40m QIL Cryo_Lab CTN SUS_Lab TCS_Lab OMC_Lab CRIME_Lab FEA ENG_Labs OptContFac Mariner WBEEShop
  40m Log, Page 1 of 1  Not logged in ELOG logo
Start date:Tue Jan 1 00:00:00 2008
End date:Thu Jan 2 00:00:00 2014
Subject:reference cavity
Text:reference cavity
ID Date Author Type Category Subject
  5272   Fri Aug 19 23:41:20 2011 JennyUpdatePSLRelocking NPRO to reference cavity.

Quote:

I am trying again to measure a temperature step response on the reference cavity on the PSL table.

I have been working to relock the NPRO to the cavity. I unblocked the laser beam, reassembled the setup described in my previous elog entry: 5202. I then did the following:

1) Monitored error signal (from LB1005 PDH servo), transmitted signal, and control signal sent to drive PZT on oscilloscope.

2) With loop open, swept through 0,0-mode resonance, saw a peak in the transmission, saw an accompanying error signal similar to the signal shown in 5202.

3) Tried to lock. Swept the gain on the LB1005 and could not find a gain that would make it lock. Tried changing the PI-corner freq. from 10 kHz to 30 kHz and back and still could not lock.

4) Noticed that the open loop error signal displayed on the scope was DC-offset from zero. Changed the offset to zero the error signal.

5) Tried to lock again and succeeded.

6) Noticed that upon closing the loop, the error signal became offset from zero again. Turning on the integrator on the LB1005 increased DC-offset.

7) Reduced the gain on the SR560 being used as a low pass filter from 5 to 1. Readjusted the open loop error signal offset on the LB1005.

8) Closed the loop and locked. Closing the loop then caused a much smaller DC change in the signal than I had seen with the larger gain (now around 3mV). RMS fluctuations in error signal are now 1 mV (well within the linear region of the error signal).

9) Noticed transmission has a strange distorted harmonic oscillation in it a 1MHz. (Modulation freq is 230kHz, so it's not that). Checked reflected signal and also saw a strange oscillation--in a sawtooth-like pattern.

 

I intend to

1) Post oscilloscope traces here showing transmitted and reflected signal when locked.

2) Look upstream to see if the sawtooth-like oscillation is in the laser beam before it enters the cavity:

  • Sweep the temperature of the laser so that the beam is no longer resonating in the cavity.
  • Compare the reflected signal off the cavity to the signal detected before being directed into the cavity (using the PDA255 that I used for measuring the AM response of the PZT) both with and and without the frequency modulation.

3) At some point, try to close the slow digital loop, perhaps readjusting the gain.

4) Try to measure a temperature step response.

I decided to go forward and try to close the digital loop in spite of the unexplained oscillations in the transmission.

1) Plugged the 20dB attenuator into the slow port on the laser drive. This pushed the laser out of lock and, for some reason, made the laser temperature stop responding to sweeping the set point manually with the knob.

2) Plugged the output from the digital system into the slow port (with the attenuator still in place).

3) Displayed the beam seen by the camera on a monitor in the control room

4) Stepped the laser temperature using MEDM until finding the 0,1 mode. Locked to that mode.

5) Closed the digital loop (input to slow laser drive attenuated 20dB attenuator). Gain 0.010

6) Loop appeared stable for 30 minutes, then temperature began shooting off. I opened the loop, cleared history, reduced the gain to 0.008, and started it again. Loop appears stable after 15 minutes of watching. I'm going to leave it for a few hours, then come back to check on it and, if it's stable, step the can temperature.

  5271   Fri Aug 19 19:08:40 2011 JennyUpdatePSLRelocking NPRO to reference cavity.

I am trying again to measure a temperature step response on the reference cavity on the PSL table.

I have been working to relock the NPRO to the cavity. I unblocked the laser beam, reassembled the setup described in my previous elog entry: 5202. I then did the following:

1) Monitored error signal (from LB1005 PDH servo), transmitted signal, and control signal sent to drive PZT on oscilloscope.

2) With loop open, swept through 0,0-mode resonance, saw a peak in the transmission, saw an accompanying error signal similar to the signal shown in 5202.

3) Tried to lock. Swept the gain on the LB1005 and could not find a gain that would make it lock. Tried changing the PI-corner freq. from 10 kHz to 30 kHz and back and still could not lock.

4) Noticed that the open loop error signal displayed on the scope was DC-offset from zero. Changed the offset to zero the error signal.

5) Tried to lock again and succeeded.

6) Noticed that upon closing the loop, the error signal became offset from zero again. Turning on the integrator on the LB1005 increased DC-offset.

7) Reduced the gain on the SR560 being used as a low pass filter from 5 to 1. Readjusted the open loop error signal offset on the LB1005.

8) Closed the loop and locked. Closing the loop then caused a much smaller DC change in the signal than I had seen with the larger gain (now around 3mV). RMS fluctuations in error signal are now 1 mV (well within the linear region of the error signal).

9) Noticed transmission has a strange distorted harmonic oscillation in it a 1MHz. (Modulation freq is 230kHz, so it's not that). Checked reflected signal and also saw a strange oscillation--in a sawtooth-like pattern.

 

I intend to

1) Post oscilloscope traces here showing transmitted and reflected signal when locked.

2) Look upstream to see if the sawtooth-like oscillation is in the laser beam before it enters the cavity:

  • Sweep the temperature of the laser so that the beam is no longer resonating in the cavity.
  • Compare the reflected signal off the cavity to the signal detected before being directed into the cavity (using the PDA255 that I used for measuring the AM response of the PZT) both with and and without the frequency modulation.

3) At some point, try to close the slow digital loop, perhaps readjusting the gain.

4) Try to measure a temperature step response.

