40m QIL Cryo_Lab CTN SUS_Lab TCS_Lab OMC_Lab CRIME_Lab FEA ENG_Labs OptContFac Mariner WBEEShop
  40m Log, Page 186 of 344  Not logged in ELOG logo
ID Date Author Type Categoryup Subject
  11547   Sun Aug 30 23:47:02 2015 IgnacioUpdateIOOMISO Wiener Filtering of MCL

I decided to give MISO Wiener filtering a try again. This time around I managed to get working filters. The overall performance of these MISO filters is much better than the SISO I constructed on elog:11541 .

The procedure I used to develope the SISO filters did not work well for the construction of these MISO filters. I found a way, even more systematic than what I had before to work around Vectfit's annoyances and get the filters in working condition. I'll explain it in another eLOG post.

Anyways, here are the MISO filters for MCL using the T240-X and T240-Y as witnesses:

 Now the theoretical offline prediction:



The online subtractions for MCL, YARM and XARM. I show the SISO subtraction for reference.

 And the subtraction performance:

  11548   Mon Aug 31 07:49:11 2015 ericqUpdateIOOMC2 -> MCL Actuator TF

I think what happened here is you forgot to undo the MC_F whitening filter which is the Generic Pentek Interface board next to the MC servo board. I suggest you guys measure this on Monday so you can correctly estimate the MC length noise. And then perhaps undo the whitening in the anti-whitening filter of this filter bank so that the signal which is recorded is in units of kHz.

This should allow your online subtraction filter to be more correct: roughly speaking, the phase shift below a pole or zero is going to be 45*(f/fp) deg. Since we expect there to be 2 zeros at 15 Hz, it would be 9 deg phase shift at 1.5 Hz and limit the subtraction to ~80%.

While it is true that the whitening filter was incorrectly handled, I don't think this should change the subtraction performance since the MC_L data used for the Wiener filter training was also taken without undoing the whitening filter.

  11549   Mon Aug 31 09:36:05 2015 IgnacioUpdateIOOMISO Wiener Filtering of MCL

MISO Wiener filters for MCL kept the mode cleaner locked for a good 8+ hours.

  11550   Mon Aug 31 14:15:23 2015 IgnacioUpdateIOOMeasured the MC_F whitening poles/zeroes

I measured the 15 Hz zero and the 150 Hz pole for the whitening filter channels of the Generic Pentek board in the IOO rack. The table below gives these zero/pole pairs for each of the 8 channels of the board.

channel zero [Hz] pole [Hz] Chan
1 15.02 151.05 C1:ASC-POP_QPD_YAW
2 15.09 150.29 C1:ASC-POP_QPD_PIT
3 14.98 150.69 C1:ASC-POP_QPD_SUM
4 14.91 147.65 C1:ALS-TRX
5 15.03 151.19 C1:ALS-TRY
6 15.01 150.51 ---
7 14.95 150.50 C1:IOO-MC_L
8 15.03 150.93 C1:IOO-MC_F

Here is a plot of one of the measured transfer functions,

and the measured data is attached here: Data.zip

EQ: I've added the current channels going through this board. 

More importantly, I found that the jumpers on channel one (QPD X) were set to no whitening, in contrast to all other channels. Thus, the POP QPD YAW signals we've been using for who knows how long have been distorted by dewhitening. This has now been fixed. 

Hence, the current state of this board is that the first whitening stage is disabled for all channels and the second stage is engaged, with the above parameters. 

  11553   Tue Sep 1 10:26:24 2015 IgnacioUpdateIOOMore MCL Subtractions (Post FF)

Using the training data that was collected during the MISO MCL FF. I decided to look at more MCL subtractions but this time using the accelerometers as Rana suggested.

I first plotted the coherence between MCL and all six accelerometers and the T240-Z seismometer.

For 1 - 5 Hz, based on coherence, I decided to do SISO Wiener filtering with ACC2X and MISO Wiener filtering with ACC2X and ACC1Y. The offline subtractions were as follows (RMS plotted from 0.1 to 10 Hz):

The subtractions above look very much like what you would get offline when using the T240(X,Y) seismometeres during MISO Wiener filtering. But this data was taken with the MISO filters on. This sort of shows the performance deterioration when one does the online subtractions. This is not surprising since the online subtraction performance for the MISO filters, was not too great at 3 Hz. I showed this in some other ELOG but I show it again here for reference:

Anyways, foor 10 - 20 Hz, again based on coherence, I decided to do SISO Wiener filtering with ACC2Z and MISO Wiener filtering with ACC2Z and ACC1Z (RMS plotted from 10 to 20 Hz):

I will try out these subtractions online by today. I'm still debating wether the MISO subtractions shown here are worth the Vectfit shananigans. The SISO subtractions look good enough.

