =     R1 = 7.2 kOhm, C2 = 22 uF, R2 = 72 Ohms     (sr560 = $2400, pomona ~ $50)

 

For the RMS calculation, it would be good to notch out the harmonics. They don't matter since our ALS feedback will have notches at those frequencies.

I wouldn't bother...

  5956   Sat Nov 19 00:47:24 2011 ZachUpdateGreen LockingY-Arm locked with PDH Box #17

I installed the newly modified PDH box #17 and locked the Y-Arm.

I wasn't able to bring the REFL level down to the 30% that Kiwamu claimed to get, despite readjusting the alignment---I got ~40-45%. I attained a UGF of ~8 kHz, lower than the 20 kHz that Kiwamu said he got with the temporary setup, probably because the PDH box just isn't as fast. Despite that, it looks like the error suppression is actually better than before...

Here is an error spectrum:

error_sig_m_11_18_11.png

I have to admit that this calibration is worthy of suspicion and should be done more rigorously. I simply used the measured UGF frequency and known servo TF and PZT actuator gain to estimate the optical response. I am pretty confident that it's accurate to within a factor of 3 or so.

  5970   Mon Nov 21 16:08:04 2011 kiwamuUpdateGreen Locking2nd trial of Y arm ALS noise budget : broad band noise gone

Quote from #5930

Right now the fluctuation of the green beat-note seems mostly covered by unknown noise which is relatively white.

The 2nd trial of the Y arm ALS noise budgeting :

(Removal of broad band noise)

  + The broad band noise decreased somewhat after I fixed a broken connection in the discriminator.
  + I took a look at the frequency discriminator setup and found one of the SMA-BNC adapter was broken.
     This adapter was attached to one of the outputs of the 4-way power splitter, which splits the signal into the coarse and find discriminator paths.
     And this broken adapter was in the coarse path, which actually I am not using for the noise budget.
     Depending on the stress acting on the adapter it was creating broadband noise, even in the fine path.
     So I threw it away and put another SMA-BNC adapter.
 
Here is a plot of the latest noise : high frequency noise is still unknown.

Yarm_ALS_2011Nov19.png

I will add the dark noise of the broad-band beat-note PD  and the MFD read out noise on the budget.

  5978   Tue Nov 22 15:18:18 2011 kiwamuUpdateGreen Lockingbroad band noise depends on the gain of Y green PDH. and comaprator broken

Quote from #5970
Here is a plot of the latest noise : high frequency noise is still unknown.

(The broad-band noise vs. gain of the Y end green PDH)

 Last night I was trying to identify the broad band noise which is white and dominant above 20 Hz (#5970).

I found that the level of the noise depended on the servo gain of the Y end green PDH loop.

Decreasing the servo gain lowers the noise level by a factor of 2 or so. This was quite repeatable.

(I changed the gain knob of the PDH box from the minimum to a point where the servo starts oscillating)

 

(Malfunction in the comparator)

  However I had to give up further investigations because the comparator signal suddenly became funny: sometimes it outputs signals and sometimes not.

It seems the comparator circuit became broken for some reason. I will fix it.

  5980   Tue Nov 22 18:42:10 2011 kiwamuSummaryGreen LockingSome issues on the Y end green PDH locking

[Rana / Kiwamu]

 As a part of the ALS noise budgeting we took a look at the Y end PDH setup to see if we are limited by an effect from the Amplitude Modulation (AM).

Then we found two issues :
 (1) a big variation in AM transfer function from the laser PZT to the intensity of the frequency-doubled laser. We haven't figured out the reason yet,
 (2) some of the optics and their mounts need to be refined.

 


(AM transfer function)

 One of the suspicious noise source of the Y arm ALS was an AM effect in the Y end green PDH locking.
A possible scenario is that: there is some amount of the offset in the PDH signal due to the AM at the modulation frequency,
and it allows the intensity noise to couple to the laser frequency, which we want to suppress.
 So we wanted to check if the measured AM (#2799) at 1064 nm  is still true at 532 nm.
The problem right now is that : every time we measured the AM transfer function by exciting the laser PZT with swept sine,
the transfer function varied by 20 dB, with average response of 50 dB. And there was no repeatability.
We were using the PD which is for the green PDH signal and the single-bounced light from ETMY.
The measurement was done in a frequency band of 100 - 400 kHz where we expect a couple of sharp notches.
Perhaps we should try the same measurement with IR first to make sure we are doing a right thing, and then do it with the frequency-doubled laser.

