40m QIL Cryo_Lab CTN SUS_Lab TCS_Lab OMC_Lab CRIME_Lab FEA ENG_Labs OptContFac Mariner WBEEShop
  40m Log, Page 162 of 341  Not logged in ELOG logo
ID Date Author Type Category Subjectup
  12697   Mon Jan 9 16:12:30 2017 SteveUpdateGeneralOptical Layout in DCC

Caltech Facilities promissed to email the 40m facility drawings in Cad format.

I organized the old of optical , vacuum and facility layout drawings on paper in the old cabinet. 

Quote:

Manasa pointed me to the CAD drawings in the 40m SVN and I've now uploaded them to the 40m DCC Tree so that EricG and SteveV can convert them into SolidWorks.

 

Attachment 1: drawings_on_paper.jpg
drawings_on_paper.jpg
  561   Wed Jun 25 00:35:40 2008 KojiSummaryGeneralOptical Layout on the AP table
I have visited the AP table in order to investigate where we are going to put the optical setup for the abs. length meas.
I have attached the PNG and PDF files to share the optical layout. It is not complete. Any comments or corrections are welcome.
Attachment 1: optical_layout_ap_table.png
optical_layout_ap_table.png
Attachment 2: optical_layout_ap_table.pdf
optical_layout_ap_table.pdf
  9943   Mon May 12 22:52:59 2014 JenneSummarySUSOptical Lever Filters are all different

We need to go back and have a look at all of our optical lever control filters, and make sure they make sense. 

In particular, we should have a look at the ITMs, since they have a huge amount of motion around 10Hz. 

Notes:  ETMX shouldn't have that lower notch.  The bounce mode Qs should be lowered.

OpLevFilters.pdf

  8480   Tue Apr 23 22:59:05 2013 ranaConfigurationSUSOptical Lever Gains normalized

Due to the recent addition of cal factors in the OL error points, the OLPIT_GAIN and OLYAW_GAIN have been reduce to tiny numbers (e.g. 0.002).

Since our MEDM only shows 3 digits past the decimal point by default, it makes more sense to have the gains around 1.

So I reduced the gains in all of the FM1 filters from 1000 to 1 and multiplied the GAIN values by 1000 (using ezcastep) to compensate.

All of the active optics seem to be behaving as before. Haven't tested ETMs or SRM yet.

  9934   Fri May 9 01:36:28 2014 ranaSummarySUSOptical Lever QPD Sum trends: they're almost all too weak

 We want there to be ~16000 cts of signal per quadrant on the optical levers. I think that most of the QPDs have been modified to have 100k transimpedance resistors.

From the attached 90 day trend, you can see that the ETMX, BS, PRM, and SRM are really low. We should figure out if we need to change the lasers or if the coating reflectivities are just low.

Steve, can you please measure the laser powers with a power meter and then reply to this entry?

Another possibility is that we are just picking a dim beam and a brighter one is available.

Attachment 1: OLtrend.png
OLtrend.png
  9942   Mon May 12 22:42:19 2014 ranaSummarySUSOptical Lever QPD Sum trends: they're almost all too weak

For some reason or another, I decided that we should see if the optical lever servos were injecting too much noise into the test masses. The ITMs are much worse than the ETMs and I am afeared that they might be making the main noise for our arms in the 20-40 Hz region. Jenne is checking up on these feedback loops to see what's up.

To estimate the actuator gains of the mirrors, I turned on 1 count drives from LSC/CAL oscillators into the LSC drives of each test mass at the frequencies shown in the plot with the resulting peaks showing up in in POX/Y with the single arm locks in red. I will leave these going permanently, but with 0.1 count ampltiudes; we need to make it so in the scripts.

Attachment 1: OL-FB.png
OL-FB.png
Attachment 2: arms_140512.pdf
arms_140512.pdf
  7516   Wed Oct 10 02:20:34 2012 ranaUpdateSUSOptical Lever QPD mods

 Since we upgraded the CDS system, I guess our ADC ranges have gone up but we never did anything to the OLs to match the ADC ranges. From Liz's daily summary page of the OL, I see this:

C1-CORE_OPTICS_SUM_DATA_ALL_TIME_0-1033801216-86400.png

So we need a factor of 5-10 increase in the electronics gain (why isn't the BS SUM on there?). This might be accomplished in the head, but for the ones with whitening boards, might be better to do there.

(** add to Jamie's list of long term tasks **)

  485   Sun May 18 18:44:48 2008 ranaSummarySUSOptical Lever SUM Trend - 80 days
I used the OL-Trend.xml dataviewer template to make this plot. Looks like the ETMY optical lever
slowly degraded over the last few months and then finally died 10 days ago. Would someone please
replace this laser and tune the lens position to minimize the spot size on the quad?
Attachment 1: e.pdf
e.pdf
  5376   Sat Sep 10 11:07:37 2011 ranaHowToSUSOptical Lever Servo Tuning thoughts

Now that we are in a moderately stable condition, its time to design the optical lever feedback transfer functions. We should think carefully about how to do this optimally.

In the past, the feedback shape was velocity damping from 0-10 Hz, with some additional resonant gain around the pendulum and stack modes. There were some low pass filters above ~30 Hz. These were all hand tuned.

I propose that we should look into designing optimal feedback loops for the oplevs. In principle, we can do this by defining some optimal feedback cost function and then calculate the poles/zeros in matlab.

How to define the cost function (? please add more notes to this entry):

1) The ERROR signal should be reduced. We need to define a weight function for the ERROR signal: C_1(f) = W_1(f) * (ERR(f)^2)

2) The OL QPDs have a finite sensing noise, so there is no sense in suppressing the signal below this level. Need to determine what the sensing noise is.