  3260   Wed Jul 21 15:43:38 2010 MeganSummaryPSLCopper Layer Thickness on the Reference Cavity

Using the equation for thermal resistance

Rthermal = L/(k*A)

where k is the thermal conductivity of a material, L is the length, and A is the surface area through which the heat passes, I could find the thermal resistance of the copper and stainless steel on the reference cavity. To reduce temperature gradients across the vacuum chamber, the thermal resistance of the copper must be the same or less than that of the stainless steel. Since the copper is directly on top of the stainless steel, the length and width will be the same for both, just the thickness will be different (for ease of calculation, I assumed flat, rectangular strips of the metal). Assuming we wish to have a thermal resistance of the copper n times less than that of the stainless steel, we have

RCu = RSS/n

or

L/(kCu*w*tCu) = L/(kSS*w*tSS*n)

so that

tCu/tSS = n*kSS/kCu

We know that kSS = 401 W/m*K and KCu = 16 W/m*K, so

tCu/tSS = 0.0399*n

By using the drawings for the short reference cavity vacuum chamber (the only one I could find drawings for online) I found a thickness of the walls of 0.12 in or 0.3048 cm. So for the same thermal resistance in both metals, the copper must be 0.0122 cm thick and for a thermal resistance 10 times less, it must be 0.122 cm thick. So we will have to keep wrapping the copper on the vacuum chamber!

  3241   Fri Jul 16 23:53:27 2010 RanaUpdatePSLReference Cavity Insulation

From the trend, it seems that the Reference Cavity's temperature servo is working fine with the new copper foil. I was unable to find the insulating foam anywhere, but that's OK. We'll just get Frank to make us a new insulation with his special yellow stuff.

The copper foil that Steve got is just the right thickness for making it easy to form around the vacuum can, but we just have to have the patience to wrap ~5-10 more layers on there. We also have to get a new heater jacket; this one barely fits around the outside of the copper wrap. The one we have now seems to have a good heating wire pattern, but I don't know where we can buy these.

I also turned the HEPA's Variac back down to the nominal value of 20. Please remember to turn it back up to 100 before working on the PSL.

  3240   Fri Jul 16 20:25:52 2010 MeganUpdatePSLReference Cavity Insulation

Rana and I

1) took the temperature sensors off the reference cavity;

2) wrapped copper foil around the cavity (during which I learned it is REALLY easy to cut hands with the foil);

3) wrapped electrical tape around the power terminals of the temperature sensors (color-coded, too! Red for the out of loop sensor, Blue for the first one, Brown for the second, Gray for the third, and Violet for the fourth. Yes, we went with an alphabetical coding system, excluding the out of loop sensor);

4) re-wrapped the thermal blanket heater;

5) covered the ends of the cavities with copper, ensuring that the beam can enter and exit;

6) took pretty pictures for your enjoyment!

We will see if this helps the temperature stabilization of the reference cavity.

 

DSC_2271.JPG

The end of the reference cavity, with a lovely square around the beam.

 

DSC_2266.JPG

The entire, well-wrapped reference cavity!

  2760   Sat Apr 3 16:07:40 2010 AlbertoConfigurationPSLReference Cavity PD Noise Spectrum

 I was aware of a problem on those units since I acquired the data. Then it wasn't totally clear to me which were the units of the data as downloaded from the Agilent 4395A, and, in part, still isn't.

It's clear that the data was in units of spectrum, an not spectral density: in between the two there is a division by the bandwidth (100KHz, in this case). Correcting for that, one gets the following plot for the FSS PD:

2010-03-29_FSS_PD_shotnoise_and_darknoise.png

Although the reason why I was hesitating to elog this other plot is that it looks like there's still a discrepancy of about 0.5dBm between what one reads on the display of the spectrum analyzer and the data values downloaded from it.

However I well know that, I should have just posted it, including my reserves about that possible offset (as I'm doing now).

Quote:

The units on this plot are completely bogus - we know that the thermal noise from the resonant part of the circuit is just V = sqrt(4*k*T*Z) ~ 3nV/rHz. Then the gain of the MAX4107 stage is 10. The output resistor is 50 Ohms, which forms a divide by 2 with the input impedance of the spectrum analyzer and so the bump in the dark noise should only be 15 nV/rHz and not microVolts.

Quote:

[Rana, Alberto]

This evening we measured the noise spectrum of the reference cavity PD used in the FSS loop. From that we estimated the transimpedance and found that the PD is shot-noise limited. We also found a big AM oscillation in correspondence of the FSS modulation sideband which we later attenuated at least in part.

This plot shows the spectrum noise from the RF output of the photodetector.

  2759   Sat Apr 3 11:35:47 2010 ranaConfigurationPSLReference Cavity PD Noise Spectrum

The units on this plot are completely bogus - we know that the thermal noise from the resonant part of the circuit is just V = sqrt(4*k*T*Z) ~ 3nV/rHz. Then the gain of the MAX4107 stage is 10. The output resistor is 50 Ohms, which forms a divide by 2 with the input impedance of the spectrum analyzer and so the bump in the dark noise should only be 15 nV/rHz and not microVolts.

Quote:

[Rana, Alberto]

This evening we measured the noise spectrum of the reference cavity PD used in the FSS loop. From that we estimated the transimpedance and found that the PD is shot-noise limited. We also found a big AM oscillation in correspondence of the FSS modulation sideband which we later attenuated at least in part.

This plot shows the spectrum noise from the RF output of the photodetector.

  2742   Wed Mar 31 15:31:53 2010 steveUpdatePSLReference Cavity RF PD base upgraded

Quote:

Some more words about the RFAM: I noticed that there was an excess RFAM by unlocking the RC and just looking at the RF out with the 50 Ohm input of the scope. It was ~100 mVp-p! In the end our method to minimize the AM was not so sensible - we aligned the waveplate before the EOM so as to minimize the p-pol light transmitted by the PBS cube just ahead of the AOM. At first, this did not minimize the RFAM. But after I got angry at the bad plastic mounting of the EOM and re-aligned it, the AM seemed to be small with the polarization aligned to the cube. It was too small to measure on the scope and on the spectrum analyzer, the peak was hopping around by ~10-20 dB on a few second timescale. Further reduction would require some kind of active temperature stabilization of the EOM housing (maybe a good SURF project!).

For the EOM mount we (meaning Steve) should replace the lame 2-post system that's in there with one of the mounts of the type that is used in the Mach-Zucker EOMs. I think we have spare in the cabinet next to one of the arms.