 

(Y table setup needs more improvements)

  We found some optics and their mounts which need to be refined.
Here is a list which we briefly made at the time.
  • Use washers
  • Beam clipping in Green Faraday and the very last mirror
  • Use two screws and wide base plate
  • Tune PPKTP PID parameters
  • Remove flipper mirror
  • Move the mechanical shutter to where the beam size is smaller
  • Put a beam damp for the reflected light from the PD
  • Cable rack
  • Improve the incident angle on the last two launching mirrors
  5983   Wed Nov 23 00:00:53 2011 ZachSummaryGreen LockingSome issues on the Y end green PDH locking

Quote:

(AM transfer function)

 One of the suspicious noise source of the Y arm ALS was an AM effect in the Y end green PDH locking.
A possible scenario is that: there is some amount of the offset in the PDH signal due to the AM at the modulation frequency,
and it allows the intensity noise to couple to the laser frequency, which we want to suppress.
 So we wanted to check if the measured AM (#2799) at 1064 nm  is still true at 532 nm.
The problem right now is that : every time we measured the AM transfer function by exciting the laser PZT with swept sine,
the transfer function varied by 20 dB, with average response of 50 dB. And there was no repeatability.
We were using the PD which is for the green PDH signal and the single-bounced light from ETMY.
The measurement was done in a frequency band of 100 - 400 kHz where we expect a couple of sharp notches.
Perhaps we should try the same measurement with IR first to make sure we are doing a right thing, and then do it with the frequency-doubled laser.

What is meant by the "average response of 50 dB"? Is this dB[ RIN / Hz ] or something? Also, do you mean the average over a broad band or the average response at the chosen modulation frequency over several trials? I don't really understand what measurement was done.

  5987   Wed Nov 23 13:53:36 2011 ZachUpdateGreen LockingSensor noise

The in-loop Y-Arm error signal looks equal to the beat note noise divided by the Y-Arm OL gain in the broadband-noise region (>20 Hz), which would be the case if the loop was dominated by sensor noise here.

I would re-check the Y-Arm dark noise, or at least check for coherence between the Y-Arm error signal and the beat signal above 20 Hz. The input-referred PDH box noise should not be flat there according to the LISO model, but that might be worth checking, too.

Yarm_ALS_2011Nov19_marked.png

  6018   Sat Nov 26 19:07:40 2011 kiwamuSummaryGreen LockingAM trnasfer function of the Y end laser with doublin crystal

Quote from #5980

 As a part of the ALS noise budgeting we took a look at the Y end PDH setup to see if we are limited by an effect from the RF Amplitude Modulation (AM).

The AM transfer function of the Y end laser has been measured again, but using the frequency-doubled laser this time.

Here is the latest plot of the AM transfer function. The Y-axis is calibrated to RIN (Relative Intensity Noise) / V.

IFBW (which corresponds to a frequency resolution) was set to 100 Hz and the data was averaged about 40 times in a frequency range of 100 kHz - 400 kHz.

Also the zipped data is attached.

AMTF_lightwave.png

It is obvious that out current modulation frequency of 179 kHz (178850 Hz) is not at any of the notches.

It could potentially introduce some amount of the offset to the PDH signal, which allows the audio frequency AM noise to couple into the PDH signal.

Currently I am measuring how much offset we have had because of the mismatched modulation frequency and how much the offset can be reduced by tuning the modulation frequency.

  6024   Mon Nov 28 15:00:20 2011 kiwamuUpdateGreen LockingY arm ALS engaged
Quote from #5894

  However I couldn't close the ALS loop somehow.

 Locking activity last night:

  It became able to close the ALS loop (beat-note signal was fed back to ETMY).

The UGF was about 60 Hz, but somehow I couldn't bring the UGF higher than that.

Every time when I increased the UGF more than 60 Hz, the Y end PDH was unlocked (or maybe ETMY became crazy at first).

Perhaps it could be a too much noise injection above 60 Hz, since I was using the coarse frequency discriminator.

Anyway I will try a cavity sweep and the successive noise budgeting while holding the arm length by the beat-note signal.

Another thing : I need a temperature feedback in the Y end green PDH loop, so that the PZT voltage will be offloaded to the laser temperature.

  6076   Tue Dec 6 02:57:44 2011 kiwamuUpdateGreen Locking1st trial of handing off

I succeeded in handing off the servo from that of the ALS to IR-PDH.