3) The feedback signal at high frequencies (30 Hz < f < 300 Hz) should be low passed to prevent adding noise to the interferometer via the A2L coupling. It also doesn't help to reduce this below the level of the seismic noise. The cost function on the feedback should be weighted apprpriately given knowledge about the sensing noise of the OL, the seismic noise (including stack), and the interferometer noise (PRC, SRC, MICH, DARM).

4) The servo should be stable: even if there is a negligible effect on the ERROR signal, we would not want to have more than 10 dB of gain peaking around the UGFs.

5) The OL QPDs are dominated by drift of the stack, laser, etc. at some low frequencies. We should make sure the low frequency feedback is high passed appropriately.

6) Minimize transmitted power rms in single arm lock etc.

  6442   Sun Mar 25 20:13:31 2012 ranaHowToSUSOptical Lever Servo Tuning thoughts

To start the optical lever filter design, I looked into the noise on ITMY. It should be similar to the other arm cavity optics since they have the same whitening electronics.

The RED/BLUE are with loops open. The MAGENTA/CYAN with loops closed. Looks good; the bandwidth is a few Hz and there is not much peaking,

To figure out the contribution from the dark noise I misaligned the ITMY until the sum on the QPD went to zero. Then I took the spectra of the OL{1,2,3,4}_OUT signals (they all looked the same).

To normalize them properly I took OL4, multiplied it by 2 to account for the incoherent sum of 4 channels and then divided by the nominal SUM (which was 14685 counts). I've left the OL3 un-normalized to show the ratio.

From this plot it seems that the dark noise is not a problem at any frequency (no need to amplify for the new ADCs).

I'm going to use the open loop spectra to design the optimal feedback control. The file is saved as /users/rana/dtt/ITMY_OL-120325.xml

Attachment 1: Untitled.png
Untitled.png
  9946   Tue May 13 13:27:58 2014 SteveSummarySUSOptical Lever Servos setting table

Quote:

For some reason or another, I decided that we should see if the optical lever servos were injecting too much noise into the test masses. The ITMs are much worse than the ETMs and I am afeared that they might be making the main noise for our arms in the 20-40 Hz region. Jenne is checking up on these feedback loops to see what's up.

To estimate the actuator gains of the mirrors, I turned on 1 count drives from LSC/CAL oscillators into the LSC drives of each test mass at the frequencies shown in the plot with the resulting peaks showing up in in POX/Y with the single arm locks in red. I will leave these going permanently, but with 0.1 count ampltiudes; we need to make it so in the scripts.

 I'm in the process of filling this table

OPLEV

SERVO     

300 ^

2:0

BR

16,24

Hz

ELP RLP BOOST RES

GAIN

QPD

COUNTS

 

QPD

mW

QPD

beam

OD

HE/NE

output

mW

%

back

on QPD

                                
ETMY PIT  FM1  FM5    55      -30 8,200 0.2   3.3  
        YAW  FM1  FM5    55      -28          
ETMX PIT  FM1  FM5  35        4.4 900 0.2   1.7  
       YAW  FM1  FM5  35        2.1          
ITMY PIT  FM1  FM5        3.3   52 14,400 0.4   9.5  
      YAW  FM1  FM5        3.3  -46          
ITMX PIT  FM1  FM5  50      3.3   30 7,400 0.17   2.8  
       YAW  FM1  FM5  50      3.3  -20          
BS  PIT  FM1  FM5  35      3.3   9 2,800 0.05   2.8  
    YAW  FM1  FM5  35      3.3  -9          
PRM  PIT FM1  FM5  55   FM7  3.3  7 3200 0.06   2.8  
       YAW FM1  FM5  55   FM7  3.3  -5          
SRM  PIT  FM1            -20       9.5  
       YAW  FM1            20          

 I should replace ETMX He/Ne laser

Attachment 1: OLsums.png
OLsums.png
  9145   Fri Sep 20 09:49:06 2013 SteveUpdateSUSOptical Lever Trend for 180 days: bad ETMY & PRM

I'm working on it.

Attachment 1: ETMYoplevPRM.png
ETMYoplevPRM.png
  9143   Thu Sep 19 21:42:18 2013 ranaUpdateSUSOptical Lever Trend for 90 days: ETMX and PRM are the bad ones
Attachment 1: OLtrend_2013.png
OLtrend_2013.png
  6367   Tue Mar 6 23:14:38 2012 ranaUpdateSUSOptical Lever had bad filters

 We found that that bounce (16.1 Hz) and roll (23.5 Hz) modes on the ITMX were much higher than on the ITMY. After some checking, it seems that the bandstop filters for the

SUSPOS, SUSPIT, SUSYAW, and SUSSIDE loops are set to the correct frequencies. However, the OLPIT and OLYAW had not been set correctly. I have copied the SUS filters into the OL filterbanks and reloaded all the filter banks. Attached are the comparison of old, bad, OL with the SUS ones.

The same cockamamie situation was there for the BS & ITMY as well. Although we still don't have the roll mode frequencies listed in the mechanical resonances wiki, I have guessed that the ITMY roll frequency is the same as the ITMX, since they have nearly the same bounce frequency. OL filters for the BS & ITMY are now at the right frequency (probably). Keiko is on top of fixing things for the other optics.

I think this whole notching adventure was in Leo's hands several months ago, but WE forgot to point him at the OLs in addition to the SUS. I blame Kiwamu 50% for not supervising him and Koji by 45% for not supervising Kiwamu. The other 5% goes to someone else. You know who you are.

Attachment 1: Untitled.png
Untitled.png
  168   Wed Dec 5 18:08:36 2007 AndreyUpdateASCOptical Lever laser for ETMX is installed

A new laser with \lambda=633nm has been intalled and the mirror adjusted so that the signal hits the center of the photodetector.

Output power level of that laser is 3.45 +- 0.05 mW.