After the RFAM monkeying, I aligned the beam to the RC using the standard, 2-mirror, beam-walking approach. You can see from the attached plot that the transmission went up by ~20% ! And the reflection went down by ~30%. I doubt that I have developed any new alignment technique beyond what Yoichi and I already did last time. Most likely there was some beam shape corruption in the EOM, or the RFAM was causing us to lock far off the fringe. Now the reflected beam from the reference cavity is a nice donut shape and we could even make it better by doing some mode matching! This finally solves the eternal mystery of the bad REFL beam (or at least sweeps it under the rug).

At the end, I also fixed the alignment of the RFPD. It should be set so the incident angle of the beam is ~20-40 deg, but it was instead set to be near normal incidence ?! Its also on flimsy plastic legs. Steve, can you please replace this with the new brass ones?

 Teflon feet removed and heavy brass-delrin pd base installed. Ref-cavity reflected light remains to be beautiful doughnut shape on camera.

Attachment 1: brspdbs.JPG
brspdbs.JPG
  2733   Tue Mar 30 06:37:32 2010 ranaConfigurationPSLReference Cavity PD Noise Spectrum

Some more words about the RFAM: I noticed that there was an excess RFAM by unlocking the RC and just looking at the RF out with the 50 Ohm input of the scope. It was ~100 mVp-p! In the end our method to minimize the AM was not so sensible - we aligned the waveplate before the EOM so as to minimize the p-pol light transmitted by the PBS cube just ahead of the AOM. At first, this did not minimize the RFAM. But after I got angry at the bad plastic mounting of the EOM and re-aligned it, the AM seemed to be small with the polarization aligned to the cube. It was too small to measure on the scope and on the spectrum analyzer, the peak was hopping around by ~10-20 dB on a few second timescale. Further reduction would require some kind of active temperature stabilization of the EOM housing (maybe a good SURF project!).

For the EOM mount we (meaning Steve) should replace the lame 2-post system that's in there with one of the mounts of the type that is used in the Mach-Zucker EOMs. I think we have spare in the cabinet next to one of the arms.

After the RFAM monkeying, I aligned the beam to the RC using the standard, 2-mirror, beam-walking approach. You can see from the attached plot that the transmission went up by ~20% ! And the reflection went down by ~30%. I doubt that I have developed any new alignment technique beyond what Yoichi and I already did last time. Most likely there was some beam shape corruption in the EOM, or the RFAM was causing us to lock far off the fringe. Now the reflected beam from the reference cavity is a nice donut shape and we could even make it better by doing some mode matching! This finally solves the eternal mystery of the bad REFL beam (or at least sweeps it under the rug).

At the end, I also fixed the alignment of the RFPD. It should be set so the incident angle of the beam is ~20-40 deg, but it was instead set to be near normal incidence ?! Its also on flimsy plastic legs. Steve, can you please replace this with the new brass ones?

Attachment 1: rc.png
rc.png
  2732   Mon Mar 29 21:43:27 2010 AlbertoConfigurationPSLReference Cavity PD Noise Spectrum

[Rana, Alberto]

This evening we measured the noise spectrum of the reference cavity PD used in the FSS loop. From that we estimated the transimpedance and found that the PD is shot-noise limited. We also found a big AM oscillation in correspondence of the FSS modulation sideband which we later attenuated at least in part.

This plot shows the spectrum noise from the RF output of the photodetector.
 
 (here you should be able to see an attached figure, if not it's probably becasue imagemagic has having problems with displaying png files)
2010-03-29_FSS_PD_shotnoise_and_darknoise.png
 
The tall peak at 21.5 MHz is the AM modulation introduced by the EOM. It seems to be caused by a misalignment of the EOM which might be somehow modulating the polarization.
The mount in which the EOM sits is not very solid. We should change it with something similar to that of the other two EOMs in the Mach Zehnder.
By tightening down the plastic screws of the mount Rana reduced the amplitude of the AM modulation by 20dB.
 
The bump in both the dark and shot noise are in corrispondence of the resonance of the PD's electronics. As it appears, the electronics is not well tuned: the bump should coincide with the AM peak.
 
In the case of the dark noise spectrum, the bump is due to the thermal noise of the electronics. It's a good sign: it means that the electronics is good enough to be sensitive to it.
 
Transimpedance Estimate
As a "sanity check" we made an approximate estimate of the transimpedance to make sure that the PD is dominated by shot noise rather than other noises, ie electronic's noise.
 
  1. Supposing that the laser beam hitting the PD was shot noise limited, we measured 1.1V at the DC output. That let us estimate the photocurrent at DC of 20mA, for a 50Ohm output impedance.
  2. The shot noise for 20mA is 80 pA/rtHz
  3. From the nosie spectrum, we measured 3e-7 v/rtHz at 21.5MHz
  4. The impedance at RF is then Z_rf = 3e-7 V/rtHz / 80e-12 pA ~ 4000 Ohm
  5. Since the RF path inside the PD has a gain of 10, the transimpedance is ~400Ohm, which is about as we (ie Rana) remembered it to be.
  6. The PD seems to be working fine.
Attachment 2: 2010-03-29_FSS_PD_shotnoise_and_darknoise.png
2010-03-29_FSS_PD_shotnoise_and_darknoise.png
  1956   Thu Aug 27 13:42:08 2009 ranaSummaryPSLReference Cavity Temperature Control: psl.db changes

I made the changes to the psl.db to handle the new Temperature box hardware. The calibrations (EGUF/EGUL) are just copied directly from the LHO .db file (I have rsync'd their entire target area to here).