However the handing off was done by the coarse sensor instead of the fine sensor because I somehow kept failing to hand off the sensor from the coarse to the fine one.

The resultant rms in the IR-PDH signal was about a few 100 pm, which was fully dominated by the ADC noise of the coarse sensor.

 

Tomorrow I will try :

  (1) Using the fine sensor.

  (2) Noise budgeting with the fine sensor.

 

Here is the actual time series of the handing off.

YarmALS.png

(Upper left ):  intracavity power.
            As the offset was adjusted the power increased to ~ 0.8. Eventually the power becomes close to the nominal value of 1 after the handing off.
(Lower left) : Frequency of the beat-note.
            After the engagement of the ALS servo, I was scanning the arm length and searching for the resonance by changing the error point of this signal.
(Lower right) : IR-PDH signal.
  6080   Wed Dec 7 02:55:38 2011 kiwamuUpdateGreen Lockinglocking activity tonight

No real progress.

Probably I spent a bit too much time realigning the beat-note optical path.

 

(what I did)

 - Switched on a power supply which was supposed to give +/- 15V for the broadband beat-note PD.
   The power supply had been somehow turned off.
 - Realigned the beat-note path. When we installed the new EOM mount today, we moved some of the green steering mirrors to make a space.
   So we had to realign the downstream of the beat-note path. After the realignment the DC output of the PD was about 120 mV and the signal level of the beat-note was at -20 dBm.
 - Took noise spectrum of the beat-note with the arm cavity locked by the IR-PDH
    The noise curve was almost the same as before (i.e. unknown high frequency white noise above 20 Hz and some low frequency noise which has structures at 1 and 3 Hz).
-  Closed the ALS loop with the coarse sensor. But I was too lazy to go further more. 

Quote from #6076
Tomorrow I will try :
  (1) Using the fine sensor.
  (2) Noise budgeting with the fine sensor.

  6102   Sat Dec 10 05:27:43 2011 kiwamuUpdateGreen Lockingstatus update of the Y arm green lock

Status update of the Y arm green lock:

  + Recent goal : automation of the single arm green lock

 

(Things done)

  • Implementation of some realtime LOCKIN modules to detect the sign of the error signals.
  • Modification of the realtime control model to accommodate the I/Q MFD signals, which will be available in the near future. (Of course the model file in the svn has been also updated)
  • Update of the medm screens.
  • Scripting of the auto-lock has been 30 % done.
  • Succeeded in automation of closing the ALS loop. (I have tried several times and no failure was observed so far)

(Things to be done)

  • Scripting a routine to detect the sign of the fine sensor signals.
  • Development of a clever length scan algorhythm.
  • Scripting handing off routines.
  • Implementation of some lock-success binary bits to define the ALS state.
  • Implementation of fail-safes.
  6103   Sun Dec 11 17:28:36 2011 kiwamuUpdateGreen Lockingstatus update of the Y arm green lock

Quote from #6102

  + Recent goal : automation of the single arm green lock 

As reported in the previous elog entry #6102, the realtime model and screens have been modified.
Here is a summary about what are new in the realtime model.
 
(What are new ?)
  • The top name of the channels has been changed from GCV to ALS      
    => Although the model name itself is still C1GCV to keep the current relations between other computers.
  • I and Q signals on each sensor.
  • LOCKIN modules to detect the sign of the error signals by shaking suspensions.
  • Offset adjusters, which are combination of a controllable epics value and a low pass filter, to allow a smooth length scan.
  • Input matrix. This branches the input signal to the DOFs as well as the LOCKIN modules.
  • Output matrix to allow some combination of actuation (e.g. DARM, CARM, MCL, etc.,)
  • Output switch to enable/disable any feedbacks to the suspensions
  • Output filters before the suspensions. These filters will be usually flat, but enable us to inject some signals and enable some limiters.
     
    Here is the latest medm screen for the modified realtime controller.
    It gives you the idea of how the latest model works.

 ALSscreens.png

  6120   Wed Dec 14 14:40:53 2011 steveUpdateGreen Lockingdelay line bnc cable specs

The existingly used used Pasternack Enterprices RG58 C/U cable lenght ~ 140 ft and the specs are here at Atm1

 

Atm2 The performance grade RG58-P coaxial cable specs.