Only about 0.29mW hits the photodetector.

Cable clips have been used to firmly fix the power supply cable for the laser.

See attached photopicture of the ETMX - "oplev" - optical - table.
Attachment 1: DSC_0199.JPG
DSC_0199.JPG
  8505   Mon Apr 29 15:53:49 2013 AlbertUpdateoptical tablesOptical Table Boxes

Quote:

 

 Albert, our new undergrad work force received 40m specific- basic safety training last week. Please read and sign 40m procedures booklet.

 These are the tentative box placements. Roughly. I don't actually have the box finalized yet, but the box should be around that size.

AS1.jpg AS1

BSPRM.jpgBSPRM

ETMX.jpgETMX

ETMY.jpgETMY

MC2.jpgMC2

POX.jpgPOX

POY.jpgPOY

 

How do I perspective ._.

  8342   Mon Mar 25 18:58:09 2013 Albert YangUpdateoptical tablesOptical Table Toolboxes

For those of you who spend annoying amounts of time looking for tools, fear no more. Toolboxes for each optical table are coming!

They will probably have:

IR Viewer (a few optical tables will have IR viewers, these specific tables will be labeled in the diagram coming out later)

IR Card

Ball screw drivers (3/16 in.) 6-8 in. handle

SMA Wrench

Allen Keys

Flashlight

Various Connectors (I'll find out what's needed at some point)

Zip Ties

Small flat screwdrivers (for adjusting camera gains)

 

Please suggest what else may be needed in these boxes.

The boxes will be held to the side of the tables, either by magnets or screws. A diagram of where they will be placed on each optical table in order to minimize obstruction of walkways will be distributed soon. Any objections can then be noted.

  8382   Mon Apr 1 16:16:16 2013 AlbertUpdateoptical tablesOptical Table Toolboxes Update

A heavy duty plastic box is the likeliest candidate for the optical table toolbox. It measures 5 9/16 in. x 11 5/8 in. x 4 5/8 in. and fits all the tools comfortably. ( http://www.mcmaster.com/#plastic-bin-boxes/=m4yh4m  ,  under Heavy Duty Plastic Bin Boxes)

The list of tools has been updated to include a pen and a wire cutter as well as everything previously stated.

In addition, Steve has recommended that boxes should be secured to the walls or surfaces near the optical tables as opposed to the optical tables themselves, as to keep the tables from wobbling when tools are being exchanged.

A diagram of tentative box placements will go out soon.

  8384   Mon Apr 1 16:35:42 2013 AlbertUpdateoptical tablesOptical Table Toolboxes Update

Quote:

A heavy duty plastic box is the likeliest candidate for the optical table toolbox. It measures 5 9/16 in. x 11 5/8 in. x 4 5/8 in. and fits all the tools comfortably. ( http://www.mcmaster.com/#plastic-bin-boxes/=m4yh4m  ,  under Heavy Duty Plastic Bin Boxes)

The list of tools has been updated to include a pen and a wire cutter as well as everything previously stated.

In addition, Steve has recommended that boxes should be secured to the walls or surfaces near the optical tables as opposed to the optical tables themselves, as to keep the tables from wobbling when tools are being exchanged.

A diagram of tentative box placements will go out soon.

 I also took every allen key I can find so they can be sorted. They will be back in the appropriate drawer locations soon.

  8395   Tue Apr 2 21:11:42 2013 RanaUpdateoptical tablesOptical Table Toolboxes Update

Quote:

A heavy duty plastic box is the likeliest candidate for the optical table toolbox. It measures 5 9/16 in. x 11 5/8 in. x 4 5/8 in. and fits all the tools comfortably. ( http://www.mcmaster.com/#plastic-bin-boxes/=m4yh4m  ,  under Heavy Duty Plastic Bin Boxes)

The list of tools has been updated to include a pen and a wire cutter as well as everything previously stated.

In addition, Steve has recommended that boxes should be secured to the walls or surfaces near the optical tables as opposed to the optical tables themselves, as to keep the tables from wobbling when tools are being exchanged.

A diagram of tentative box placements will go out soon.

 No, the small boxes must be attached to the optical tables. They won't be heavy enough to change the table tilt.

Also, all tools must be color coded according to the optical table using the 3M Vinyl table color code:

http://www.3m.com/product/images/Vinyl-Electrical-Color-Tape-300.jpg

  8408   Wed Apr 3 19:01:06 2013 AlbertUpdateoptical tablesOptical Table Toolboxes Update

Quote:

Quote:

A heavy duty plastic box is the likeliest candidate for the optical table toolbox. It measures 5 9/16 in. x 11 5/8 in. x 4 5/8 in. and fits all the tools comfortably. ( http://www.mcmaster.com/#plastic-bin-boxes/=m4yh4m  ,  under Heavy Duty Plastic Bin Boxes)

The list of tools has been updated to include a pen and a wire cutter as well as everything previously stated.

In addition, Steve has recommended that boxes should be secured to the walls or surfaces near the optical tables as opposed to the optical tables themselves, as to keep the tables from wobbling when tools are being exchanged.

A diagram of tentative box placements will go out soon.

 No, the small boxes must be attached to the optical tables. They won't be heavy enough to change the table tilt.

Also, all tools must be color coded according to the optical table using the 3M Vinyl table color code:

http://www.3m.com/product/images/Vinyl-Electrical-Color-Tape-300.jpg

 Ok.

So the new tentative plan on the boxes is to bolt them (magnetic strips were proposed but overruled on the grounds that they're not strong enough to withstand being knocked down by accidents).

The boxes are going to be a mix of the Thorlabs Benchtop Organizer (http://www.thorlabs.com/thorProduct.cfm?partNumber=BT17) and the original box. The box will have a region covered in mesh, so tools can be placed and held there. The box will also have a spacer at the bottom, with another mesh right above it, lined up. However, this double-mesh will only cover half of the box. The other half of the box will be compartmentalized to hold things such as screws, connectors, etc. I will talk to Steve about building the boxes.