  11555   Tue Sep 1 11:56:56 2015 ericqUpdateIOOIMC loop shapes

I took some transfer functions of the IMC loop and crossover, being careful that the PC drive never exceeding 1V during the measurements. 

I then did some algebra to try and back out the individual loop paths, without having to make assumptions/approximations about the loop gain being high enough. This only really works in the region where both the open loop and crossover measurements have coherence. 

It seems to me that the PZT path has pretty low phase margin on its own, but maybe this is ok, since its never really meant to run solo. The EOM path shape is harder to understand.


The data I took, and code that made the above plot is attached. This afternoon, I'll post an update comparing the measured OLG and crossover to earlier measurements. 

  11558   Wed Sep 2 01:31:22 2015 ericqUpdateIOOIMC loop shapes

The promised historical comparisons follow. The crossover looks mostly the same as before. There is a new feature in the OLG at 50-60kHz; what could've changed about the EOM path in that time?


  11561   Thu Sep 3 00:14:09 2015 ranaConfigurationIOOIMC fast gain change for lock acq

The IMC often was making that scratchy noise when first catching lock and sometimes breaking. Thinking of the crappy crossover sit that EQ showed in his latest plots, I decided that it didn't make sense to acquire lock with an unstable PZT/EOM crossover, so I have changed mcdown to acquire with +13 dB Fast Gain and its much fast now and no longer makes that sound.

I also changed the caput command from 'caput -l' to 'caput -c -l' to see if the async 'wait for callback' feature will insure that the commands get sent. I witnessed the mcdown not actually writing all of its commands once or twice tonight. With the MC Boost left on its never going to lock.

mcdown has been committed to SVN. Please, if you have recently edit mcup and Autolock, commit them to the SVN or else I will delete them and do an svn up.

  11563   Thu Sep 3 00:45:25 2015 IgnacioUpdateIOORemeasured MC2 to MCL TF + Improved subtraction performance

Today, I remeasured the transfer function for MC2 to MCL in order to improve the subtraction performance for MCL and to quantify just how precisely it needs to be.

Here is the fit, and the measured coherence. Data is also attached here: TF.zip


OMG, I forgot to post the data and any residuals. LOL!

The transfer function was fitted using vectfit with a weighting based on coherence being greater than 0.95.

I then used the following filters to do FF on MCL online:

Here are the results:

Performance has definelty increased when compared to previous filters. The reason why I think we still have poor performance at 3 Hz, is 1) When I remeasured the transfer function, Eric and I were expecting to see a difference on its shape due to the whitening filters that were loaded a couple days ago. 2) Assuming the transfer function is correct, there is poor coherence at 3 Hz 3) The predicted IIR subtraction is worst at this frequency.

  11576   Fri Sep 4 10:25:19 2015 SteveConfigurationIOOAOM stage is ready

New stage can hold the correct polarization.

DRAWING CORRECTION:  Post block height was lowered to be 1.88" from 2.0"

  11581   Mon Sep 7 18:25:16 2015 ranaConfigurationIOOAOM stage is ready

The new stage missed the right height by ~2 mm. sad

Even if I completely bottom out the (New Focus 9071) 4-axis stage, its not short enough. So I removed the AOM from the beam and re-aligned into the PMC.

Steve, please get the aluminum piece remachined to go down by 2.5 mm so we can have some height adjustment room.


New stage can cheeky hold the correct polarization.

Also, the turning mirror mount just after the EOM and before the AOM is a U-100 and we want it to be a Suprema for stability - let's not forget to swap that after Steve gets the mount fixed.

  11583   Tue Sep 8 20:30:44 2015 ranaUpdateIOOMC WFS relief re-commissioned

I converted our MC WFS relief from CSH to BASH today. I also added 'wait' commands and 'echo' commands so that all DoFs run in parallel nicely. It can be accessed from the MC WFS screen.