allegra:c1psl>diff psl.db~ psl.db
341,353d340
< grecord(ai,"C1:PSL-FSS_TIDALOUT")
< {
<       field(DESC,"TIDALOUT- drive to the reference cavity heater")
<       field(DISV,"1")
<         field(SCAN,".5 second")
<       field(DTYP,"VMIVME-3113")
<       field(INP,"#C0 S28 @")
<       field(EGUF,"10")
<       field(EGUL,"-10")
<       field(EGU,"volts")
<       field(LOPR,"-10")
<       field(AOFF,"0")
< }
493,494c480,481
<         field(EGUF,"285.675")
<         field(EGUL,"-214.325")
---
>         field(EGUF,"67.02")
>         field(EGUL,"7.96")
508,509c495,496
<         field(EGUF,"726.85")
<         field(EGUL,"-1273.15")
---
>         field(EGUF,"75.57")
>         field(EGUL,"12.31")
531,532c518,519
<         field(EGUF,"726.85")
<         field(EGUL,"-1273.15")
---
>         field(EGUF,"75.57")
>         field(EGUL,"12.31")
605,617d591
< grecord(ai,"C1:PSL-FSS_TIDALINPUT")
< {
<       field(DESC,"TIDALINPUT- tidal actuator input")
<       field(DISV,"1")
<         field(SCAN,".5 second")
<       field(DTYP,"VMIVME-3123")
<       field(INP,"#C0 S3 @")
<       field(EGUF,"10")
<       field(EGUL,"-10")
<       field(EGU,"volts")
<       field(LOPR,"-10")
<       field(AOFF,"0")
< }
1130a1105,1130
> grecord(ai,"C1:PSL-FSS_TIDALINPUT")
> {
>       field(DESC,"TIDALINPUT- tidal actuator input")
>       field(DISV,"1")
>         field(SCAN,".5 second")
>       field(DTYP,"VMIVME-3123")
>       field(INP,"#C0 S3 @")
>       field(EGUF,"10")
>       field(EGUL,"-10")
>       field(EGU,"volts")
>       field(LOPR,"-10")
>       field(AOFF,"0")
> }
> grecord(ai,"C1:PSL-FSS_TIDALOUT")
> {
>       field(DESC,"TIDALOUT- drive to the reference cavity heater")
>       field(DISV,"1")
>         field(SCAN,".5 second")
>       field(DTYP,"VMIVME-3113")
>       field(INP,"#C0 S28 @")
>       field(EGUF,"10")
>       field(EGUL,"-10")
>       field(EGU,"volts")
>       field(LOPR,"-10")
>       field(AOFF,"0")
> }
1143,1144c1143,1144
<         field(HOPR,"0.010")
<         field(LOPR,"-0.010")
---
>         field(HOPR,"2")
>         field(LOPR,"0")

  1954   Wed Aug 26 19:58:14 2009 Rana, AlbertoUpdatePSLReference Cavity Temperature Control: MINCO PID removed

Summary: This afternoon we managed to get the temperature control of the reference cavity working again.

We bypassed the MINCO PID by connecting the temperature box error signal directly into EPICS.

We couldn't configure the PID so that it worked with the modified temperature box so we decided to just avoid using it.

Now the temperature control is done by a software servo by using the channel C1:PSL-FSS_MINCOMEAS as error signal and driving C1:PSL-FSS_TIDALSET (which we have clip-doodle wired directly to the heater input).

 

We 'successfully' used ezcaservo to stabilize the temperature:

ezcaservo -r C1:PSL-FSS_MINCOMEAS -s 26.6 -g -0.00003 C1:PSL-FSS_TIDALSET

 

We also recalibrated the channels:

C1:PSL-FSS_RMTEMP

C1:PSL-FSS_RCTEMP

C1:PSL-FSS_MINCOMEAS

with Peter King on the phone by using ezcawrite (EGUF and EGUL) but we didn't change the database yet. So please do not reboot the PSL computer until we update the database.

 

More details will follow.

Attachment 1: rc.png
rc.png
  1953   Wed Aug 26 16:35:03 2009 AlbertoConfigurationPSLPSL reference cavity temperature box modifications

Basically, in addition to the replacement of the resistors with metal film ones, Peter replaced the chip that provides a voltage reference.

The old one provided about 2.5 V, whereas the new one gets to about 7V. Such reference voltage somehow depends on the room temperature and it is used to generate an error signal for the temperature of the reference cavity.

Peter said that the new higher reference should work better.

  1952   Wed Aug 26 16:31:34 2009 steveUpdatePSLreference cavity temp box temporarly out of order

Quote:

It turned out that half an hour was too long. In less than that the reference cavity temperature passed the critical point when the temperature controller (located just below the ref cav power supply in the same rack) disables the input power to the reference cavity power supply.

The controller's display in the front shows two numbers. The first goes with the temperature of the reference cavity; the second is a threshold set for the first number. The power supply gets enabled only when the first number comes under the threshold value.

Now the cavity is cooling down and it will take about another hour for its temperature to be low enough and for the heater power supply to be powered.

 The cavity temp cooled below SP2 set point 0.1  The Minco SP1 (present temp in Volts) now reading -0.037 so DC power supply was turned on and set to 12V 1A  

 

 

  1951   Wed Aug 26 16:11:41 2009 AlbertoUpdatePSLreference cavity temp box temporarly out of order

It turned out that half an hour was too long. In less than that the reference cavity temperature passed the critical point when the temperature controller (located just below the ref cav power supply in the same rack) disables the input power to the reference cavity power supply.

The controller's display in the front shows two numbers. The first goes with the temperature of the reference cavity; the second is a threshold set for the first number. The power supply gets enabled only when the first number comes under the threshold value.

Now the cavity is cooling down and it will take about another hour for its temperature to be low enough and for the heater power supply to be powered.

  1950   Wed Aug 26 16:10:28 2009 Peter KingConfigurationPSLPSL reference cavity temperature box modifications

The 40m Lab reference cavity temperature box S/N BDL3002 was modified as per DCN D010238-00-C.

These were:

    R1, R2, R5, R6 was 10k now are 25.5k metal film

    R11, R14 was 10k now are 24.9k metal film

    R10, R15 was 10k now are 127k thick film - no metal film resistors available

    R22 was 2.00k now is 2.21k

    R27 was 10k now is 33.2k

    U5, the LM-336/2.5 was removed

    An LT1021-7, 7 V voltage reference was added.  Pin 2 to +15V, pin 4 to ground, pin 6 to U6 pin 3.

    Added an 8.87k metal film resistor between U6 pin 1 and U4 pin 6.

    Added an 8.87k metal film resistor between U6 pin 1 and U4 pin 15.

    The 10k resistor between J8 pin 1 and ground was already added in a previous modification.

In addition R3, R4, R7, R8, R12 and R13 were swapped out for metal film resistors of the same value

(1.00k).

    The jumper connection to the VME setpoint was removed, as per Rana's verbal instructions.