Also, using nail-polish to coat the Allen wrenches is not going to work. Nail polish does not stick easily enough. The tentative new plan is oil paint, but this is to be reviewed.

Finally, the diagram with the placement of the boxes relative to the optical tables has been put on paper, but needs to be computerized so it's easier to read. This will be done as soon as possible.

  8410   Wed Apr 3 23:22:20 2013 ranaUpdateoptical tablesOptical Table Toolboxes Update

 There are some tips for how to appy nail polish on YouTube from MKNails and MissJenFABULOUS. Their tips on how to prepare the site for a strong bonding strength are probably helpful for our gold/nickel coated tools. For chrome tools we may need to abrade the surface with a stone or fine sandpaper for it to take the layer better. IF the YouTube videos don't do it for you, then I suggest contacting Tom Evans at LLO to find out what kind of nail polish he uses.

  8445   Thu Apr 11 16:29:23 2013 AlbertUpdateoptical tablesOptical Table Toolboxes Update

Quote:

 There are some tips for how to appy nail polish on YouTube from MKNails and MissJenFABULOUS. Their tips on how to prepare the site for a strong bonding strength are probably helpful for our gold/nickel coated tools. For chrome tools we may need to abrade the surface with a stone or fine sandpaper for it to take the layer better. IF the YouTube videos don't do it for you, then I suggest contacting Tom Evans at LLO to find out what kind of nail polish he uses.

 This is the tentative box placement per optical table. The toolboxes are going to be color-coded by a combination of two colors (the order won't matter). The side of each toolbox will have a little panel to let you know which box corresponds to which set of colors.

On the diagram, the set of colors is simply the color of the box border and the color of the text.

If anyone has a problem with any of the colors or the box placement let me know before they are installed and become an annoyance:

Diagram.png

Box Placements:

ETMY: Box will be attached to the underside of the table by magnets. The box will be on the north side of the optical table.

POY: Box will be attached to the side of the optical table by magnets. The box will be on the west side of the optical table.

BSPRM: Box will be attached to the side of the optical table by magnets. The box will be on the west side of the optical table.

AS: Box will be attached to the side of the optical table by magnets. The box will be on the north side of the optical table.

PSL1: Box will be inside the optical table, in the northeast corner.

PSL2: Box will be inside the optical table, in the southwest corner.

POX: Box will be attached to the side of the optical table by magnets. The box will be on the south side of the optical table.

MC2: Box will be attached to the side of the optical table by magnets. The box will be on the south side of the optical table.

ETMX: Box will be attached to the side of the optical table by magnets. The box will be on the east side of the optical table.

  8457   Mon Apr 15 17:44:28 2013 AlbertUpdateoptical tablesOptical Table Toolboxes Update

I decided to go see what the electrical tape looks like on the other tools.

These are the tools I felt were necessary to label with tape: (the others don't seem to be terribly important in terms of not interchanging between boxes)

photo.JPG

On another note I'm not sure why electrical tape can't be used on the Allen Wrenches too.

I also plan on ordering smaller flash lights for each table (this one is bulky and unwieldy), and filling in the gaps of the Allen Wrench sets as soon as I get the go-ahead.

  8502   Mon Apr 29 08:17:40 2013 AlbertUpdateoptical tablesOptical Table Toolboxes Update

Quote:

I decided to go see what the electrical tape looks like on the other tools.

These are the tools I felt were necessary to label with tape: (the others don't seem to be terribly important in terms of not interchanging between boxes)

photo.JPG

On another note I'm not sure why electrical tape can't be used on the Allen Wrenches too.

I also plan on ordering smaller flash lights for each table (this one is bulky and unwieldy), and filling in the gaps of the Allen Wrench sets as soon as I get the go-ahead.

 

  11006   Wed Feb 11 18:44:53 2015 manasaUpdateGeneralOptical fiber module

I have moved the optical fiber module for FOL to the PSL table. It is setup on the optical table right now for testing.

Once tests are done, the box will move to the rack inside the PSL enclosure. 

While doing any beat note alignment, please watch out for the loose fibers at the north side of the PSL enclosure until they are sheilded securely (probably tomorrow morning).

  16445   Tue Nov 2 18:54:41 2021 Anchal, PacoUpdateBHDOptical fibres laid for BHD upgrade

We successfully laid down all required optical fibre fiber cables from 1X4-1X7 region to 1Y1-1Y3 region today. This includes following cables:

  • Timing fibre fiber from Master Timing Synchornizer D050239 on 1X6 to C1SU2 I/O chassis on 1Y1.
  • Timing fibre fiber from Master Timing Synchornizer D050239 on 1X6 to C1BHD I/O chassis on 1Y3.
  • CX4 cable from Dolphin Card on 1X4 to C1SU2 FE on 1Y1 for IPC.
  • CX4 cable from Dolphin Card on 1X4 to C1BHD FE on 1Y3 for IPC.
  • DAQ Network extension fibre fiber optic cable from DAQ Network Switch on 1X7 to another switch we mounted on 1Y3 for local DAQ network distribution.
  12104   Mon May 2 19:14:18 2016 gautamUpdateendtable upgradeOptical layout almost complete

With Steve's help, I installed the Oplev earlier today. I adjusted the positions of the two lenses until I deemed the spot size on the QPD satisfactory by eye. As a quick check, I verified using the DTT template that the UGF is ~5Hz for both pitch and yaw. There is ~300uW of power incident on the QPD (out of ~2mW from the HeNe). In terms of ADC counts, this is ~13,000 counts which is about what we had prior to taking the endtable apart. There are a couple of spots from reflections off the black glass plate in the vacuum chamber, but in general, I think the overall setup is acceptable.