I increased the overall MC WFS gain input slider from 0.02 to 0.1 (its in the mcwfson script). The MC Trans loops now have a time constant of ~30 seconds. The relief script relieves ~90% of the MC WFS control signals in the 2 minutes that its allowed to run.

On the next upgrade, we should make it python and have it kill the relief process if the MC loses lock before relief is applied via the alignment sliders.

  11584   Wed Sep 9 11:00:49 2015 IgnacioUpdateIOOLast Wiener MCL subtractions

On Thursday night (sorry for the late elog) I decided to give the MCL FF one more try. 

I first remeasured the actuator transfer function because previous measurements had poor coherence ~0.5 - 0.7  at 3 Hz. I did a sine swept to measure the TF. 

Raw transfer function:

The data is attached here: TF.zip

Then I made Wiener filters by fitting the transfer function data with coherence > 0.95 (on the left). Fitting all the data (on the right). Here are the filters:


The offline subtractions (high coh fit on left, all data fit on right). Notice the better IIR performance when all the TF data was fitted.


The online results: (these were aquired by taking five DTT measurements with 15 averages each and then taking the mean of these measurements)


And the subtraction performance:


  11590   Thu Sep 10 09:37:34 2015 IgnacioSummaryIOOFilters left on MCL static module

The following MCL filters were left loaded in the T240-X and T240-Y FF filter modules (filters go in pairs, both on):

FM7: SISO filters for MCL elog:11541

FM8: MISO v1 elog:11547

FM9: MISO v1.1 Small improvement over MISO v1

FM10 MISO v2 elog:11563

FM5 MISO v3.1 elog:11584 (best one)

FM6 MISO 3.1.1 elog:11584 (second best one)


  11592   Sun Sep 13 13:26:00 2015 ranaUpdateIOOLast Wiener MCL subtractions

When making the Wiener filter OFF/ON comparisons, we want to use the median PSD estimates, not the mean (which is what pwelch gives you).

cf. Sujan's note and Evan's follow-up

The median will be less sensitive to the transients / gltiches and will show more improvement I think.

  11595   Mon Sep 14 21:42:00 2015 ranaUpdateIOOMC Wiener + Summary

I turned on the MCF FF in the OAF today (we need to fix the labeling of the 'ON' buttons on the RHS of the screen). The performance is still good; before / after attached.

Not only is the 1 Hz performance in the MC still good, but the X & Y arm noise reduction is ~1 order of magnitude. Good to know that the filters aren't changing much with time.

Can we just leave this on all the time now? Seems to be OK and there's no visible increase in the arm noise with this on.

Also did some updates to the summary pages and added a CDS FEC tab for CPU times.

Please take a look at the summary pages and bring a list of demands to the Wednesday meeting.

  11634   Tue Sep 22 16:42:39 2015 ericqUpdateIOOHousekeeping

I've moved the OAF MC2 signal path to go directly from c1oaf to c1mcs, so that the LSC being ON/OFF doesn't interfere with the MC length seismic feedforward. Since the FB is currently down, I can't do a full test, but looking at monitor points in StripTool indicates it's working as intended. 

I also cleaned up some LSC medm stuff; exposing the existing SRCL UGF servo, and removing a misleading arrow. This reminds me that I need to get calibration lockins back up and running...

  11682   Fri Oct 9 16:43:50 2015 ericqUpdateIOOWeird IMC behavior

A few minutes ago, Gautam and I were poking around the IOO rack, looking at where he should power his frequency divider box, and what ADC innputs to use. 

Looking at the mode cleaner signals, it looks like we may have jostled something in a good way. Weird. 

  11713   Mon Oct 26 18:10:38 2015 IgnacioUpdateIOOLast Wiener MCL subtractions

As per Eric's request, here is the code and TF measurement that was used to calculate the MC2 FF filter that is loaded in FM5. This filter module has the filter with the best subtraction performance that was achieved for MCL.


  11720   Wed Oct 28 14:07:44 2015 KojiUpdateIOOMC WFS Offsets update

MC WFS offsets were updated to have a better operating point.

  11759   Thu Nov 12 16:00:55 2015 ericqUpdateIOOPSL Laser turned back on

We found the PSL laser switched off. Looking at the wall StripTool, it looks like this happened about 4 hours ago. Gautam was working at and around the PSL table, and I suspect he accidently ran into the Big Red Button. 

We turned the laser back on.