This disables the ability to set the reference cavity vacuum chamber temperature by computer.

 DSC_0731.jpg

 

 

  1949   Wed Aug 26 15:42:17 2009 AlbertoUpdatePSLreference cavity temp box temporarly out of order

Quote:

There's no elog entry about what work has gone on today, but it looks like Peter took apart the reference cavity temperature control around 2PM.

I touched the reference cavity by putting my finger up underneath its sweater and it was nearly too hot to keep my finger in there. I looked at the heater power supply front panel and it seems that it was railed at 30 V and 3 A. The nominal value according to the sticker on the front is 11.5 V and 1 A.

So I turned down the current on the front panel and then switched it off. Otherwise, it would take it a couple of days to cool down once we get the temperature box back in. So for tonight there will definitely be no locking. The original settings are in the attached photo. We should turn this back on with its 1A setting in the morning before Peter starts so that the RC is at a stable temp by the evening. Its important NOT to turn it back on and let it just rail. Use the current limit to set it to 1 A. After the temperature box is back in the current limit can be turned back up to 2A or so. We never need the range for 3A, don't know why anyone set it so high.

While Peter King is still working on the reference cavity temperature box, I turned the power supply for the reference cavity's heater back on. Rana turned it off last night since the ref cav temperature box had been removed.

I just switched it on and turned the current knob in the front panel until current and voltage got back to their values as in Rana's picture.

I plan to leave it like that for half an hour so that the the cavity starts warming up. After that, I'll turn the current back to the nominal value as indicated in the front panel.

  1946   Tue Aug 25 21:55:11 2009 ranaUpdatePSLreference cavity temp box temporarly out of order

There's no elog entry about what work has gone on today, but it looks like Peter took apart the reference cavity temperature control around 2PM.

I touched the reference cavity by putting my finger up underneath its sweater and it was nearly too hot to keep my finger in there. I looked at the heater power supply front panel and it seems that it was railed at 30 V and 3 A. The nominal value according to the sticker on the front is 11.5 V and 1 A.

So I turned down the current on the front panel and then switched it off. Otherwise, it would take it a couple of days to cool down once we get the temperature box back in. So for tonight there will definitely be no locking. The original settings are in the attached photo. We should turn this back on with its 1A setting in the morning before Peter starts so that the RC is at a stable temp by the evening. Its important NOT to turn it back on and let it just rail. Use the current limit to set it to 1 A. After the temperature box is back in the current limit can be turned back up to 2A or so. We never need the range for 3A, don't know why anyone set it so high.

Attachment 1: Untitled.png
Untitled.png
Attachment 2: rc-heater.jpg
rc-heater.jpg
  1915   Mon Aug 17 02:05:49 2009 Yoichi,ranaUpdatePSLReference cavity reflection looks bad
Rana, Yoichi

It has been a well known fact that the reference cavity reflection beam looks ugly.

We measured the visibility of the RC by locking and unlocking it.
Comparing the reflected beam powers, we got the visibility of 0.46,
which is pretty bad.

The beam going into the RC looks fine (circular on a sensor card).
However, the beam reflected back from the RC is distorted into a
horizontal ellipse, even when the RC is not locked.

We took a picture of the reflected beam hitting a white paper with the
infrared camera (see the attachment). It looks like two overlapping
circles horizontally separated. Could it be a badly coated optics
producing a secondary reflection ?

We looked into the RC's front mirror with an inspection mirror, but we
could not identify any obstructing object.

Rana is now touching the RC alignment.

We plan to remove the periscope before the RC to have a better look
into the cavity for inspection.


Late breaking update:
- We also moved the Refcav reflection camera to look at the leakage through a reflection steering mirror so that there's less chance of distortion. There was previously a W1 window in there as a pickofff. Also changed the camera to autogain so that we can see something.

- Re-aligned onto the refl pd.

- Tweaked alignment into RC. Mainly in yaw. Transmission went from 5V to 7V. In your face, Aso!
Attachment 1: P8170113.JPG
P8170113.JPG
Attachment 2: Untitled.png
Untitled.png
  1451   Wed Apr 1 23:18:07 2009 rana, kojiSummaryIOONo Reference Cavity Required
Koji sent us a note about our "No Reference Cavity Required" entry. I thought that it nicely summarizes the
whole shebang and so I post it here for its pedagogical value.

Generally, frequency stabilization is a comparison of the two
frequency references.

1. In the conventional case you are comparing the NPRO stability with
the RC stability. The NPRO cavity is short and probably placed in a
less stable environment than that of the RC. Therefore, the PDH
signal only feels the frequency fluctuation of the NPRO, resulting
in the laser PZT fast feedback dominated by the NPRO stability. As
the MC length at low frequency is controlled by the mass feedback,
the resulting laser stability through the MC is virtually limited
by the RC stability.

2. On the other hand, you are comparing the stabilities of the NPRO
crystal and the MC cavity in the direct control configuration. The
stability of the MC at high frequency is better than that of the
NPRO. It is opposite at low frequency, of course, because of the
pendulum motion. The resulting laser stability through the MC is
limited by the MC stability.

3. In the CM servo, the length of the MC is stabilized such that the
arm stability is duplicated to the MC. As a result, your MC servo
compares the stability between the NPRO and the arm cavity. Again
at around 1Hz, the arm cavity is noisier than the NPRO. (This is
true at least TAMA case. I am quite unsure about it in the LIGO
long arm cases.)

One useful consequence is that in those configurations, the laser PZT
feedback at around 1Hz represents the stability of the NPRO, the MC,
and (possibly) the arm cavity, respectively. It was clearly seen
Yoichi's e-log entry 1432. At TAMA we call this signal as "MCPZTfb"
and use this for the diagnostic purposes of the suspended cavities. As
the laser fast PZT is rarely replaced and considered as a stable
actuator, this signal is considered as a good reference at low
frequency which is consistent across various configurations
(e.g. before/after replacement of the suspensions etc). Once the
response and the coefficient are calibrated you can easily convert
this signal to the length displacement.