This completes the bulk of the optical layout. The only bits remaining are to couple the IR into the fiber and to install a power monitoring PD. Pictures to follow shortly. 

Now that the layout is complete, it remains to optimize various things. My immediate plan is to do the following:

  1. Maximize green transmission by tweaking alignment. I should also do a quick check using mirror specs to see that the measured transmitted green power compares favourably to what is expected.
  2. Check the green PDH loop transfer function at the X end - this will allow me to set the gain on the uPDH box systematically.
  3. Re-establish green beats, check noise performance.
  4. There are possibly multiple beam dumps that have to be installed. For now, I've made sure that no high power IR beams are incident on the enclosure. But there are a couple of red and green beams that have to be accounted for.

I will also need to upload the layout drawing to reflect the layout finally implemented.


Not directly related:

The ETMx oplev servo is now on. I then wanted to see if I could lock both arms to IR. I've managed to do this successfully - BUT I think there is something wrong with the X arm dither alignment servo. By manually tweaking the alignment sliders on the IFOalign MEDM screen, I can get the IR transmission up to ~0.95. But when I run the dither, it drives the transmission back down to ~0.6, where it plateaus. I will need to investigate further. 

 

GV Edit: There was some confusion while aligning the Oplev input beam as to how the wedge of the ETM is oriented. We believe the wedge is horizontal, but its orientation (i.e. thicker side on the right or left?) was still ambiguous. I've made a roughly-to-scale sketch (attachment #1) of what I think is the correct orientation - which turns out to be in the opposite sense of the schematic pinned up in the office area.. Does this make sense? Is there some schematic/drawing where the wedge orientation is explicitly indicated? My search of the elog/wiki did not yield any..

Attachment 1: ETMX_wedge.pdf
ETMX_wedge.pdf
  12122   Thu May 19 16:29:20 2016 SteveUpdateendtable upgradeOptical layout almost complete

 

 

Attachment 1: ETMX_4x3_closed.jpg
ETMX_4x3_closed.jpg
Attachment 2: sealedETMXenclosure.jpg
sealedETMXenclosure.jpg
  7090   Mon Aug 6 11:07:06 2012 ManasaUpdate40m UpgradingOptical layout updated

ACAD files of the 40m optical layout have been updated as per the vent in Aug 2011.

Files are available at the 40m svn docs-->Upgrade12-->Opt_Layout2011.

 

  7125   Wed Aug 8 20:51:56 2012 ManasaUpdate40m UpgradingOptical layout updated

Quote:

ACAD files of the 40m optical layout have been updated as per the vent in Aug 2011.

Files are available at the 40m svn docs-->Upgrade12-->Opt_Layout2011.

 

 To ease the pain of hunting files, optical layout ACAD files have been moved to a new directory 40M_Optical Layout in the repository. Relevant files from directories Upgrade12 and upgrade 08 will be moved to "40M_Optical Layout" very soon and eventually these old directories will be removed. 

  7222   Fri Aug 17 18:49:55 2012 ManasaUpdate40m UpgradingOptical layout updated

Quote:

Quote:

ACAD files of the 40m optical layout have been updated as per the vent in Aug 2011.

Files are available at the 40m svn docs-->Upgrade12-->Opt_Layout2011.

 

 To ease the pain of hunting files, optical layout ACAD files have been moved to a new directory 40M_Optical Layout in the repository. Relevant files from directories Upgrade12 and upgrade 08 will be moved to "40M_Optical Layout" very soon and eventually these old directories will be removed. 

Changes mentioned by Koji and Steve have been updated to the files (except for the cable connector which have been added but whose part number has to be found to match accurately with the current layout). The file in the directory should now match the current setup after the last vent Aug 2011.

Let me know if you find any mismatch between the current setup and the layout.

Plans about new installations/reconfiguration during the new vent will be carried out in a separate file.

  13432   Thu Nov 16 13:57:01 2017 gautamUpdateOptical LeversOptical lever noise

I disabled the OL loops for ITMX, ITMY and BS at GPStime 1194897655 to come up with an Oplev noise budget. OL spots were reasonably well centered - by that, I mean that the PIT/YAW error signals were less than 20urad in absolute value.

Attachment #1 is a first look at the DTT spectra - I wonder why the BS Oplev signals don't agree with the ITMs at ~1Hz? Perhaps the calibration factor is off? The sensing noise not really flat above 100Hz - I wonder what all those peaky features are. Recall that the ITM OLs have analog whitening filters before the ADC, but the BS doesn't...

In Attachment #2, I show comparison of the error signal spectra for ITMY and SRM - they're on the same stack, but the SRM channels don't have analog de-whitening before the ADC.

For some reason, DTT won't let me save plots with latex in the axes labels...

Attachment 1: VertexOLnoise.pdf
VertexOLnoise.pdf
Attachment 2: ITMYvsSRM.pdf
ITMYvsSRM.pdf
  13433   Thu Nov 16 15:43:01 2017 ranaUpdateOptical LeversOptical lever noise

I bet the calibration is out of date; probably we replaced the OL laser for the BS and didn't fix the cal numbers. You can use the fringe contrast of the simple Michelson to calibrate the OLs for the ITMs and BS.

  13156   Tue Aug 1 16:05:01 2017 gautamUpdateOptical LeversOptical lever tuning - cost function construction

Summary:

I've been trying to put together the cost-function that will be used to optimize the Oplev loop shape. Here is what I have so far.

Details:

All of the terms that we want to include in the cost function can be derived from:

  1. A measurement of the open-loop error signal [using DTT, calibrated to urad/rtHz]. We may want a breakdown of this in terms of "sensing noises" and "disturbances" (see the previous elog in this thread), but just a spectrum will suffice for the optimal controller given the current noises.
  2. A model of the optical plant, P(s) [validated with a DTT swept-sine measurement]. 
  3. A model of the controller, C(s). Some/all of the poles and zeros of this transfer function is what the optimization algorithm will tune to satisfy the design objectives.