  11773   Tue Nov 17 15:49:23 2015 KojiConfigurationIOOMC Autolocker modified

/opt/rtcds/caltech/c1/scripts/MC/AutoLockMC.csh  was modified last night.

1. Autolocker sometimes forget to turn off the MC2Tickle. I added the following lines to make sure to turn it off.

    echo autolockMCmain: MC locked, nothing for me to do >> ${lfnam}
    echo just in case turn off MC2 tickle >> ${lfnam}

2. During the lock acquisition, Autolocker frequently stuck on a weak mode. So the following lines were added
so that the Autolocker toggles the servo switch while waiting for the lock.

    echo autolockMCmain: Mon=$mclockstatus, Waiting for MC to lock .. >> ${lfnam}
    # Turn off MC Servo Input button
    ezcawrite C1:IOO-MC_SW1 1
    date >> ${lfnam}
    sleep 0.5;
    # Turn on MC Servo Input button
    ezcawrite C1:IOO-MC_SW1 0
    sleep 0.5;

  11794   Sat Nov 21 00:45:30 2015 KojiUpdateIOOIMC fix

Based on the observation of the PMC error signal, I started measuring the IMC OLTF. Immediately, it was found that the overall IMC loop gain was too low.
The UGF was ~40kHz, which was really marginal. It had been >100kHz when I have adjusted it about a year ago. (Next entry for the detail)

The first obvious thing was that the SMA cables around the IMC servo have visible degradation (Attatched photos).
I jiggled the signal cable from the demodulator Q_out to the MC servo. The openloop gain seemed fluctuating (increased) based on the cabling.
I decided to repair these cables by adding solder on the shield.

Even after the repair, the open loop TF didn't show any improvement. I checked the LO level and found that it was -16.7dBm.

I traced the problem down to the frequency generator unit (T1000461). The front panel of the unit indicates the output power for the 29.5MHz output is 13dBm,
while measurement showed it was 6~8dBm (fluctuating). The T1000461 document describes that there is only a wenzel oscillator inside. Does this mean the oscillatorwas degraded??? We need to open the box.

I was not sure what was the LO level. I naively assumed the input is 0dBm. Reducing the attenuation of the dial on the AM Stabilizer unit from 12dB attn to 0dB.
This made the LO level -3.3dBm.

Later at home, I thought this nominal LO level of 0dBm could have been wrong.

The demodulator circuit (D990511) has the amplifier ERA-5 (G=~20dB) at the input. Between the input and the ERA-5 there is a pattern for an attenuator.
Assuming we have no attenuator, the ERA-5 has to spit out 20dBm. That is too much for this chip. I need to pull out the box to see how much is the nominal LO for this box using an active probe.

This decrease/increase of the LO level affects the WFS demod too. According to D980233-B, the input stage has the comparator chip AD96687, which can handle differential voltage of 5.5V.
Therefore the effect is minimal.

  11795   Sat Nov 21 00:46:33 2015 KojiUpdateIOOIMC OLTF

Here is the comparison before and after the fix.

Before the work, the UGF was ~40kHz. The phase margin was ~5deg. This caused huge bump of the frequency noise.

After the LO power increase, I had to reduce the MC loop gain (VCO Gain) from 18dB to 6dB. This resulted 4dB (x2.5) increase of the OLTF. This means that my fix increased the optical gain by 16dB (x6.3). The resulting UGF and phase mergin were measured to be 117kHz and 31deg, respectively.


Now I was curious to see if the PMC err shows reasonable improvement when the IMC is locked. Attachment 2 shows the latest comparison of the PMC err with and without the IMC locked. The PMC error has been taken up to 500kHz. The errors were divided by 17.5kHz LPF and 150kHz LPF to compensate the sensing response. The PMC cavity pole was ignored in this calculation. T990025 saids the PMC finesse is 4400 and the cavity pole is 174kHz. If this is true, this also needs to be applied.


1. Now we can see improvement of the PMC error in the region between 10kHz to 70kHz.

2. The sharp peak at 8kHz is due to the marginally stable PMC servo. We should implement another notch there. T990025 suggests that the body resonance of the PMC spacer is somewhere around there. We might be able to damp it by placing a lossy material on it.

3. Similarly, the features at 12kHz and 28kHz is coming from the PMC. They are seen in the OLTF of the PMC loop.

4. The large peak at 36kHz does not change with the IMC state. This does mean that it is coming from the laser itself, or anything high-Q of the PMC. This signal is seen in the IMC error too.