Another remark: In the direct configuration, the frequency stability
of the beam goes through the MC is determined by the MC stablity. It
means that the beam to the arm has essentially worse stability than
the arm stability by factor of L_arm/L_MC. In the 40m case this factor
is just 3 or so. This is ok. However, for the LIGO 4km arm, the factor
becomes something like 300. This means that if you have 1um_rms of the
MC length fluctuation, the arm PDH feels 300um_rms. (Maybe some extent
less because of the common mode rejection of the MC suspensions.)

Yes, the actuator to the MC length is very strong this time, and
should be able to stop this amount of fluctuation easily... if the
things are all linear. I am not certain whether you can acquire the
lock even by this strong actuator when the arm is crazily swinging,
the PDH signals are ringing all the way, etc, etc...Particularly in
the recycling case!

One possible remedy is a technique developed by the German
necromancers, as always. They used the NPRO cavity as a reference
cavity. They actuate the MC length at low frequency. But I don't know
the exact configuration and how they accomplished the CM hand-off. We
have to ask Hartmut.

The other possibility is your adaptive stabilization of the MC by the
FIR technique. So far I don't know how much stability you can improve
in the LIGO 4km case.

There would be many possibilities like feedforward injection from the
green arm locking signal to the MC length, etc, etc.
  1425   Wed Mar 25 01:37:35 2009 rana, yoichiSummaryIOONo Reference Cavity Required
We were wondering if we need to have a reference cavity. One possible reason to have one is to reduce the free running
frequency noise by some level so that the MC can handle it. According to my manifesto,
the free running noise of the laser is (10 kHz / f) Hz/rHz. The mode cleaner loop gain is sufficient to reduce this to
0.001 Hz/rHz everywhere below 1 kHz - radiation pressure noise and coating thermal noise limit the mode cleaner below
these levels.

So, since it seems like the reference cavity is superfluous (except for the 1 - 10 kHz band), we unlocked it and locked the
MC by feeding back directly to the laser.

In the old set up, the low frequency feedback is to MC2 and the high frequency to the VCO which actuates the FSS which
drives the NPRO PZT and the Pockel cell.

In this new way, we take the MC board's output to the VCO (the TNC monitor point) and send that to the TEST IN1 of the FSS
box. The FSS box then splits the drive to go to the PZT and the PC path. We also turned off the 40:4000 filter in the MC
board and inverted the sign of the MC FAST path.
Good settings for acquisition:
MC INPUT GAIN = 6 dB
40:4000        Disable
FAST polarity  MINUS
VCO Gain       -3 dB
MC LIMITER     Disable

FSS TEST1      TEST
FSS CG         -3 dB
FSS FG         13 dB

After our initial locking success, we realized that the new MC-FSS loop is conditionally stable: the old loop relied on
the 40 kHz refcav pole to make it stable. The new loop has a 4 kHz pole and so the phase lag in the MC-PZT path is too
much. We need to build a passive lead filter (40 kHz : 4 kHz) in a Pomona box to compensate.

There are several more issues:

- I think this will make the whole CM servo handoff easier: there is no more handoff.

- This will make the lock acquisition fringe velocity higher by a factor of the arm/mc length (40 m / 13 m) since
the frequency will be slewing around along with MC2 now. However, Jenne's FF system ought to take care of that.

- Having the laser frequency stabilized to the MC during lock acquisition will make all of the error signals quieter
immediately. This can only be good.

- If we can make this work here, it should translate to the sites directly since they have exactly the same electronics.
  1191   Tue Dec 16 19:06:01 2008 YoichiUpdatePSLReference cavity ring down repeated many times
Today, I repeated the reference cavity ring down measurement many times to see how much the results vary.

I repeated the ring down for 20 times and the first attachment shows the comparison of the measured and estimated cavity transmission power.
The blue curve is the measured one, and the red curve is the estimated one. There are only 10 plots because I made a mistake when transferring data
from the oscilloscope to the PC, and one measurement data was lost.

The second attachment shows the histogram of the histogram of the estimated cavity pole frequencies.
I admit that there are not enough samples to treat it statistically.
Anyway, the mean and the standard deviation of the estimated frequencies are 47.6kHz and 2.4kHz.
Assuming a Gaussian distribution and zero systematic error, both of which are bold assumptions though, the result is 47.6(+/-0.6)kHz.

Now I removed the Pockels Cell from the RC input beam path.
I maximized the transmission by tweaking the steering mirrors and rotating the HWP.
Since the transmission PD was saturated without an ND filter on it, I reduced the VCO RF power slider to 2.85.
Accordingly, I changed the nominal common gain of the FSS servo to 10.5dB.
Attachment 1: RC_Ringdown_Estimates.png
RC_Ringdown_Estimates.png
Attachment 2: Cavity_Pole_Histogram.png
Cavity_Pole_Histogram.png
  1190   Fri Dec 12 22:51:23 2008 YoichiUpdatePSLReference cavity ring down measurement again
Bob made new HV-cables with HV compatible coaxes. The coax cable is rated for 2kV, which was as high as Bob
could found. I used it with 3kV hoping it was ok.
I also put a series resistor to the pockels cell to tame down the ripples I saw in elog:1136.

Despite those efforts, I still observed large ringings.
I tried several resistor values (2.5k, 1k, 330ohm), and found that 330ohm gives a slightly better result.
(When the resistance is larger, the edge of the PBS Refl. becomes dull).
Since the shape of the ringing does not change at all even when the pulse voltage is lowered to less than 1kV,
I'm now suspicious of the DEI pulser.

Anyway, I estimated the cavity pole using the MATLAB's system identification toolbox again.
This time, I locked the reference cavity using only the PZT feedback, which makes the UGF about a few kHz.
So, within the time scale shown in the plot below, the servo does not have enough time to respond, thus the laser
frequency stays tuned with the cavity. This was necessary to avoid non-linear behavior of the transmitted power
caused by the servo disturbing the laser frequency. With this treatment, I was able to approximate the response of
the cavity with a simple linear model (one pole low-pass filter).

MATLAB estimated the cavity pole to be 47.5kHz.
The blue curve in the plot is the measured RC transmitted power.
The incident power to the cavity can be inferred from the inverse of the red curve (the PBS reflection power).
The brown curve is the response of the first order low-pass filter with fc=47.5kHz to the input power variation.
The blue and brown curves match well for the first 10usec. Even after that the phases match well.
So the estimated 47.5kHz is probably a reasonable number. I don't know yet how to estimate the error of this measurement.