From these, we can derive, for a given controller, C(s):

  1. Closed-loop stability (i.e. all poles should be in the left-half of the complex plane), and exactly 2 UGFs. We can use MATLAB's allmargin function for this. An unstable controller can be rejected by assigning it an extremely high cost.
  2. RMS rrror signal suppression in the frequency band (0.5Hz - 2Hz). We can require this to be >= 15dB (say).
  3. Minimize gain peaking and noise injection - this information will be in the sensitivity function, \left | \frac{1}{1+P(s)C(s)} \right |. We can require this to be <= 10dB (say).
  4. RMS of the control signal between 10 Hz and 200 Hz, multiplied by the digital suspension whitening filter, should be <10% of the DAC range (so that we don't have problems engaging the coil de-whitening).
  5. Smallest gain margin (there will be multiple because of the various notches we have) should be > 10dB (say). Phase margin at both UGFs should be >30 degrees.
  6. Terms 1-5 should not change by more than 10% for perturbations in the plant model parameters (f0 and Q of the pendulum) at the 10% (?) level. 

We can add more terms to the cost function if necessary, but I want to get some minimal set working first. All the "requirements" I've quoted above are just numbers out of my head at the moment, I will refine them once I get some feeling for how feasible a solution is for these requirements.

Quote:

An elog with a first pass at a mathematical formulation of the cost-function for controller optimization to follow shortly.


For a start, I attempted to model the current Oplev loop. The modeling of the plant and open-loop error signal spectrum have been described in the previous elogs in this thread.

I am, however, confused by the controller - the MEDM screen (see Attachment #2) would have me believe that the digital transfer function is FM2*FM5*FM7*FM8*gain(10). However, I get much better agreement between the measured and modelled in-loop error signal if I exclude the overall gain of 10 (see Attachments #1 for the models and #3 for measurements).

What am I missing? Getting this right will be important in specifying Term #4 in the cost function...

GV Edit 2 Aug 0030: As another sanity check, I computed the whitened Oplev control signal given the current loop shape (with sub-optimal high-frequency roll-off). In Attachment #4, I converted the y-axis from urad/rtHz to cts/rtHz using the approximate calibration of 240urad/ct (and the fact that the Oplev error signal is normalized by the QPD sum of ~13000 cts), and divided by 4 to account for the fact that the control signal is sent to 4 coils. It is clear that attempting to whiten the coil driver signals with the present Oplev loop shapes causes DAC saturation. I'm going to use this formulation for Term #4 in the cost function, and to solve a simpler optimization problem first - given the existing loop shape, what is the optimal elliptic low-pass filter to implement such that the cost function is minimized? 


There is also the question of how to go about doing the optimization, given that our cost function is a vector rather than a scalar. In the coating optimization code, we converted the vector cost function to a scalar one by taking a weighted sum of the individual components. This worked adequately well.

But there are techniques for vector cost-function optimization as well, which may work better. Specifically, the question is  if we can find the (infinite) solution set for which no one term in the error function can be made better without making another worse (the so-called Pareto front). Then we still have to make a choice as to which point along this curve we want to operate at.

Attachment 1: loopPerformance.pdf
loopPerformance.pdf
Attachment 2: OplevLoop.png
OplevLoop.png
Attachment 3: OL_errSigs.pdf
OL_errSigs.pdf
Attachment 4: DAC_saturation.pdf
DAC_saturation.pdf
  13141   Tue Jul 25 02:03:59 2017 gautamUpdateOptical LeversOptical lever tuning thoughts

Summary:

Currently, I am unable to engage the coil-dewhitening filters without destroying cavity locks. One reason why this is so is because the present Oplev servos have a roll-off at high frequencies that is not steep enough - engaging the digital whitening + analog de-whitening just causes the DAC output to saturate. Today, Rana and I discussed some ideas about how to approach this problem. This elog collects these thoughts. As I flesh out these ideas, I will update them in a more complete writeup in T1700363 (placeholder for now). Past relevant elogs: 5376, 9680

  1. Why do we need optical levers?
    • ​​To stabilize the low-frequency seismic driven angular motion of the optics.
  2.  In what frequency range can we / do we need to stabilize the angular motion of the optics? How much error signal suppression do we need in the control band? How much is achievable given the current Oplev setup?
    • ​​To answer these questions, we need to build a detailed Oplev noise budget.
    • Ultimately, the Oplev error signal is sensing the differential motion between the suspended optic and the incident laser beam.
    • What frequency range does laser beam jitter dominate the actual optic motion? What about mechanical drifts of the optical tables the HeNes sit on? And for many of the vertex optics, the Oplev beam has multiple bounces on steering mirrors on the stack. What is the contribution of the stack motion to the error signal?
    • The answers to the above will tell us what lower and upper UGFs we should and can pick. It will also be instructive to investigate if we can come up with a telescope design near the Oplev QPD that significantly reduces beam jitter effects (see elog 10732). Also, can we launch/extract the beam into/from the vacuum chamber in such a way that we aren't so susceptible to motion of the stack?
  3. What are some noises that have to be measured and quantified?
    • Seismic noise
    • ​Shot noise
    • Electronics noise of the QPD readout chain
    • HeNe intensity noise (does this matter since we are normalizing by QPD sum?)
    • HeNe beam pointing / jitter noise (How? N-corner hat method?)
    • Stack motion contribution to the Oplev error signal
  4. How do we design the Oplev controller?
    • ​The main problem is to frame the right cost function for this problem. Once this cost function is made, we can use MATLAB's PSO tool (which is what was used for the PR3 coating design optimization, and also successfully for this kind of loop shaping problems by Rana for aLIGO) to find a minimum by moving the controller poles and zeros around within bounds we define.
  5. What terms should enter the cost function?