5. 72kHz, 108kHz, 144kHz: Harmonics of 36kHz?

6. Broad feature from 40kHz to 200kHz. The IMC loop is adding the noise. This is the frequency range of the PC drive. Is something in the PC drive noisy???

7. The feature at 130kHz. Unknown. Seems not related to IMC. The laser noise or the PMC noise.

Remaining IMC issues:

Done (Nov 23, 2015) - 29.5MHz oscillator output degraded. Possibly unstable and noisy. Do we have any replacement? Can we take a Marconi back from one of the labs?

Done (Nov 23, 2015) - Too high LO?

- Large 36kHz peak in the IMC

- IMC loop shape optimization

- IMC locking issue. The lock streatch is not long.

- IMC PC drive issue. Could be related to the above issue.

Maybe not relevant - PC drive noise?

  11796   Sun Nov 22 07:09:01 2015 ranaUpdateIOOIMC fix

On the demod board there is a 10 dB attenuator (AT1), which lowers the level to -10 dBm before the ERA-5. Then it should be 10 dBm before going to the rest of the parts. But I guess the ERA-5 chips which come later on in the circuit could be decaying like the ones in the PMC LO board.


Later at home, I thought this nominal LO level of 0dBm could have been wrong.

  11797   Sun Nov 22 12:07:09 2015 KojiUpdateIOOIMC fix


Done (Nov 23, 2015) - Check if the attenuator is still there in the input chain

Done (Nov 23, 2015) - Check if the actual LO levels at the 17dBm mixers are reasonable.

- Check if the actual LO levels for the LSC demods are OK too

  11798   Sun Nov 22 12:12:17 2015 KojiUpdateIOOIMC OLTF

Well. I thought a bit more and now I think it is likely that this is just the servo bump as you can see in the closed-loop TF.


6. Broad feature from 40kHz to 200kHz. The IMC loop is adding the noise. This is the frequency range of the PC drive. Is something in the PC drive noisy???

  11802   Mon Nov 23 22:12:10 2015 KojiUpdateIOOLO level check for the IMC demod board

In order to check the proper LO level, the IMC demod board was checked. As a short summary, -8dBm is the proper input for the IMC demod board. This was realized when the variable attenuator of the RF AM Stabilizer was set up be -7dB.

Initially, I tried to do the measurement using the extender board. But every board had the issue of +15V not working. After several extender boards were tried, I noticed that the current draw of the demod board burned the 15V line of the extender board.

Then I moved to the work bench. The signals were checked with the 10:1 probe. It's not properly the 50Ohm system, exactly to say.

I found that the LO signals at the mixers have huge distortion as it reaches the nominal 17dBm, and I wondered if ERA-5s were gone. Just in case I replaced the ERA-5s but didn't see any significant change. Then I thought it is due to the mixer itself. The mixer was removed and replaced with a 50Ohm SMD resister. Then the output of the last ERA-5 became sinusoidal, and the level was adjusted to be ~17dBm (4.52 Vpp) when the input power was measured to be -7.7dBm with the RF power meter. Once the mixer was reinstalled, it was confirmed that the waveform becase rectangular like, with the similar amplitude (4.42Vpp).

Now the module was returned to the rack. The RF level at the LO input was adjusted to be -8dBm by setting the attenuator level to be 7dBm.

Once the IMC is locked with this setting, the open loop transfer function was measured. The optical gain seemed almost unchanged compared with the recent nominal. The UGF and PM were measured to be 144kHz and 30deg.

  11807   Wed Nov 25 04:24:21 2015 ranaUpdateIOOLO level check for the IMC demod board

Hmmm. Very non-standard demod. From the photo, looks like someone did some surgery with the attenuators (AT1, AT2, AT3) in the LO path. (might be me from a long time ago).

-8 dBm input to a circuit is a not a low noise situation. It would be best to remove the amplifiers in the I&Q paths and just have a single amplifier in the main path. Ideally we want the LO to never go below -3 dBm and certainly not below 0 dBm while outside of the board.

I doubt that all of the LSC demods were modified in this way - this one ought to get some sharpie or stickers to show its difference.

  11808   Wed Nov 25 10:07:10 2015 KojiUpdateIOOLO level check for the IMC demod board

I didn't finish making the DCC entry for this module yet.