  6126   Fri Dec 16 13:29:15 2011 kiwamuUpdateGreen LockingY arm noise budget : 60Hz line noise is killing us
Along with development of the automation script, my goals last night were :
 (1) Take a noise budget when the standard ALS configuration is applied
 (2) Take a beautiful time series to show how ALS brings the cavity to the resonance point
 
 However I gave up goal (2) because the resultant time series were very fluctuating at 60 Hz and it wasn't so beautiful enough.
As shown in the noise budget below, the 60 Hz line noise currently dominates the arm displacement.
 

Yarm_ALS_2011DEC16.png

       About Noise Budget       

 The spectra were taken when the arm length was kept at the resonance point using the ALS servo.
So the error signal was taken from the beat-note and was fed back to ETMY.
The servo UGF was at about 100 Hz and the fine frequency discriminator was used.
The red curve in the plot is the arm displacement observed by POY11, which is an out-of-loop sensor in this case.
From the plot it is apparent that the 60 Hz line noise raises the rms to few 100 pm level.
 

       How to improve it ?     

According to my quick calculation if we can exclude the 60 Hz line noise from the rms integration, the rms becomes about 70 pm, which is nice.
I somehow believe this line noise comes from the ALS servo and is injected to the coil-magnet actuator.
So I propose to lower the UGF and make it lower than 60 Hz such that
the servo doesn't react to the 60 Hz line noise and hence no 60 Hz noise injection to the arm displacement.
In any case lowering the UGF is better since our ALS sensor sees only noise above 40 Hz according to the previous noise measurement (#5970)
  6127   Sat Dec 17 00:00:03 2011 kiwamuUpdateGreen Locking60 Hz line nose gone

Quote from #6126
As shown in the noise budget below, the 60 Hz line noise currently dominates the arm displacement.

 The 60 Hz line noise has gone away.

It turned out that the line noise came from an oscilloscope.
The oscilloscope had been connected to a SR560, which amplifies the frequency-discriminated signal before the ADC as a whitening filter.
I still don't have a good explanation for it, but somehow connecting the oscilloscope made the line noise pretty high.
  6133   Sun Dec 18 18:45:22 2011 kiwamuUpdateGreen LockingY arm ALS : time series and noise budget
As I said in the previous entry (#6126) my current goals were :
 (1) Take a noise budget when the standard ALS configuration is applied
 (2) Take a beautiful time series to show how ALS brings the cavity to the resonance point

Here are the latest plots that I have obtained from the Friday night:

    Time Series   

time_series.png

 The data starts from a point where the cavity is kept away from the resonance point by 200 kHz (in terms of the green laser's frequency).
Then 30 sec after, a cavity sweep started until the main laser becomes resonant for the arm cavity.
After 2.5 minutes the sweep was quit and the arm length was held at this point to show the
stability of the ALS servo.
 
         Noise Budget         

Yarm_ALS_2011DEC17.png

The residual motion in the arm displacements reached 70 pm in rms.

Note that the UGF was at about 100 Hz.
One of the improvements we made in the Friday was the removal of the 60 Hz line noise (#6127).
Currently the rms is dominated by two components:
     (1) A bump around 10 Hz, which is due to lack of the servo gain around there.
         => This can be improved by optimizing the servo filter shape
     (2) High frequency noise above 40 Hz.
         => This can be improved by either decreasing the noise itself or lowering the UGF.
  6140   Wed Dec 21 03:38:14 2011 kiwamuUpdateGreen LockingY arm ALS : automation script 80 % done

Scripting of the single arm automated lock script is 80% done.

The remaining 20 % is not something immediately needed and I start decreasing the priority on the Y arm ALS.

(Remaining stuff)

  • Automated optimization of I/Q phases at the frequency discriminator's signal.
    • this part will be done after we install Jamie's new beat box
  • A routine function which checks if the beat note is within a reasonable bandwidth
    • This part can be done with the frequency-divided signal and the digital delay line frequency discriminator
    • Another approach is to install a frequency counter, which doesn't have to be so precise
  • A state bit which tells us how far the script goes
  • An exit handler.
    • This should run whenever the script is unexpectedly force-quite, to gently bring the ALS system down.
  • A servo which brings the beat frequency to exactly a point where the infrared light is on a resonance point
    • Currently this part is partially human-aided. I put a little bit of correction in the frequency offset by looking at time series
    • To automate this part, we need another LOCKIN system to shake the arm length and demodulates the transmitted light
  6141   Wed Dec 21 04:29:01 2011 kiwamuUpdateGreen LockingPower Recycled Single Arm

I made the first trial of locking a Power-recycled single arm.