    • ​In addition to those listed in elog 5376
    • We need the >10Hz roll-off to be steep enough that turning on the digital whitening will not significantly increase the DAC output RMS or drive it to saturation.
    • We'd like for the controller to be insensitive to 5% (?) errors in the assumed optical plant and noise models i.e. the closed loop shouldn't become unstable if we made a small error in some assumed parameters.
    • Some penalty for using excessive numbers of poles/zeros? Penalty for having too many high-frequency features.
  6. Other things to verify / look into
    • ​Verify if the counts -> urad calibration is still valid for all the Oplevs. We have the arm-cavity power quadratic dependance method, and the geometry method to do this.
    •  Check if the Oplev error signals are normalized by the quadrant sum.
    • How important is it to balance the individual quadrant gains?
    • Check with Koji / Rich about new QPDs. If we can get some, perhaps we can use these in the setup that Steve is going to prepare, as part of the temperature vs HeNe noise invenstigations.

Before the CDS went down, I had taken error signal spectra for the ITMs. I will update this elog tomorrow with these measurements, as well as some noise estimates, to get started.

  13147   Fri Jul 28 15:36:32 2017 gautamUpdateOptical LeversOptical lever tuning thoughts

Attachment #1 - Measured error signal spectrum with the Oplev loop disabled, measured at the IN1 input for ITMY. The y-axis calibration into urad/rtHz may not be exact (I don't know when this was last calibrated).

From this measurement, I've attempted to disentangle what is the seismic noise contribution to the measured plant output.

  • To do so, I first modelled the plant as a pair of complex poles @0.95 Hz, Q=3. This gave the best agreement with measurement by eye, I didn't try and optimize this too carefully. 
  • Next, I assumed all the noise between DC-10Hz comes from only seismic disturbance. So dividing the measured PSD by the plant transfer function gives the spectrum of the seismic disturbance. I further assumed this to be flat, and so I averaged it between DC-10Hz.
  • This will be a first seismic noise model to the loop shape optimizer. I can probably get a better model using the GWINC calculations but for a start, this should be good enough.

It remains to characterize various other noise sources.

Quote:

Before the CDS went down, I had taken error signal spectra for the ITMs. I will update this elog tomorrow with these measurements, as well as some noise estimates, to get started.


I have also confirmed that the "QPD" Simulink block, which is what is used for Oplevs, does indeed have the PIT and YAW outputs normalized by the SUM (see Attachment #2). This was not clear to me from the MEDM screen.


GV 30 Jul 5pm: I've included in Attachment #3 the block diagram of the general linear feedback topology, along with the specific "disturbances" and "noises" w.r.t. the Oplev loop. The measured (open loop) error signal spectrum of Attachment #1 (call it y) is given by:

y_{meas}(s) = P(s)\sum_{i=1}^{3}d_{i}(s) + \sum_{k=1}^{4}n_{k}(s)

If it turns out that one (or more) term(s) in each of the summations above dominates in all frequency bands of interest, then I guess we can drop the others. An elog with a first pass at a mathematical formulation of the cost-function for controller optimization to follow shortly.

Attachment 1: errSig.pdf
errSig.pdf
Attachment 2: QPD_simulink.png
QPD_simulink.png
Attachment 3: feedbackTopology.pdf
feedbackTopology.pdf
  14733   Mon Jul 8 17:33:10 2019 KruthiUpdateLoss MeasurementOptical scattering measurements

I came across a paper (see reference) where they have used DAOPHOT, an astronomical software tool developed by NOAO, to study the point scatterers in LIGO test masses using images of varying exposure times. I'm going through the paper now. I think using this we can analyze the MC2 images and make some interesting observations.

Reference:  L.Glover et al., Optical scattering measurements and implications on thermal noise in Gravitational Wave detectors test-mass coatings Physics Letters A. 382. (2018)

  7774   Sat Dec 1 16:58:14 2012 ManasaUpdateWIKI-40M UpdateOptical tables

I have updated the wiki with the layout of the out-of-vac optical tables: Updated optical tables

I used the new camera to take pictures.

Lesson learnt after the update:

To use the new canon to take better pictures of optics tables; set the camera to manual mode; no flash and iso at around 800 or higher if you can hold the camera still for that long. The autofocus works beautifully...so you will not need any minor tweaking of lens to take pictures. 

  3287   Sun Jul 25 18:47:23 2010 AlbertoUpdateSVNOptickle 40mUpgrade model updated to include short cavity length corrections

I uploaded an updated optickle model of the upgrade to the SVN directory with the optickle models (here).

  643   Mon Jul 7 19:15:38 2008 AlbertoUpdateGeneralOptics alignement on the ABS length experiment
Today I started setting up the PLL instruments to lock the frequency of the NPRO beam to the IFO beam. with no need of a new alignment after the weekend I was able to see the beat again, although this time I found at a different temperature of the NPRO laser of about 54 degrees (vs 51 of the last time).
I've got the Marconi as local oscillator (LO), the mixer Koji suggetsed, the SR560 and a 5 MHz low pass filter to cut the 33, 66 and 99 MHz present in the output signal from the PD. The filter worked well and I was able to single out only the beat resonance from the power spectrum.
In the attempt to enhance the amplitude of the beat, as Koji suggested, I tried to work on the alignment of the steering mirrors. While I was doing that, for some reason the pre-modecleaner lost the alignment and I had to ask John to help me lock it again. during the process I lost the old alignment but at the end I got a new one, apparently (from the camera) even better than the other. Although after that the beats were gone. Actually after the lock-in of the PMC the IFO beam didn't look as good as before, so it might be also for that reason.