But the attenuators are
- AT1: 10dB. There is a sign that it was 3dB before ---  a 3dB chip was also attached on the boardnext to 10dB.
- AT2/3: Removed. They were replaced with 0Ohm resistors.

Currently the input is -8dBm. The input and output of the first ERA-5 are -17dBm and +7dBm, respectively.
Then the input and output of the second ERA-5 are -2dBm and 17dB, respectively.

In order to remove the second amplification stage, the first stage has to produce 26dBm. This is too much for either ERA-5 or any chips that fits on the foot print. If we use low gain but high output amp like GVA-81 (G=10dB, DF782 package), it is doable

Input 0dBm - [ATTN 3] - -3dBm - [ERA-5 G=20dB] - +16~+17dBm - [Circuits -9dB] - +7dBm - [Attn 0dB] - +7dBm - [GVA-81 G=10dB] - +17dBm

I think we should check the conditions of all the LSC demods.

  11811   Wed Nov 25 16:46:10 2015 KojiUpdateIOOLO level check for the IMC demod board

Awwww. I found that the demod board has the power splitter (PSCJ-2-1) with one output unterminated.
This power splitter should be removed.


  11812   Wed Nov 25 20:07:35 2015 ranaUpdateIOOLO level check for the IMC demod board

Perhaps we can replace T1 with a mini-circuits hybrid 0-90 deg splitter and then remove the trim caps. (JSPQ-80, JYPQ-30, SCPQ-50)

  11885   Wed Dec 16 10:22:14 2015 SteveUpdateIOOthis morning

c1sus and c1ioo were restarted. PMC locked.

  11896   Tue Dec 22 16:23:33 2015 gautamUpdateIOOInput alignment to PMC tweaked

When I came in this afternoon, I saw that the PZT voltage to the PMC had railed. Following the usual procedure of turning the servo gain to zero and adjusting the DC offset, I got the PMC to relock, but the PMCR level was high and the alignment looked poor on the control room monitor. So I tweaked the input alignment on the PSL till I felt it was more reasonable. The view on the control room monitor now looks more like the usual state, and the "REFL (V)" field on the PMC MEDM screen now reads 0.02-0.03 which is the range I remember it being in nominally. 

  11998   Thu Feb 18 02:52:27 2016 ericqUpdateIOOSome housekeeping

I manually aligned the IMC. Spot positions are all < 1.5mm. PMC trans of ~0.74, MC2 Trans of ~15400, MC Refl ~0.4, which is better than its been for some time now.

Somehow the WFS DC offsets were off, which made it look like it was impossible to center the beam on WFS2. The script for setting these wasn't working so I fixed it, ran it. WFS and MC2 trans offsets were set, WFS are back on and have been holding MC REFL nice and low for ~3 hours.

Arms were dither aligned, wrote the offsets to SDF files. Oplevs need centering. No further daqd crashes.

  12021   Fri Mar 4 13:52:41 2016 ericqUpdateIOOPSL Laser Opened

PSL Table doors were open, and the laser shutter was closed.

Doors have been closed, laser has been opened. 

  12022   Sat Mar 5 10:37:48 2016 ranaUpdateIOOPSL Laser Opened

Sorry, that was me; taking some photos of the PSL and EX mirrors.


PSL Table doors were open, and the laser shutter was closed.

Doors have been closed, laser has been opened. 


  12032   Sat Mar 12 22:23:37 2016 ranaSummaryIOOPMC relocked

Found it locked on TEM01 mode.

Sweets in the fridge for non-PhD holders, courtesy of the highest levels of Caltech.

  12035   Tue Mar 15 10:31:58 2016 SteveUpdateIOOLaser is turned back on

It's may be the janitor's doing.

I noticed that the HEPA filers were off. They are turned on at 20%

  12041   Tue Mar 22 14:12:18 2016 SteveUpdateIOOLaser is turned back on

The 2W Innolight was turned on.


  12042   Tue Mar 22 21:30:15 2016 KojiUpdateIOOPMCIMC aligned, WFS offset adjusted

The alignment of the PMC adjusted on the PSL table: Trans 0.737->0.749

The alignment of the IMC adjusrted on the sliders: Trans 14300->15300

WFS offset has been reset by /opt/rtcds/caltech/c1/scripts/MC/WFS/WFSoffsets

  12072   Tue Apr 12 22:41:00 2016 KojiUpdateIOOPMC/IMC aligned, WFS offset adjusted

Did it again.