 This is NOT a work in the main stream,

but it gives us some prospects towards the full lock and perhaps some useful thoughts.

 

      Optical Configuration         

  • Y arm and PRM aligned. They become a three-mirror coupled optical cavity
    • Power Recycling Cavity (PRC) is kept at anti-resonance for the carrier when the arm length is off from the resonance point
    • Hence bringing the arm length to the resonance point lets the carrier resonate in the coupled cavity
    • BS behaves as a loss term in PRC and hence results a low recycling gain
  • Everything else are misaligned, including ITMX, ETMX, SRM and BS
    • Therefore there are neither Michelson, X arm nor Signal Recycling Cavity (SRC)

   Lock Acquisition Steps    

  1. Misalign PRM such that there is only Y arm flashing at 1064 nm
  2. Do ALS and bring the arm length to the resonance point
  3. Record the beat-note frequency such that we can go back to this resonance point later
  4. Displace the arm length by 13 nm, corresponding to a frequency shift of 200 kHz in the green beat note
  5. Restore the alignment of PRM.
  6. Lock PRC to the carrier anti-resonance condition using REFL33I. At this point the arm doesn't disturb the lock because it is off from the resonance anyway
  7. Reduce the displacement in the arm and bring it back to the resonance

 

     Actual Time Series     

Below is a plot of the actual lock acquisition sequence in time series.

time_series.png

  • The data starts from the time when the arm length was kept at the resonance point by the  ALS servo.
    • At this point PRM was still misaligned.
  • At 120 sec, the arm length started to be displaced off from the resonance point.
  • At 250 sec, the alignment of PRM was restored and the normalized DC reflection went to 1.
    • Error signals of PRC showed up in both REFL33 and POOY11
  • At 260 sec, PRC was locked to the carrier anti-resonance point using the REFL33_I signal.
    • Both REFL33 and POY11 became quiet.
    • REFLDC started staying at 1, because the carrier doesn't enter to the cavities and directly goes back to the REFL port.
  • At 300 sec, the arm length started to be brought to the resonance point.
  • At 400 sec, the arm length got back to the resonance point.
    • The intracavity power went to 3.5 or so
    • REFLDC went down a bit because some part of the light started entering in the cavities
    • REFL33 became noisier possibly because the Y arm length error signal leaked to it.
  6144   Wed Dec 21 16:55:30 2011 kiwamuUpdateGreen LockingPower Recycled Single Arm
 I did some brief parameter checks for the power-recycled single arm which I have done yesterday.
The purpose is to make sure that the interferometer and I weren't crazy.
So far the measured quantities look reasonable.
  

         Assumptions on the parameter estimations          

   No losses.
   Tprm = 0.05637
   Titm =0.01384
   Tetm = 15 ppm
   Tbs = 0.5
 
        Parameter estimations and comparison with measurement      
   Recycling gain G = Tprm / (1 - ritm * rprm * Tbs) = 0.21 
   Amplitude reflectivity of the arm rarm =   (retm - ritm) / (1 - ritm * retm) = 0.99785
   Effective ITM's amplitude reflectivity ritm' = ( ritm + rprm * Tbs) / (1 + ritm * rprm * Tbs) = 0.9976
   Arm finesse = pi * sqrt (ritm' * retm) / (1 - ritm' * retm) = 1298
 
  + Power build up from single arm to power-recycled arm = G / Tprm = 3.73
      => measured value is 3.8 at maximum
 
  + Reflectance of the coupled cavity R = ( rprm -  rarm * Tbs )2 / (1 - rprm * rarm * Tbs  )2 =  0.841
     => measured value was about 0.85 at minimum
 
 
  + Cavity full linewidth = lambda / arm_finesse / 2 = 0.41 nm
     => narrower than that of the usual single arm by factor of 2.9
     => I guess this was the reason why the intracavity power looked more fluctuating after everything was locked

Quote from #6141

I made the first trial of locking a Power-recycled single arm.

 

  6145   Thu Dec 22 19:15:22 2011 kiwamuUpdateGreen Lockingrearrangement of PSL green optics
 As planed (#6143), rearrangement of the PSL green setup has begun.
It required to move approximately half of the green optics on the PSL table
and I finished displacing and installing the necessary optics coarsely.
So far I just have recovered the Y arm beat-note between the PSL green light.
 
 I will do a fine alignment of the X arm path on the PSL table and try obtaining the X arm beat-note tonight.
ELOG V3.1.3-