According to http://www.ligo.caltech.edu/~ajw/PSLFRC.png the designed transmission of the reference cavity mirrors is 300ppm (i.e.
the round trip loss (RTL) is 600ppm).
This number yields fc=35kHz. In the same picture, it was stated that fc=38.74kHz (I guess this is a measured number at some point).
The current fc=47.5kHz means, the RTL has increased by 200ppm from the design and 150ppm from the time fc=38.74kHz was measured.
Attachment 1: RC-Ringdown.png
RC-Ringdown.png
  1140   Mon Nov 17 15:07:06 2008 YoichiUpdatePSLReference cavity ring down
I used MATLAB's system identification tool box to estimate the response of the reference cavity, i.e. cavity pole.
What I did was basically to estimate a model of the RC using the time series of the measured input and output power.

First, I prepared the input and output time series for model estimation.
The input is the input power to the RC, which I produced by inverting the PBS reflected light power and adding an offset
so that the signal is zero at t=0. Offset removal was necessary to make sure that the input time series does not give an
unintentional step at t=0.
The output time series is the transmission power of the RC. I also added an offset to make it zero at t=0.
Then I commanded MATLAB to compute the response of a first order low-pass filter to the input and try to fit
the computed response to the measured output by iteratively changing the gain and the cut-off frequency.
("pem" is the name of the command to use if you are interested in).

The result is shown in the attachment.
Blue curve is the input signal (I added a vertical offset to show it separately from the output).
The green curve is the measured output (RC transmission). The red curve is the response of the estimated model.
The estimated cut-off frequency was about 45kHz.

You can see that the red curve deviates a lot from the green curve after t=15usec.
By looking at this, I realized that the bandwidth of the RC cavity servo was too high.
The time scale we are looking at is about 50kHz whereas the FSS bandwidth is about 400kHz.
So when the input light was cut off, the error signal of the FSS becomes meaning less and the
input laser frequency was quickly moved away from the resonance. This is why the green curve does not
respond to the large peaks in the blue curve (input). The cavity was already off-resonance when the input power
showed bumps.

Since the red curve matches nicely with the green curve at the very beginning of the ring down, the estimated 45kHz
cavity pole is probably not that a bad estimate.

To make a better measurement, I will try to reduce the bandwidth of the RC servo by using only the PZT actuator.
If there were no ringing in the input light power, we wouldn't have to worry about the bandwidth of the servo because our
feedback is all made to the laser, not the cavity length.
In order to reduce the ringing in the input power, I asked Bob to make new HV cables using HV grade coax cables.
Attachment 1: Fit.png
Fit.png
  1136   Fri Nov 14 19:20:42 2008 YoichiUpdatePSLReference cavity ring down
Thanks to Bob making the high-voltage BNC cables for the HV pulse generator, I was able to operate the EOM in front of
the reference cavity.

The conceptual setup is the following:
[HV pulse] ----+           +-->-- [PD2]
               V           |
->--[HWP]->-- [EOM] -->-- [PBS] --<->-- [QWP] --<->-- [Reference Cavity] -->-- [PD1]
                           |
                [PD3] --<--+

The high voltage pulse rotates the polarization of the light after the EOM. When the HV is applied, the PBS reflects most of the light
into PD2 (Thorlabs PDA255), shutting down the incident light into the cavity.
The transmitted light power of the reference cavity is monitored by PD1 (PDA255). The reflected light from the reference cavity
is monitored by the DC output of the RF PD (PD3). PD3 is low-passed so the response is not fast.
Thorlabs says PDA255 has 50MHz bandwidth.

The attached plot shows the time series of the above PD signals when the HV was applied.
Input Pulse (blue curve) is the input to the HV pulse generator. When it is high, the HV is applied.
"PBS reflection" (red) is PD2. "Reflection" (green) is PD3. "Transmission" (light blue) is PD1.

The red curve shows huge ringing. At first I thought this was caused by the bad response of the PD.
However, the same ringing can be seen in the PD3 and the peaks match very well.
When red curve goes down the green curve goes up, which is consistent with the energy conservation.
So it looks like the light power is actually exhibiting this ringing.
May be the HV pulse is distorted and the voltage across the EOM is showing this ringing.
I will check the input voltage shape to the EOM using a high impedance probe, if possible.

The green curve shows a slow decay because it has a long time constant. It is not an actual
trend of the reflected light power.

The RC transmission power shows some peaks, probably due to the ringing in the input power.
So just fitting with an exponential would not give a good estimate of the cavity pole.
Even though, we should be able to de-convolute the frequency response of the reference cavity
from the input (red curve) and output (light blue curve) signals.
Attachment 1: RingDown.png
RingDown.png
  1095   Mon Oct 27 14:48:27 2008 YoichiConfigurationPSLEO shutter installed to the reference cavity
I'm now preparing for cavity ring down measurements of the reference cavity.
An EOM for polarization rotation is installed between the two steering mirrors for the reference cavity.
The location is before the polarized beam splitter (used to pick-up the reflected light from the cavity) and
after the half-wave plate. So we should be able to use the PBS as a polarizer.
While setting up the high voltage pulse generator, I realized that we don't have enough cables for it.
It uses special kind of connectors (Kings 1065-N) for HV connections. We need three of those but I could find
only two. I asked Bob to order a new connector.

For the moment, the EOM is left in the beam path of the reference cavity until the connectors arrive (Wed. or Thu. this week)
and the measurements are done.
The EOM distorts the beam and degrades the mode matching to the reference cavity.
I optimized the alignment of the crystal so that the RC transmission is maximum.
Even though, the transmission of the reference cavity is down from 2.8 (without EOM) to 1.7 (with EOM).
I increased the common gain of the FSS from 7dB to 10dB to compensate for this.
The mode clearner locks with this configuration.