PMC Trans ~0.739
IMC Trans ~15000

  12214   Sun Jun 26 15:27:28 2016 ranaFrogsIOOPMC /MC lopced

Found PMC unlocked for many hours so I relocked it. IMC relocked by itself, but the input switch seems to be flickering to fast. Also the Keep Alive bit is not flashing. no

  12639   Wed Nov 23 17:48:16 2016 rana, kojiUpdateIOOHow bad is the McWFS?


Previous elog entries on this:

  12640   Wed Nov 23 20:08:51 2016 Koji, ranaUpdateIOOMC WFS Demod/Whitening boards removed from the IOO rack

We removed one set of the MC WFS demod board and whitening board from the IOO rack for the investigation.
The MC WFS servo loops are disabled with the EPICS screens.
Let us know when you need the MC WFS boards to be returned to the rack.

This is to investigate the signal chain and fix some issues. We ramped down the -100 V supply for the WFS QPD bias (why is it so big?), but everything else is still on. Koji is doing demod board. Rana will upload a marked up WFS whitening board schematic soon.

  12641   Sat Nov 26 19:16:28 2016 KojiUpdateIOOIMC WFS Demod board measurement & analysis

[Rana, Koji]

1. The response of the IMC WFS board was measured. The LO signal with 0.3Vpp@29.5MHz on 50Ohm was supplied from DS345. I've confirmed that this signal is enough to trigger the comparator chip right next to the LO input. The RF signal with 0.1Vpp on the 50Ohm input impedance was provided from another DS345 to CH1 with a frequency offset of 20Hz~10kHz. Two DS345s were synced by the 10MHz RFreference at the rear of the units. The resulting low frequency signal from the 1st AF stage (AD797) and the 2nd AF stage (OP284) were checked.

Attachment 1 shows the measured and modelled response of the demodulator with various frequency offsets. The value shows the signal transfer (i.e. the output amplitude normalized by the input amplitude) from the input to the outputs of the 1st and 2nd stages. According to the datasheet, the demodulator chip provides a single pole cutoff of 340kHz with the 33nF caps between AP/AN and VP. The first stage is a broadband amplifier, but there is a passive LPF (fc=~1kHz). The second stage also provides the 2nd order LPF at fc~1kHz too. The measurement and the model show good agreement.

2. The output noise levels of the 1st and 2nd stages were meausred and compared with the noise model by LISO.
Attachment 2 shows the input referred noise of the demodulator circuit. The output noise is basically limited by the noise of the first stage. The noise of the 2nd stage make the significant contribution only above the cut off freq of the circuit (~1kHz). And the model supports this fact. The 6.65kOhm of the passive filter and the input current noise of AD797 cause the large (>30nV/rtHz) noise contribution below 100Hz. This completely spoils the low noiseness (~1nV/rtHz) of AD797. At lower frequency like 0.1Hz other component comes up above the modelled noise level.

3. Rana and I had a discussion about the modification of the circuit. Attachment 4 shows the possible improvement of the demod circuit and the 1st stage preamplifier. The demodulator chip can have a cut off by the attached capacitor. We will replace the 33nF caps with 1uF and the cut off will be pushed down to ~10kHz. Then the passive LPF will be removed. We don't need "rodeo horse" AD797 for this circuit, but op27 is just fine instead. The gain of the 1st stage can be increased from 9 to 21. This should give us >x10 improvement of the noise contribution from the demodualtor (Attachment 3). We also can replace some of the important resistors with the thin film low noise resistors.

  12645   Tue Nov 29 17:45:06 2016 KojiUpdateIOOIMC WFS Demod board measurement & analysis

Summary: The demodulator input noise level was improved by a factor of more than 2. This was not as much as we expected from the preamp noise improvement, but is something. If this looks OK, I will implement this modification to all the 16 channels.

The modification shown in Attachment 1 has actually been applied to a channel.

  • The two 1.5uF capacitors between VP and AN/AP were added. This decreases the bandwidth of the demodulator down to 7.4kHz
  • The offset trimming circuit was disabled. i.e. Pin18 of AD831 was grounded.
  • The passive low pass at the demodulator output was removed. (R18, C34)
  • The stage1 (preamp) chip was changed from AD797 to OP27.
  • The gain of the preamp stage was changed from 9 to 21. Also the thin film resistors are used.