I'll try again tomorrow, after that probably tonight Rob is going to reset the alignments of the interferometers.
  7313   Wed Aug 29 21:02:45 2012 JenneUpdateIOOOptics between Faraday and PRM are centered, realigned

[Jenne, Suresh, with support from Jamie and Koji]

MC spots measured, MC1, MC3 no change.

No clipping going through Faraday.

Beam hitting to the right of center of PZT1.  It was translated sideways so we are now hitting it on the center.  Knobs adjusted so we hit center of MMT1.

Beam totally obscured by Faraday on the way to MMT2.  MMT2 moved north, so that we clear the Faraday by more than a beam diameter.  MMT1 knobs adjusted to hit center of MMT2.

MMT2 knobs adjusted to hit center of PZT2.

PZT2 didn't have enough range with knobs, so we loosened it, pointed then adjusted with knobs so we're hitting center of PRM. 

We need to check spot centering on PRM with camera tomorrow.

Suresh checked that we're not clipped by IP ANG/POS pickoff mirrors, but we haven't done any alignment of IP ANG/POS.

 

Tomorrow:  Open ITMX door.  Check with Watek that we're hitting center of PRM.  Then look to see if we're hitting center of PR2.  Then, continue through the chain of optics.

  5729   Mon Oct 24 17:23:14 2011 SUS_DiagonalizerUpdateSUSOptics kicked
This is a cron-elog test. No optics have been kicked.
  5823   Sun Nov 6 09:39:25 2011 Dr. SUSUpdateSUSOptics kicked
All suspended optics have been kicked at Sun Nov 6 09:39:25 PST 2011. Watchdogs will be reengaged in 5 hours. Please refrain from disturbing the optics in the meantime.

EDIT ZK: After all that, I left the 'doirun' bit off in runDrSUS. I ran it manually at the above time.
  7523   Wed Oct 10 21:50:39 2012 SUS_DiagonalizerUpdateSUSOptics kicked
All suspended optics have been kicked at Wed Oct 10 21:50:39 PDT 2012. Watchdogs will be reengaged in 90 minutes.
  7524   Thu Oct 11 00:22:58 2012 SUS_DiagonalizerUpdateSUSOptics kicked

Quote:
All suspended optics have been kicked at Wed Oct 10 21:50:39 PDT 2012. Watchdogs will be reengaged in 90 minutes.


New SUS input matrix diagonalization complete.
  7979   Thu Jan 31 22:14:11 2013 ranaSummaryASCOptics lit

 Gouy not Guoy:

http://www.rp-photonics.com/gouy_phase_shift.html

pronounced Goo-eee, with the emphasis on the second syllable.

  7982   Fri Feb 1 12:22:27 2013 ZachSummaryASCOptics lit

It's OK; even Siegman got it wrong---48 times.

RA: NO, stil not OK.

Quote:

 Gouy not Guoy:

http://www.rp-photonics.com/gouy_phase_shift.html

pronounced Goo-eee, with the emphasis on the second syllable.

 

  13981   Mon Jun 18 14:32:42 2018 gautamUpdatePSLOptics on AS table

Yesterday, I moved the following optics:

  1. Lens in front of AS110 PD.
  2. BS splitting light between AS110 and AS55.

After moving these components around a bit, I locked them down once I was happy that the beam was pretty well centered on both of them, and also on AS110 and AS55 (measured using O'scope with single bounce from one ITM, other optics misaligned).

The beam was close to clipping on the lens mentioned in #1, probably because this wasn't checked when the 90-10 BS was installed for the AUX laser. Furthermore, I believe we are losing more than 10% of the light due to this BS. The ASDC (which is derived from AS55 PD) level is down at ~110cts as the Michelson is fringing, while it used to be ~200 cts. I will update with a power measurement shortly. But I think we should move ahead with the plan to combine the beam into the IFO's AS mode as discussed at the meeting last week.


Unrelated to this work, but c1psl and c1iscaux were keyed. 


ASDC has something weird going on with it - my main goal yesterday was to calibrate the actuators of ITMX, ITMY and BS using the Michelson. But with the Michelson locked on a dark fringe, the ASDC level changed by up to 50 counts seemingly randomly (bright fringe was ~1000 cts, I had upped the whitening gain to +21dB), even though the CCD remained clearly dark throughout. Not sure if the problem is in the readout electronics or in the PD itself.

  13982   Mon Jun 18 15:59:17 2018 johannesUpdatePSLOptics on AS table
Quote:

Furthermore, I believe we are losing more than 10% of the light due to this BS. The ASDC (which is derived from AS55 PD) level is down at ~110cts as the Michelson is fringing, while it used to be ~200 cts. I will update with a power measurement shortly. But I think we should move ahead with the plan to combine the beam into the IFO's AS mode as discussed at the meeting last week.

Is the 10% specified for P-Pol or for UNP? I contacted CVI about beamsplitters, since their website doesn't list a BS1-1064-90-... option on the website. They say a R=90% beamsplitter would be a custom job. The closest stock item they got is BS1-1064-95-2025-45UNP specified at R=95% for UNPolarized beams. They were kind enough to sent me the measured transmission curves for a recent lot of these, which is attached was uploaded to the wiki [Elog Police K: NO PROPRIETARY DOCUMENTS ON THE ELOG, which is public. Put it on our wiki and put the link here]. The figure is not labeled, but according to the contact Red is S-Pol and Blue is P-Pol, which means that this one actually has R=~90% for P, pretty much what we want. We'll need to buy two of these to make the swap in the setup.

Back to your original point: There's only a BS1-1064-10-2025-45UNP on the website, so unless we got these as custom items, the R for P-Pol is probably NOT actually 10%, just somewhere between 0% and 20%

ELOG V3.1.3-