If the EOM is really disturbing, one can just take it out.
Since I did not touch the steering mirrors, the alignment to the reference cavity should be recovered immediately.
  1018   Wed Oct 1 23:21:03 2008 YoichiConfigurationPSLReference cavity reflection camera
I re-centered the reference cavity reflection camera, which has been mis-aligned for a while.
I also tweaked an input steering mirror to make the alignment better. This resulted in the increase of the transmission PD voltage
from 8V to 9V.
  746   Mon Jul 28 11:20:13 2008 JenneUpdatePSLWork on the FSS and Reference Cavity
[Yoichi, Jenne, Koji]

The Reference Cavity's saga continues....

Thursday, Yoichi and I worked to change the beam that we chose from the 2nd pass through the AOM, to the first order beam rather than the 2nd order beam (see elog #726). After choosing the correct beam, we get 29mW incident on the reference cavity (compared with 4mW before any work began). We adjusted the angle of the AOM in the plane of the table, and got up to 30.6mW. We adjusted the tip/tilt of the AOM and got to 30.7mW (the tip/tilt adjustment made a more significant difference in the work described in elog #726, but after that work, it was probably already pretty close to optimized). We noticed that for the above measurements, we had 2 beams through the Polarizing Beam Splitter and Waveplate (one very dim), so after excluding that beam, the power meter read 30.4mW. We adjusted the curved mirror a little, and got 30.8mW incident on the reference cavity.

We then put a triangle wave into the offset of the MC Servo Board using the "trianglewave <channel> <center> <amplitude> <period> <runtime>" command in a terminal screen. This changes the voltage to the VCO, and thus the frequency response of the AOM. We watch the diffracted spots from the second pass through the AOM, and confirm that the beam we have chosen is not moving, and all the others are. By symmetry, if we chose the first order beam after the first pass through the AOM, and then again chose the first order beam after the second pass, the resulting beam will not move with the frequency change of the AOM.

We saw 1.50V (Refl. PD, unlocked) on the 'scope after aligning the optics to make the newly chosen beam hit the input mirror of the reference cavity. Order of operations for this alignment:
  • Recenter the beam on the 2 lenses that are just after the PBS and the waveplate
  • Adjust pitch and yaw of the two steering mirrors until the beam reflected off the input mirror of the reference cavity is parallel to the incident beam
    • Use a sensor card to check the alignment of the incident and reflected beams, and adjust the steering mirrors to get the alignment close
      • Note the amplitude of the DC output of the Refl. PD with the iris completely open. Close the iris until the signal decreases by ~50%, then adjust the steering mirrors until the original amplitude is regained. Repeat until the iris can be almost completely closed but the Refl. PD signal doesn't change
    • Watch the DC output of the Refl. PD, and maximize the signal on a 'scope
    • Sweep the PZT of the laser using a function generator into the RAMP input on the FSS board (~10Vpp at ~1Hz), OR sweep the temperature of the laser using the trianglewave function on the SLOW FSS channel (amplitude~0.5, period~50)
    • Watch the modes that resonate in the cavity, and adjust pitch and yaw of the steering mirrors to get closer to the TEM00 mode
    • When the TEM00 mode appears in the sweep, stop the sweep, and lock the cavity
    • Watch the DC output of the Transmitted PD, and maximize the signal on a 'scope
  • Celebrate!

After all of this adjusting,
Refl. PD (unlocked) = 1.48V
Refl. PD (locked) = 680mV
Trans. PD (locked) = 6.28V
Power reflected (unlocked) = 26.28mW
Power transmitted (locked) = 13.89mW
Thus, 53% transmission

Next: check the amount of power transmitted by reducing the amplitude of the RF modulator. This reduces the amount of power used by the sidebands, and so should increase the transmission.
Power incident = 27mW
Power transmitted = 17.2mW
Thus, 64% transmission
We then put the RF modulator back where it was originally.

We then replaced the lens mounts for the f=802 and f=687 lenses between the AOM and the reference cavity, to the new mounts that Yoichi bought. Koji helped me realign into the reference cavity, and we got:
Refl. PD (unlocked) = 1.48V
Refl. PD (locked) = 880mV
Trans PD (locked) = 4.64V
Power incident = 26.97mW
Power transmitted = 10.39mW
39% transmission
Since more mode matching etc. is in the works, we left this for the night.

On Friday, we changed the setup of the cameras and PDs for both reflection and transmission, to avoid saturating the PDs and cameras.

On the Refl. side of the reference cavity, we put a W2-PW-1025-UV-1064-45P pickoff between the last mirror and lens before the camera and PD. We moved the camera to the pickoff side of the new optic. We then replaced teh 45UNP beam splitter that split the beam between the PD and the camera with a Y1-1037-45P highly reflective mirror, and put the PD in the old camera location.

On the Trans. side of the ref. cavity, we replaced the BSI-1064-50-1025-45S with a W2 pickoff, and replaced the Y1-1037-45-P highly reflective mirror with the 50/50 beam splitter that was replaced by the W2.

Now we have:
Refl. PD (unlocked) = 1.68V
Refl. PD (locked) = 640mV
Trans PD (locked) = 4.24V
Power incident = 25mW
Power transmitted = 14.48mW
58% transmission

Koji pointed out that when remounting, I had put the f=802 lens ~2cm away from its original position (along the z-axis), so I moved the lens back to where it should be, and realigned into the reference cavity. Since Rana was working on the PMC at the same time, the laser was turned down by about a factor of 100, so my starting measurements were:
Refl. PD (unlocked) = 23.6mV
Refl. PD (locked) = 10.2mV
Trans PD (locked) = 56mV
Power incident = 0.35mW
Power transmitted = 0.16mW
46% transmission

Since it was late on Friday by the time everything was realigned into the ref. cavity (I'm still working on my optics aligning skills), I forgot to measure the transmission after all of my work. I'll do that today (Monday) as soon as Sharon/Koji are done working with the IFO this morning. Also, I'll put up before/after pictures as soon as I find the camera...it seems to have walked off.

UPDATE:
Ref. Cav. measurements after Friday's alignment (and after turning the laser power back up to normal):
Refl. PD (unlocked) = 1.58V
Refl. PD (locked) = 304mV
Trans PD (locked) = 3.68V
Power incident = 24.96mW
Power transmitted = 16.45mW
66% transmission


To do: Start the actual mode-matching into the reference cavity.
ELOG V3.1.3-