Attachment 2 shows the measured and expected output signal transfer of the demodulator. The actual behavior of the demodulator is as expected, and we still keep the over all LPF feature of 3rd order with fc=~1kHz.

Attachment 3 shows the improvement of the noise level with the signal reffered to the demodulator input. The improvement by a factor >2 was observed all over the frequency range. However, this noise level could not be explained by the preamp noise level. Actually this noise below 1kHz is present at the output of the demodulator. (Surprisingly, or as usual, the noise level of the previous preamp configuration was just right at the noise level of the demodulator below 100Hz.) The removal of the offset trimmer circuit contributed to the noise improvement below 0.3Hz.

  12647   Tue Nov 29 18:35:32 2016 ranaUpdateIOOIMC WFS Demod board measurement & analysis

more U4 gain, lesssss U5 gain

  12661   Fri Dec 2 18:02:37 2016 KojiUpdateIOOIMC WFS Demod board measurement & analysis

ELOG of the Wednesday work.

It turned out that the IMC WFS demod boards have the PCB board that has a different pattern for each of 8ch.
In addition, AD831 has a quite narrow leg pitch with legs that are not easily accessible.
Because of these, we (Koji and Rana) decided to leave the demodulator chip untouched.

I have plugged in the board with the WFS2-Q1 channel modified in order to check the significance of the modification.

WFS performance before the modification

Attachment 1 shows the PSD of WFS2-I1_OUT calibrated to be referred to the demodulator output. (i.e. Measured PSDs (cnt/rtHz) were divided by 8.9*2^16/20)
There are three curves: One is the output with the MC locked (WFS servos not engaged). The second is the PSD with the PSL beam blocked (i.e. dark noise). The third is the electronics noise with the RF input terminated and the nominal LO supplied.

This tells us that the measured PSD was dominated by the demodulator noise in the dark condition. And the WFS signal was also dominated by the demod noise below 0.1Hz and above 20Hz. There are annoying features at 0.7, 1.4, 2.1, ... Hz. They basically impose these noise peaks on the stabilized mirror motion.

WFS performance after the modification

Attachment 2 shows the PSD of WFS2-Q1_OUT calibrated to be referred to the demodulator output. (i.e. Measured PSDs (cnt/rtHz) were divided by 21.4*2^16/20)
There are three same curves as the other plot. In addition to these, the PSD of WFS2-I1_OUT with the MC locked is also shown as a red curve for comparison.

This figure tells us that the measured PSD below 20Hz was dominated by the demodulator noise in the dark condition. And the WFS signal is no longer dominated by the electronics noise. However, there still are the peaks at the harmonics of 0.7, 1.4, 2.1, ... Hz. I need further inspection of the FWS demod and whtening boards to track down the cause of these peaks.

  12662   Sat Dec 3 13:27:35 2016 KojiUpdateIOOIMC WFS Demod board measurement & analysis

ELOG of the work on Thursday

Gautam suggested looking at the preamplifier noise by shorting the input to the first stage. I thought it was a great idea.

To my surprise, the noise of the 2nd stage was really high compared to the model. I proceeded to investigate what was wrong.

It turned out that the resistors used in this sallen-key LPF were thick film resistors. I swapped them with thin film resistors and this gave the huge improvement of the preamplifier noise in the low frequency band.

Attachment 1 shows the summary of the results. Previously the input referred noise of the preamp was the curve in red. We the resistors replaced, it became the curve in magenta, which is pretty close to the expected noise level by LISO model above 3Hz (dashed curves). Unfortunately, the output of the unit with the demodulator connected showed no improvement (blue vs green), because the output is still limited by the demodulator noise. There were harmonic noise peaks at n x 10Hz before the resistor replacement. I wonder if this modification also removed the harmonic noise seen in the CDS signals. I will check this next week.

Attachment 2 shows the current schematic diagram of the demodulator board. The Q of the sallen key filter was adjusted by the gain to have 0.7 (butter worth). We can adjust the Q by the ratio of the capacitance. We can short 3.83K and remove 6.65K next to it. And use 22nF and 47nF for the capacitors at the positive input and the feedback, respectively. This reduces the number of the resistors.

ELOG V3.1.3-